Schrödinger uncertainty relation with Wigner-Yanase skew information

Shigeru Furuichi*

Department of Computer Science and System Analysis, College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajyousui, Setagaya-ku, Tokyo, 156-8550, Japan (Received 17 May 2010; published 2 September 2010)

We shall give an alternative Schrödinger-type uncertainty relation for a quantity representing a quantum uncertainty, introduced by Luo [Phys. Rev. A 72, 042110 (2005)]. Our result improves the Heisenberg-type uncertainty relation shown in Luo's paper for a mixed state.

DOI: 10.1103/PhysRevA.82.034101 PACS number(s): 03.65.Ta, 03.67.—a

I. INTRODUCTION

In quantum mechanical systems, the expectation value of an observable (self-adjoint operator) H in a quantum state (density operator) ρ is expressed by $\text{Tr}(\rho H)$. Also, the variance for a quantum state ρ and an observable H is defined by $V_{\rho}(H) \equiv \text{Tr}\{\rho[H - \text{Tr}(\rho H)I]^2\} = \text{Tr}(\rho H^2) - \text{Tr}(\rho H)^2$. The Heisenberg uncertainty relation is well known [1]:

$$V_{\rho}(A)V_{\rho}(B) \geqslant \frac{1}{4}|\text{Tr}(\rho[A,B])|^2 \tag{1}$$

for a quantum state ρ and two observables A and B. The further strong result was given by Schrödinger [2]:

$$V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 \geqslant \frac{1}{4}|\text{Tr}(\rho[A,B])|^2,$$
 (2)

where the covariance is defined by $Cov_{\rho}(A, B) \equiv Tr(\rho[A - Tr(\rho A)I][B - Tr(\rho B)I])$.

On the other hand, as a degree for noncommutativity between a quantum state ρ and an observable H, the Wigner-Yanase skew information $I_{\rho}(H)$ was defined in Ref. [3] (see Definition 1 in Sec. II). It is well known that the convexity of the Wigner-Yanase-Dyson skew information $I_{\rho,\alpha}(H) \equiv \frac{1}{2} \mathrm{Tr}\{(i[\rho^{\alpha},H])(i[\rho^{1-\alpha},H])\}, \ \alpha \in [0,1],$ which is a one-parameter extension of the Wigner-Yanase skew information $I_{\rho}(H)$, with respect to ρ was successfully proven by Lieb in Ref. [4]. We have the relation between $I_{\rho}(H)$ and $V_{\rho}(H)$ such that $0 \leqslant I_{\rho}(H) \leqslant V_{\rho}(H)$ so it is quite natural to consider that we have the further sharpened uncertainty relation for the Wigner-Yanase skew information:

$$I_{\rho}(A)I_{\rho}(B) \geqslant \frac{1}{4}|\operatorname{Tr}(\rho[A,B])|^{2}.$$

However, the above relation failed (see Refs. [5–7]). Luo then introduced the quantity $U_{\rho}(H)$ representing a quantum uncertainty excluding the classical mixture:

$$U_{\rho}(H) \equiv \sqrt{V_{\rho}(H)^2 - [V_{\rho}(H) - I_{\rho}(H)]^2},$$
 (3)

and then he successfully showed a new the Heisenberg-type uncertainty relation on $U_{\rho}(H)$ in Ref. [8]:

$$U_{\rho}(A)U_{\rho}(B) \geqslant \frac{1}{4}|\operatorname{Tr}(\rho[A,B])|^{2}.$$
 (4)

As stated in Ref. [8], the physical meaning of the quantity $U_{\rho}(H)$ can be interpreted as follows. For a mixed state ρ ,

the variance $V_{\rho}(H)$ has both classical mixture and quantum uncertainty. Also, the Wigner-Yanase skew information $I_{\rho}(H)$ represents a kind of quantum uncertainty [9,10]. Thus, the difference $V_{\rho}(H) - I_{\rho}(H)$ has a classical mixture so we can consider that the quantity $U_{\rho}(H)$ has a quantum uncertainty excluding a classical mixture. Therefore it is meaningful and suitable to study an uncertainty relation for a mixed state by use of the quantity $U_{\rho}(H)$.

