Schrödinger uncertainty relation with Wigner-Yanase skew information

Shigeru Furuichi*

Department of Computer Science and System Analysis, College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajyousui, Setagaya-ku, Tokyo, 156-8550, Japan

(Received 17 May 2010; published 2 September 2010)

We shall give an alternative Schrödinger-type uncertainty relation for a quantity representing a quantum uncertainty, introduced by Luo [Phys. Rev. A **72**[, 042110 \(2005\)\]](http://dx.doi.org/10.1103/PhysRevA.72.042110). Our result improves the Heisenberg-type uncertainty relation shown in Luo's paper for a mixed state.

DOI: [10.1103/PhysRevA.82.034101](http://dx.doi.org/10.1103/PhysRevA.82.034101) PACS number(s): 03*.*65*.*Ta, 03*.*67*.*−a

I. INTRODUCTION

In quantum mechanical systems, the expectation value of an observable (self-adjoint operator) *H* in a quantum state (density operator) ρ is expressed by $\text{Tr}(\rho H)$. Also, the variance for a quantum state ρ and an observable *H* is defined by $V_{\rho}(H) \equiv \text{Tr}{\{\rho[H - \text{Tr}(\rho H)I]^2\}} = \text{Tr}(\rho H^2) - \text{Tr}(\rho H)^2$. The Heisenberg uncertainty relation is well known [\[1\]](#page-2-0):

$$
V_{\rho}(A)V_{\rho}(B) \geq \frac{1}{4}|\text{Tr}(\rho[A,B])|^2
$$
 (1)

for a quantum state *ρ* and two observables *A* and*B*. The further strong result was given by Schrödinger [[2\]](#page-2-0):

$$
V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^{2} \geq \frac{1}{4}|\text{Tr}(\rho[A,B])|^{2}, \quad (2)
$$

where the covariance is defined by $Cov_{\rho}(A, B) \equiv Tr(\rho[A Tr(\rho A)I[(B - Tr(\rho B)I]).$

On the other hand, as a degree for noncommutativity between a quantum state ρ and an observable *H*, the Wigner-Yanase skew information $I_{\rho}(H)$ was defined in Ref. $[3]$ (see Definition 1 in Sec. II). It is well known that the convexity of the Wigner-Yanase-Dyson skew information $I_{\rho,\alpha}(H) \equiv \frac{1}{2} \text{Tr}\{(i[\rho^{\alpha},H])(i[\rho^{1-\alpha},H])\}, \alpha \in [0,1],$ which is a one-parameter extension of the Wigner-Yanase skew information $I_{\rho}(H)$, with respect to ρ was successfully proven by Lieb in Ref. [\[4\]](#page-2-0). We have the relation between $I_{\rho}(H)$ and $V_{\rho}(H)$ such that $0 \leq I_{\rho}(H) \leq V_{\rho}(H)$ so it is quite natural to consider that we have the further sharpened uncertainty relation for the Wigner-Yanase skew information:

$$
I_{\rho}(A)I_{\rho}(B) \geqslant \frac{1}{4}|\text{Tr}(\rho[A,B])|^2.
$$

However, the above relation failed (see Refs. [\[5–7\]](#page-2-0)). Luo then introduced the quantity $U_{\rho}(H)$ representing a quantum uncertainty excluding the classical mixture:

$$
U_{\rho}(H) \equiv \sqrt{V_{\rho}(H)^2 - [V_{\rho}(H) - I_{\rho}(H)]^2},
$$
 (3)

and then he successfully showed a new the Heisenberg-type uncertainty relation on $U_{\rho}(H)$ in Ref. [\[8\]](#page-2-0):

$$
U_{\rho}(A)U_{\rho}(B) \geqslant \frac{1}{4}|\text{Tr}(\rho[A,B])|^2. \tag{4}
$$

As stated in Ref. [\[8\]](#page-2-0), the physical meaning of the quantity $U_{\rho}(H)$ can be interpreted as follows. For a mixed state ρ , the variance $V_{\rho}(H)$ has both classical mixture and quantum uncertainty. Also, the Wigner-Yanase skew information $I_{\rho}(H)$ represents a kind of quantum uncertainty $[9,10]$. Thus, the difference $V_0(H) - I_0(H)$ has a classical mixture so we can consider that the quantity $U_{\rho}(H)$ has a quantum uncertainty excluding a classical mixture. Therefore it is meaningful and suitable to study an uncertainty relation for a mixed state by use of the quantity $U_{\rho}(H)$.

Recently, Yanagi gave a one-parameter extension of the inequality (4) in Ref. [\[11\]](#page-2-0), using the Wigner-Yanase-Dyson skew information $I_{\rho,\alpha}(H)$. Note that we have the following ordering among three quantities:

$$
0 \leqslant I_{\rho}(H) \leqslant U_{\rho}(H) \leqslant V_{\rho}(H). \tag{5}
$$

The inequality (4) is a refinement of the original Heisenberg's uncertainty relation (1) in the sense of the above ordering (5).

