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Schrodinger uncertainty relation with Wigner-Yanase skew information

Shigeru Furuichi”
Department of Computer Science and System Analysis, College of Humanities and Sciences, Nihon University, 3-25-40,
Sakurajyousui, Setagaya-ku, Tokyo, 156-8550, Japan
(Received 17 May 2010; published 2 September 2010)

We shall give an alternative Schrodinger-type uncertainty relation for a quantity representing a quantum
uncertainty, introduced by Luo [Phys. Rev. A 72, 042110 (2005)]. Our result improves the Heisenberg-type
uncertainty relation shown in Luo’s paper for a mixed state.
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I. INTRODUCTION

In quantum mechanical systems, the expectation value of
an observable (self-adjoint operator) H in a quantum state
(density operator) p is expressed by Tr(p H). Also, the variance
for a quantum state p and an observable H is defined by
V,(H) = Tr{p[H — Tr(pH)I1*} = Tr(pH?) — Tr(p H)?. The
Heisenberg uncertainty relation is well known [1]:

V,(A)V,(B) > }Tr(p[A,B])I? (1)

for a quantum state p and two observables A and B. The further
strong result was given by Schrodinger [2]:

V,(A)V,(B) — [Re{Cov, (A, B)}|> > ;I Tr(p[A,BDP,  (2)

where the covariance is defined by Cov,(A,B) = Tr(p[A —
Tr(p A)IN[B — Tr(pB)I]).

On the other hand, as a degree for noncommutativity
between a quantum state p and an observable H, the
Wigner-Yanase skew information I,(H) was defined in
Ref. [3] (see Definition 1 in Sec. II). It is well known
that the convexity of the Wigner-Yanase-Dyson skew in-
formation 1, o(H) = ITe{G[p®, HD(i[p' ™, H])}, « € [0,1],
which is a one-parameter extension of the Wigner-Yanase
skew information I,(H), with respect to p was success-
fully proven by Lieb in Ref. [4]. We have the relation
between /,(H) and V,(H) such that 0 < I,(H) < V,(H)
so it is quite natural to consider that we have the further
sharpened uncertainty relation for the Wigner-Yanase skew
information:

1,(A)1,(B) > |Tr(p[A, B])|*.

However, the above relation failed (see Refs. [5-7]). Luo
then introduced the quantity U,(H) representing a quantum
uncertainty excluding the classical mixture:

Up(H) = \JVo(HP — [V,(H) — L(DP, ()

and then he successfully showed a new the Heisenberg-type
uncertainty relation on U,(H) in Ref. [8]:

U,(A)U,(B) > ;|Tr(p[A, B]. “4)

As stated in Ref. [8], the physical meaning of the quantity
U,(H) can be interpreted as follows. For a mixed state p,
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the variance V,,(H) has both classical mixture and quantum
uncertainty. Also, the Wigner-Yanase skew information /,(H)
represents a kind of quantum uncertainty [9,10]. Thus, the
difference V,(H) — I,(H) has a classical mixture so we can
consider that the quantity U,(H) has a quantum uncertainty
excluding a classical mixture. Therefore it is meaningful and
suitable to study an uncertainty relation for a mixed state by
use of the quantity U,(H).

Recently, Yanagi gave a one-parameter extension of the
inequality (4) in Ref. [11], using the Wigner-Yanase-Dyson
skew information /, ,(H). Note that we have the following
ordering among three quantities:

0< I,(H) < Uy(H) < V,(H). (&)

The inequality (4) is a refinement of the original Heisen-
berg’s uncertainty relation (1) in the sense of the above
ordering (5).

In this Brief Report, we show the further strong inequality
(Schrodinger-type uncertainty relation) for the quantity U, (H)
representing a quantum uncertainty.

II. MAIN RESULTS

To show our main theorem, we prepare the definition for
a few quantities and a lemma representing properties on their
quantities.

Definition 1. For a quantum state p and an observable H,
we define the following quantities.

(i) The Wigner-Yanase skew information:

I,(H) = 3Te((i[p"*, Ho)*} = Tr(p Hg) — Tr(p'/* Hop'/* Ho),

where Hy= H — Tr(pH)I and [X,Y] = XY — Y X isacom-
mutator.

(ii)) The quantity associated to the Wigner-Yanase skew
information:

Jo(H) = 3Til({p"* Ho}*1 =Tt (0 H) + Tr(o"/* Hop''* Hy),

where {X,Y} = XY + Y X is an anticommutator.
(iii) The quantity representing a quantum uncertainty:

Uy(H) = \/Vp(H)2 — [V, (H) — I,(H)]*.

For two quantities I,(H) and J,,(H), by simple calculations,
we have

I,(H) = Tr(pH?) — Tr(p'*Hp'/* H)
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and

Jo(H) = Tr(pH?) + Tr(p'* Hp' > H) — 2[Tr(p H)I?
=2V,(H) — 1,(H), (6)

which implies 1,(H) <
following relations.

Lemma 1. (i) For a quantum state p and an observable
H, we have the following relation among I,(H), J,(H),
and U,(H):

J,(H). In addition, we have the

U, (H) =

JI,(H)I,(H).

(ii) For a spectral decomposition of p = Z;’il Al (bl
putting h;; = (¢;|Hol¢;), we have

= > (Vi = /A hil

i<j

1,(H)

(iii) For a spectral decomposition of p = Z;’il Al bl
putting h;; = (¢;|Hol¢;), we have

Y WVri+ A Iy .

i<j

Jy(H) 2

The relation (i) immediately follows from Eq. (6). See
Ref. [11] for the proofs of (ii) and (iii).

