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Schrödinger uncertainty relation with Wigner-Yanase skew information
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We shall give an alternative Schrödinger-type uncertainty relation for a quantity representing a quantum
uncertainty, introduced by Luo [Phys. Rev. A 72, 042110 (2005)]. Our result improves the Heisenberg-type
uncertainty relation shown in Luo’s paper for a mixed state.
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I. INTRODUCTION

In quantum mechanical systems, the expectation value of
an observable (self-adjoint operator) H in a quantum state
(density operator) ρ is expressed by Tr(ρH ). Also, the variance
for a quantum state ρ and an observable H is defined by
Vρ(H ) ≡ Tr{ρ[H − Tr(ρH )I ]2} = Tr(ρH 2) − Tr(ρH )2. The
Heisenberg uncertainty relation is well known [1]:

Vρ(A)Vρ(B) � 1
4 |Tr(ρ[A,B])|2 (1)

for a quantum state ρ and two observables A and B. The further
strong result was given by Schrödinger [2]:

Vρ(A)Vρ(B) − |Re{Covρ(A,B)}|2 � 1
4 |Tr(ρ[A,B])|2, (2)

where the covariance is defined by Covρ(A,B) ≡ Tr(ρ[A −
Tr(ρA)I ][B − Tr(ρB)I ]).

On the other hand, as a degree for noncommutativity
between a quantum state ρ and an observable H , the
Wigner-Yanase skew information Iρ(H ) was defined in
Ref. [3] (see Definition 1 in Sec. II). It is well known
that the convexity of the Wigner-Yanase-Dyson skew in-
formation Iρ,α(H ) ≡ 1

2 Tr{(i[ρα,H ])(i[ρ1−α,H ])}, α ∈ [0,1],
which is a one-parameter extension of the Wigner-Yanase
skew information Iρ(H ), with respect to ρ was success-
fully proven by Lieb in Ref. [4]. We have the relation
between Iρ(H ) and Vρ(H ) such that 0 � Iρ(H ) � Vρ(H )
so it is quite natural to consider that we have the further
sharpened uncertainty relation for the Wigner-Yanase skew
information:

Iρ(A)Iρ(B) � 1
4 |Tr(ρ[A,B])|2.

However, the above relation failed (see Refs. [5–7]). Luo
then introduced the quantity Uρ(H ) representing a quantum
uncertainty excluding the classical mixture:

Uρ(H ) ≡
√

Vρ(H )2 − [Vρ(H ) − Iρ(H )]2, (3)

and then he successfully showed a new the Heisenberg-type
uncertainty relation on Uρ(H ) in Ref. [8]:

Uρ(A)Uρ(B) � 1
4 |Tr(ρ[A,B])|2. (4)

As stated in Ref. [8], the physical meaning of the quantity
Uρ(H ) can be interpreted as follows. For a mixed state ρ,

*furuichi@chs.nihon-u.ac.jp

the variance Vρ(H ) has both classical mixture and quantum
uncertainty. Also, the Wigner-Yanase skew information Iρ(H )
represents a kind of quantum uncertainty [9,10]. Thus, the
difference Vρ(H ) − Iρ(H ) has a classical mixture so we can
consider that the quantity Uρ(H ) has a quantum uncertainty
excluding a classical mixture. Therefore it is meaningful and
suitable to study an uncertainty relation for a mixed state by
use of the quantity Uρ(H ).

Recently, Yanagi gave a one-parameter extension of the
inequality (4) in Ref. [11], using the Wigner-Yanase-Dyson
skew information Iρ,α(H ). Note that we have the following
ordering among three quantities:

0 � Iρ(H ) � Uρ(H ) � Vρ(H ). (5)

The inequality (4) is a refinement of the original Heisen-
berg’s uncertainty relation (1) in the sense of the above
ordering (5).

In this Brief Report, we show the further strong inequality
(Schrödinger-type uncertainty relation) for the quantity Uρ(H )
representing a quantum uncertainty.

II. MAIN RESULTS

To show our main theorem, we prepare the definition for
a few quantities and a lemma representing properties on their
quantities.

Definition 1. For a quantum state ρ and an observable H ,
we define the following quantities.