Recently, Yanagi gave a one-parameter extension of the inequality (4) in Ref. [11], using the Wigner-Yanase-Dyson skew information $I_{\rho,\alpha}(H)$. Note that we have the following ordering among three quantities:

$$0 \leqslant I_{\rho}(H) \leqslant U_{\rho}(H) \leqslant V_{\rho}(H). \tag{5}$$

The inequality (4) is a refinement of the original Heisenberg's uncertainty relation (1) in the sense of the above ordering (5).

In this Brief Report, we show the further strong inequality (Schrödinger-type uncertainty relation) for the quantity $U_{\rho}(H)$ representing a quantum uncertainty.

II. MAIN RESULTS

To show our main theorem, we prepare the definition for a few quantities and a lemma representing properties on their quantities.

Definition 1. For a quantum state ρ and an observable H, we define the following quantities.

(i) The Wigner-Yanase skew information:

$$I_{\rho}(H) \equiv \frac{1}{2} \text{Tr}\{(i[\rho^{1/2}, H_0])^2\} = \text{Tr}(\rho H_0^2) - \text{Tr}(\rho^{1/2} H_0 \rho^{1/2} H_0),$$

where $H_0 \equiv H - \text{Tr}(\rho H)I$ and $[X,Y] \equiv XY - YX$ is a commutator.

(ii) The quantity associated to the Wigner-Yanase skew information:

$$J_{\rho}(H) \equiv \frac{1}{2} \text{Tr}[(\{\rho^{1/2}, H_0\})^2] = \text{Tr}(\rho H_0^2) + \text{Tr}(\rho^{1/2} H_0 \rho^{1/2} H_0),$$

where $\{X,Y\} \equiv XY + YX$ is an anticommutator.

(iii) The quantity representing a quantum uncertainty:

$$U_{\rho}(H) \equiv \sqrt{V_{\rho}(H)^2 - [V_{\rho}(H) - I_{\rho}(H)]^2}.$$

For two quantities $I_{\rho}(H)$ and $J_{\rho}(H)$, by simple calculations, we have

$$I_{\rho}(H) = \text{Tr}(\rho H^2) - \text{Tr}(\rho^{1/2} H \rho^{1/2} H)$$

and

$$J_{\rho}(H) = \text{Tr}(\rho H^{2}) + \text{Tr}(\rho^{1/2} H \rho^{1/2} H) - 2[\text{Tr}(\rho H)]^{2}$$

= $2V_{\rho}(H) - I_{\rho}(H)$, (6)

which implies $I_{\rho}(H) \leqslant J_{\rho}(H)$. In addition, we have the following relations.

Lemma 1. (i) For a quantum state ρ and an observable H, we have the following relation among $I_{\rho}(H)$, $J_{\rho}(H)$, and $U_{\rho}(H)$:

$$U_{\rho}(H) = \sqrt{I_{\rho}(H)J_{\rho}(H)}.$$

(ii) For a spectral decomposition of $\rho = \sum_{j=1}^{\infty} \lambda_j |\phi_j\rangle \langle \phi_j|$, putting $h_{ij} \equiv \langle \phi_i | H_0 | \phi_j \rangle$, we have

$$I_{\rho}(H) = \sum_{i < j} (\sqrt{\lambda_i} - \sqrt{\lambda_j})^2 |h_{ij}|^2.$$

(iii) For a spectral decomposition of $\rho = \sum_{j=1}^{\infty} \lambda_j |\phi_j\rangle \langle \phi_j|$, putting $h_{ij} \equiv \langle \phi_i | H_0 | \phi_j \rangle$, we have

$$J_{\rho}(H) \geqslant \sum_{i < j} (\sqrt{\lambda_i} + \sqrt{\lambda_j})^2 |h_{ij}|^2.$$

The relation (i) immediately follows from Eq. (6). See Ref. [11] for the proofs of (ii) and (iii).

Theorem 1. For a quantum state (density operator) ρ and two observables (self-adjoint operators) A and B, we have

$$U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2 \geqslant \frac{1}{4}|\text{Tr}(\rho[A,B])|^2,$$
 (7)

where the correlation measure is defined by

$$\operatorname{Corr}_{\rho}(X,Y) \equiv \operatorname{Tr}(\rho X^* Y) - \operatorname{Tr}(\rho^{1/2} X^* \rho^{1/2} Y)$$

for any operators X and Y.