Theorem 1. For a quantum state (density operator) p
and two observables (self-adjoint operators) A and B, we
have

U,(A)U,(B) — |Re{Corr,(A, B)}|* > ;ITr(p[A,BD, ()

where the correlation measure is defined by

Corr,(X,Y) = Tr(pX*Y) — Tr(p'>X*p'/?Y)

for any operators X and Y.
Proof. We take a spectral decomposition p = Z -

Aj |¢j><¢j| If we put aj; = (¢I|A0|¢j> and bjl = <¢j|BO|¢l>
where Ag=A —Tr(pA)I and By = B — Tr(pB)I, then we

have
Corr,(A,B) = Tr(pAB) — Tr(p'/? Ap'/*B)
= TrlpAoBo] — Tr(p"* Agp'/* Bo)
o0

= > (=22 aib;
i,j=1

=2 (=20 P)ayby
i#]

_ Z 1/2 1/2)aubﬂ
i<j

+ ()\-j — )\,]/2)»?/2)61]','[7,']'].

J l

Thus we have

2 2
|Cort, (A, B)| — 120 laj 1B i)

<D (I

i<j

+ g = 2202 laji i ).
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Since |a;;j| = |aj;| and |b;;| = |b};|, taking a square of both
sides and then using Schwarz inequality for a scalar and
Lemma 1, we have

|Corr,(A, B)|?

<[ (xi -2

i<j

- (s

i<j

> Wi =P | D W+ A b P

i<j i<j

S p(A)Jp(B).

T T S [Tl

2

1/2)|)\1/2 ]/2||au||b,l|

N

In a similar way, we also have

|Corr, (A, B)[* < 1,(B)J,(A).

Thus we have

|Corr,(A,B)|* < U,(A)U,(B),

which is equivalent to the inequality

U,(A)U,(B) — [Re{Corr,(A,B)}|* > 1|Tr(p[A,BD,

since we have

|Im{Corr, (A, B)}|* = ;|Tr(p[A, BDI*.

|

Theorem 1 improves the uncertainty relation (4) shown
in Ref. [8], in the sense that the upper bound of the
right-hand side of our inequality (7) is tighter than that of
Luo’s (4).

Remark 1. For a pure state p = |¢)(¢p|, we have I,(H) =
V,(H), which implies U,(H) = V,(H) for an observable H
and Corr,(A,B) = Cov,(A,B) for two observables A and
B. Therefore our Theorem 1 coincides with the Schrodinger
uncertainty relation (2) for a particular case that a given
quantum state is a pure state, p = |¢)(¢]|.

Remark 2. As a similar problem, we may consider the
following uncertainty relation:

U,(A)U,(B) — [Re{Cov,(A,B)}* > 1|Tr(p[A,B])|>.

However, the above inequality does not hold in general, since
we have a counterexample as follows. We take

1/1 0 2 1 0 1
p — - s = , B - )
4 (O 3) <1 2) (1 O)
and then we have
U,(A)U,(B) — [Re{Cov,(A,B)}|> — 1| Tr(p[A,B]))* = —3.

Remark 3. From Theorem 1 and Remark 2, we may expect
that the following inequality holds:

|Re{Cov,(A, B)}|* > |Re{Corr,(A,B)}|*. (8)
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However, the above inequality does not hold in general, since
we have a counterexample as follows. We take

1 (/5 4 4 4 5 -1
p=— . A= , = ,
e o) 2= 0) #=(2 7))

and then we have
|Re{Cov,(A, B)}|* — [Re{Corr, (A, B)}|* ~ —0.1539.

Actually, from Theorem 1, the example in Remark 2, and
the above example, we find that there is no ordering between
|Re{Cov,(A,B)}|* and |Re{Corr,(A, B)}|*.
Remark 4. The example given in Remark 2 shows
Vo(A)V,(B) — [Re{Cov, (A, B)}* — {U,(A)U,(B)
—|Re{Corr, (A, B)}|*} =~ —0.232051.

The example given in Remark 3 also shows

V,(A)V,(B) — [Re{Cov, (A, B)}|> — {U,(A)U,(B)
—|Re{C0rrp(A,B)}|2} ~ 13.7862.
Therefore there is no ordering between V,(A)V,(B)—
|Re{C0Vp(A,B)}|2 and U,(A)U,(B) — |Re{C0rr,o(A,B)}|2 SO

we can conclude that neither the inequality (2) nor the
inequality (7) is uniformly better than the other.
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III. CONCLUSION

As we have seen, we proved an alternative Schrodinger-type
uncertainty relation for a quantum state (generally a mixed
state). Our result coincides with the original Schrodinger
uncertainty relation for a particular case that a quantum state
is a pure state. In addition, our result improves the uncertainty
relation shown in Ref. [8] as well as the original Heisenberg
uncertainty relation. Moreover, it is impossible to conclude
that our result is always better than the original Schrédinger
uncertainty relation for a mixed state, from the viewpoint
of finding a tight upper bound for %|Tr(p[A,B])|2, where
Tr(p[A, B]) can be regarded as an average of the commutator
[A,B] for two observables A and B in a quantum state p.
However, in other words, it is also impossible to conclude that
our result is a trivial one, since there is no ordering between
the left-hand side of the inequality (2) and that of (7).
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