(i) The Wigner-Yanase skew information:

Iρ(H ) ≡ 1
2 Tr{(i[ρ1/2,H0])2} = Tr

(
ρH 2

0

)− Tr(ρ1/2H0ρ
1/2H0),

where H0 ≡ H − Tr(ρH )I and [X,Y ] ≡ XY − YX is a com-
mutator.

(ii) The quantity associated to the Wigner-Yanase skew
information:

Jρ(H ) ≡ 1
2 Tr[({ρ1/2,H0})2] = Tr

(
ρH 2

0

) + Tr(ρ1/2H0ρ
1/2H0),

where {X,Y } ≡ XY + YX is an anticommutator.
(iii) The quantity representing a quantum uncertainty:

Uρ(H ) ≡
√

Vρ(H )2 − [Vρ(H ) − Iρ(H )]2.

For two quantities Iρ(H ) and Jρ(H ), by simple calculations,
we have

Iρ(H ) = Tr(ρH 2) − Tr(ρ1/2Hρ1/2H )
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and

Jρ(H ) = Tr(ρH 2) + Tr(ρ1/2Hρ1/2H ) − 2[Tr(ρH )]2

= 2Vρ(H ) − Iρ(H ), (6)

which implies Iρ(H ) � Jρ(H ). In addition, we have the
following relations.

Lemma 1. (i) For a quantum state ρ and an observable
H , we have the following relation among Iρ(H ), Jρ(H ),
and Uρ(H ):

Uρ(H ) = √
Iρ(H )Jρ(H ).

(ii) For a spectral decomposition of ρ = ∑∞
j=1 λj |φj 〉〈φj |,

putting hij ≡ 〈φi |H0|φj 〉, we have

Iρ(H ) =
∑
i<j

(
√

λi − √
λj )2|hij |2.

(iii) For a spectral decomposition of ρ = ∑∞
j=1 λj |φj 〉〈φj |,

putting hij ≡ 〈φi |H0|φj 〉, we have

Jρ(H ) �
∑
i<j

(
√

λi + √
λj )2|hij |2.

The relation (i) immediately follows from Eq. (6). See
Ref. [11] for the proofs of (ii) and (iii).

Theorem 1. For a quantum state (density operator) ρ

and two observables (self-adjoint operators) A and B, we
have

Uρ(A)Uρ(B) − |Re{Corrρ(A,B)}|2 � 1
4 |Tr(ρ[A,B])|2, (7)

where the correlation measure is defined by

Corrρ(X,Y ) ≡ Tr(ρX∗Y ) − Tr(ρ1/2X∗ρ1/2Y )

for any operators X and Y .
Proof. We take a spectral decomposition ρ = ∑∞

j=1
λj |φj 〉〈φj |. If we put aij = 〈φi |A0|φj 〉 and bji = 〈φj |B0|φi〉,
where A0 = A − Tr(ρA)I and B0 = B − Tr(ρB)I , then we
have

Corrρ(A,B) = Tr(ρAB) − Tr(ρ1/2Aρ1/2B)

= Tr[ρA0B0] − Tr(ρ1/2A0ρ
1/2B0)

=
∞∑

i,j=1

(
λi − λ

1/2
i λ

1/2
j

)
aij bji

=
∑
i �=j

(
λi − λ

1/2
i λ

1/2
j

)
aij bji

=
∑
i<j

[(
λi − λ

1/2
i λ

1/2
j

)
aij bji

+ (
λj − λ

1/2
j λ

1/2
i

)
ajibij

]
.

Thus we have

|Corrρ(A,B)| �
∑
i<j

(∣∣λi − λ
1/2
i λ

1/2
j

∣∣|aij ||bji |

+ ∣∣λj − λ
1/2
j λ

1/2
i

∣∣|aji ||bij |
)
.

Since |aij | = |aji | and |bij | = |bji |, taking a square of both
sides and then using Schwarz inequality for a scalar and
Lemma 1, we have

|Corrρ(A,B)|2

�

⎛
⎝∑

i<j

(∣∣λi − λ
1/2
i λ

1/2
j

∣∣ + ∣∣λj − λ
1/2
j λ

1/2
i

∣∣)|aij ||bji |
⎞
⎠

2

=
⎛
⎝∑

i<j

(
λ

1/2
i + λ

1/2
j

)∣∣λ1/2
i − λ

1/2
j

∣∣|aij ||bji |
⎞
⎠

2

�

⎛
⎝∑

i<j

(
√

λi −
√

λj )2|aij |2
⎞
⎠

⎛
⎝∑

i<j

(
√

λi +
√

λj )2|bij |2
⎞
⎠

� Iρ(A)Jρ(B).