Proof. We take a spectral decomposition $\rho = \sum_{j=1}^{\infty} \lambda_j |\phi_j\rangle \langle \phi_j|$. If we put $a_{ij} = \langle \phi_i | A_0 | \phi_j\rangle$ and $b_{ji} = \langle \phi_j | B_0 | \phi_i\rangle$, where $A_0 = A - \text{Tr}(\rho A)I$ and $B_0 = B - \text{Tr}(\rho B)I$, then we have

$$\operatorname{Corr}_{\rho}(A, B) = \operatorname{Tr}(\rho A B) - \operatorname{Tr}(\rho^{1/2} A \rho^{1/2} B)$$

$$= \operatorname{Tr}[\rho A_0 B_0] - \operatorname{Tr}(\rho^{1/2} A_0 \rho^{1/2} B_0)$$

$$= \sum_{i,j=1}^{\infty} (\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2}) a_{ij} b_{ji}$$

$$= \sum_{i \neq j} (\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2}) a_{ij} b_{ji}$$

$$= \sum_{i < j} [(\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2}) a_{ij} b_{ji}$$

$$+ (\lambda_j - \lambda_j^{1/2} \lambda_i^{1/2}) a_{ji} b_{ij}].$$

Thus we have

$$|\operatorname{Corr}_{\rho}(A, B)| \leqslant \sum_{i < j} \left(\left| \lambda_{i} - \lambda_{i}^{1/2} \lambda_{j}^{1/2} \right| |a_{ij}| |b_{ji}| \right.$$
$$+ \left| \lambda_{j} - \lambda_{j}^{1/2} \lambda_{i}^{1/2} ||a_{ji}| |b_{ij}| \right).$$

Since $|a_{ij}| = |a_{ji}|$ and $|b_{ij}| = |b_{ji}|$, taking a square of both sides and then using Schwarz inequality for a scalar and Lemma 1, we have

$$\begin{aligned} |\operatorname{Corr}_{\rho}(A,B)|^{2} & \leq \left(\sum_{i < j} \left(\left| \lambda_{i} - \lambda_{i}^{1/2} \lambda_{j}^{1/2} \right| + \left| \lambda_{j} - \lambda_{j}^{1/2} \lambda_{i}^{1/2} \right| \right) |a_{ij}| |b_{ji}| \right)^{2} \\ & = \left(\sum_{i < j} \left(\lambda_{i}^{1/2} + \lambda_{j}^{1/2} \right) \left| \lambda_{i}^{1/2} - \lambda_{j}^{1/2} \right| |a_{ij}| |b_{ji}| \right)^{2} \\ & \leq \left(\sum_{i < j} (\sqrt{\lambda_{i}} - \sqrt{\lambda_{j}})^{2} |a_{ij}|^{2} \right) \left(\sum_{i < j} (\sqrt{\lambda_{i}} + \sqrt{\lambda_{j}})^{2} |b_{ij}|^{2} \right) \\ & \leq I_{\rho}(A) J_{\rho}(B). \end{aligned}$$

In a similar way, we also have

$$|\operatorname{Corr}_{o}(A,B)|^{2} \leq I_{o}(B)J_{o}(A).$$

Thus we have

$$|\operatorname{Corr}_{\rho}(A,B)|^2 \leqslant U_{\rho}(A)U_{\rho}(B),$$

which is equivalent to the inequality

$$U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2 \geqslant \frac{1}{4}|\text{Tr}(\rho[A,B])|^2$$

since we have

$$|\operatorname{Im}\{\operatorname{Corr}_{\rho}(A,B)\}|^2 = \frac{1}{4}|\operatorname{Tr}(\rho[A,B])|^2.$$

Theorem 1 improves the uncertainty relation (4) shown in Ref. [8], in the sense that the upper bound of the right-hand side of our inequality (7) is tighter than that of Luo's (4).

Remark 1. For a pure state $\rho = |\varphi\rangle\langle\varphi|$, we have $I_{\rho}(H) = V_{\rho}(H)$, which implies $U_{\rho}(H) = V_{\rho}(H)$ for an observable H and $\operatorname{Corr}_{\rho}(A,B) = \operatorname{Cov}_{\rho}(A,B)$ for two observables A and B. Therefore our Theorem 1 coincides with the Schrödinger uncertainty relation (2) for a particular case that a given quantum state is a pure state, $\rho = |\varphi\rangle\langle\varphi|$.