In a similar way, we also have

|Corrρ(A,B)|2 � Iρ(B)Jρ(A).

Thus we have

|Corrρ(A,B)|2 � Uρ(A)Uρ(B),

which is equivalent to the inequality

Uρ(A)Uρ(B) − |Re{Corrρ(A,B)}|2 � 1
4 |Tr(ρ[A,B])|2,

since we have

|Im{Corrρ(A,B)}|2 = 1
4 |Tr(ρ[A,B])|2.

�
Theorem 1 improves the uncertainty relation (4) shown

in Ref. [8], in the sense that the upper bound of the
right-hand side of our inequality (7) is tighter than that of
Luo’s (4).

Remark 1. For a pure state ρ = |ϕ〉〈ϕ|, we have Iρ(H ) =
Vρ(H ), which implies Uρ(H ) = Vρ(H ) for an observable H

and Corrρ(A,B) = Covρ(A,B) for two observables A and
B. Therefore our Theorem 1 coincides with the Schrödinger
uncertainty relation (2) for a particular case that a given
quantum state is a pure state, ρ = |ϕ〉〈ϕ|.

Remark 2. As a similar problem, we may consider the
following uncertainty relation:

Uρ(A)Uρ(B) − |Re{Covρ(A,B)}|2 � 1
4 |Tr(ρ[A,B])|2.

However, the above inequality does not hold in general, since
we have a counterexample as follows. We take

ρ = 1

4

(
1 0

0 3

)
, A =

(
2 1

1 2

)
, B =

(
0 1

1 0

)
,

and then we have

Uρ(A)Uρ(B) − |Re{Covρ(A,B)}|2 − 1
4 |Tr(ρ[A,B])|2 =− 3

4 .

Remark 3. From Theorem 1 and Remark 2, we may expect
that the following inequality holds:

|Re{Covρ(A,B)}|2 � |Re{Corrρ(A,B)}|2. (8)
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However, the above inequality does not hold in general, since
we have a counterexample as follows. We take

ρ = 1

10

(
5 4

4 5

)
, A =

(
4 4

4 1

)
, B =

(
5 −1

−1 2

)
,

and then we have

|Re{Covρ(A,B)}|2 − |Re{Corrρ(A,B)}|2 � −0.1539.

Actually, from Theorem 1, the example in Remark 2, and
the above example, we find that there is no ordering between
|Re{Covρ(A,B)}|2 and |Re{Corrρ(A,B)}|2.

Remark 4. The example given in Remark 2 shows

Vρ(A)Vρ(B) − |Re{Covρ(A,B)}|2 − {Uρ(A)Uρ(B)

−|Re{Corrρ(A,B)}|2} � −0.232 051.

The example given in Remark 3 also shows

Vρ(A)Vρ(B) − |Re{Covρ(A,B)}|2 − {Uρ(A)Uρ(B)

−|Re{Corrρ(A,B)}|2} � 13.7862.

Therefore there is no ordering between Vρ(A)Vρ(B) −
|Re{Covρ(A,B)}|2 and Uρ(A)Uρ(B) − |Re{Corrρ(A,B)}|2 so
we can conclude that neither the inequality (2) nor the
inequality (7) is uniformly better than the other.

III. CONCLUSION

As we have seen, we proved an alternative Schrödinger-type
uncertainty relation for a quantum state (generally a mixed
state). Our result coincides with the original Schrödinger
uncertainty relation for a particular case that a quantum state
is a pure state. In addition, our result improves the uncertainty
relation shown in Ref. [8] as well as the original Heisenberg
uncertainty relation. Moreover, it is impossible to conclude
that our result is always better than the original Schrödinger
uncertainty relation for a mixed state, from the viewpoint
of finding a tight upper bound for 1

4 |Tr(ρ[A,B])|2, where
Tr(ρ[A,B]) can be regarded as an average of the commutator
[A,B] for two observables A and B in a quantum state ρ.
However, in other words, it is also impossible to conclude that
our result is a trivial one, since there is no ordering between
the left-hand side of the inequality (2) and that of (7).
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