Remark 2. As a similar problem, we may consider the following uncertainty relation:

$$U_{\rho}(A)U_{\rho}(B) - |\operatorname{Re}\{\operatorname{Cov}_{\rho}(A,B)\}|^2 \geqslant \frac{1}{4}|\operatorname{Tr}(\rho[A,B])|^2.$$

However, the above inequality does not hold in general, since we have a counterexample as follows. We take

$$\rho = \frac{1}{4} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

and then we have

$$U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 - \frac{1}{4}|\text{Tr}(\rho[A,B])|^2 = -\frac{3}{4}.$$

Remark 3. From Theorem 1 and Remark 2, we may expect that the following inequality holds:

$$|\operatorname{Re}\{\operatorname{Cov}_{\varrho}(A,B)\}|^{2} \geqslant |\operatorname{Re}\{\operatorname{Corr}_{\varrho}(A,B)\}|^{2}.$$
 (8)

However, the above inequality does not hold in general, since we have a counterexample as follows. We take

$$\rho = \frac{1}{10} \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}, \quad A = \begin{pmatrix} 4 & 4 \\ 4 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix},$$

and then we have

$$|\text{Re}\{\text{Cov}_{\rho}(A, B)\}|^2 - |\text{Re}\{\text{Corr}_{\rho}(A, B)\}|^2 \simeq -0.1539.$$

Actually, from Theorem 1, the example in Remark 2, and the above example, we find that there is no ordering between $|\text{Re}\{\text{Cov}_{\varrho}(A,B)\}|^2$ and $|\text{Re}\{\text{Corr}_{\varrho}(A,B)\}|^2$.

Remark 4. The example given in Remark 2 shows

$$V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 - \{U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2\} \simeq -0.232\,051.$$

The example given in Remark 3 also shows

$$V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 - \{U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2\} \simeq 13.7862.$$

Therefore there is no ordering between $V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2$ and $U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2$ so we can conclude that neither the inequality (2) nor the inequality (7) is uniformly better than the other.

III. CONCLUSION

As we have seen, we proved an alternative Schrödinger-type uncertainty relation for a quantum state (generally a mixed state). Our result coincides with the original Schrödinger uncertainty relation for a particular case that a quantum state is a pure state. In addition, our result improves the uncertainty relation shown in Ref. [8] as well as the original Heisenberg uncertainty relation. Moreover, it is impossible to conclude that our result is always better than the original Schrödinger uncertainty relation for a mixed state, from the viewpoint of finding a tight upper bound for $\frac{1}{4}|\text{Tr}(\rho[A,B])|^2$, where $\text{Tr}(\rho[A,B])$ can be regarded as an average of the commutator [A,B] for two observables A and B in a quantum state ρ . However, in other words, it is also impossible to conclude that our result is a trivial one, since there is no ordering between the left-hand side of the inequality (2) and that of (7).

ACKNOWLEDGMENTS

The author was supported in part by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists (B), No. 20740067.

^[1] W. Heisenberg, Z. Phys. A 43, 172 (1927).

^[2] E. Schrödinger, Proc. Prussian Acad. Sci. Phys. Math. Sec. 19, 296 (1930).

^[3] E. P. Wigner and M. M. Yanase, Proc. Natl. Acad. Sci. USA 49, 910 (1963).

^[4] E. H. Lieb, Adv. Math. 11, 267 (1973).

^[5] S. Luo and Q. Zhang, IEEE Trans. Inf. Theory 50, 1778 (2004);51, 4432 (2005).

^[6] H. Kosaki, Int. J. Math. 16, 629 (2005).

^[7] K. Yanagi, S. Furuichi, and K. Kuriyama, IEEE Trans. Inf. Theory 51, 4401 (2005).

^[8] S. Luo, Phys. Rev. A 72, 042110 (2005).

^[9] S. Luo and Q. Zhang, Phys. Rev. A 69, 032106 (2004).

^[10] S. Luo, Theor. Math. Phys. 143, 681 (2005).

^[11] K. Yanagi, J. Math. Anal. Appl. 365, 12 (2010).