In this Brief Report, we show the further strong inequality (Schrödinger-type uncertainty relation) for the quantity $U_{\rho}(H)$ representing a quantum uncertainty.

II. MAIN RESULTS

To show our main theorem, we prepare the definition for a few quantities and a lemma representing properties on their quantities.

Definition 1. For a quantum state ρ and an observable H , we define the following quantities.

(i) The Wigner-Yanase skew information:

$$
I_{\rho}(H) \equiv \frac{1}{2} \text{Tr}\{ (i[\rho^{1/2}, H_0])^2 \} = \text{Tr}(\rho H_0^2) - \text{Tr}(\rho^{1/2} H_0 \rho^{1/2} H_0),
$$

where $H_0 \equiv H - \text{Tr}(\rho H)I$ and $[X, Y] \equiv XY - YX$ is a commutator.

(ii) The quantity associated to the Wigner-Yanase skew information:

$$
J_{\rho}(H) \equiv \frac{1}{2} \text{Tr}[(\{\rho^{1/2}, H_0\})^2] = \text{Tr}(\rho H_0^2) + \text{Tr}(\rho^{1/2} H_0 \rho^{1/2} H_0),
$$

where $\{X,Y\} \equiv XY + YX$ is an anticommutator. (iii) The quantity representing a quantum uncertainty:

$$
U_{\rho}(H) \equiv \sqrt{V_{\rho}(H)^2 - [V_{\rho}(H) - I_{\rho}(H)]^2}.
$$

For two quantities $I_{\rho}(H)$ and $J_{\rho}(H)$, by simple calculations, we have

$$
I_{\rho}(H) = \text{Tr}(\rho H^2) - \text{Tr}(\rho^{1/2} H \rho^{1/2} H)
$$

^{*}furuichi@chs.nihon-u.ac.jp

and

$$
J_{\rho}(H) = \text{Tr}(\rho H^2) + \text{Tr}(\rho^{1/2} H \rho^{1/2} H) - 2[\text{Tr}(\rho H)]^2
$$

= $2V_{\rho}(H) - I_{\rho}(H)$, (6)

which implies $I_{\rho}(H) \leqslant J_{\rho}(H)$. In addition, we have the following relations.

Lemma 1. (i) For a quantum state ρ and an observable *H*, we have the following relation among $I_{\rho}(H)$, $J_{\rho}(H)$, and $U_{\rho}(H)$:

$$
U_{\rho}(H) = \sqrt{I_{\rho}(H)J_{\rho}(H)}.
$$

(ii) For a spectral decomposition of $\rho = \sum_{j=1}^{\infty} \lambda_j |\phi_j\rangle \langle \phi_j|$, putting $h_{ij} \equiv \langle \phi_i | H_0 | \phi_j \rangle$, we have

$$
I_{\rho}(H) = \sum_{i < j} (\sqrt{\lambda_i} - \sqrt{\lambda_j})^2 |h_{ij}|^2.
$$

(iii) For a spectral decomposition of $\rho = \sum_{j=1}^{\infty} \lambda_j |\phi_j\rangle \langle \phi_j|$, putting $h_{ij} \equiv \langle \phi_i | H_0 | \phi_j \rangle$, we have

$$
J_{\rho}(H) \geqslant \sum_{i < j} (\sqrt{\lambda_i} + \sqrt{\lambda_j})^2 |h_{ij}|^2.
$$

The relation (i) immediately follows from Eq. (6). See Ref. [\[11\]](#page-2-0) for the proofs of (ii) and (iii).

Theorem 1. For a quantum state (density operator) *ρ* and two observables (self-adjoint operators) *A* and *B*, we have

$$
U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2 \geq \frac{1}{4}|\text{Tr}(\rho[A,B])|^2, \quad (7)
$$

where the correlation measure is defined by

$$
Corr_{\rho}(X,Y) \equiv \text{Tr}(\rho X^*Y) - \text{Tr}(\rho^{1/2}X^*\rho^{1/2}Y)
$$

for any operators *X* and *Y* .

Proof. We take a spectral decomposition $\rho = \sum_{j=1}^{\infty}$ $\lambda_j |\phi_j\rangle \langle \phi_j|$. If we put $a_{ij} = \langle \phi_i | A_0 | \phi_j \rangle$ and $b_{ji} = \langle \phi_j | B_0 | \phi_i \rangle$, where $A_0 = A - \text{Tr}(\rho A)I$ and $B_0 = B - \text{Tr}(\rho B)I$, then we have

$$
Corr_{\rho}(A, B) = Tr(\rho AB) - Tr(\rho^{1/2} A \rho^{1/2} B)
$$

= Tr[\rho A_0 B_0] - Tr(\rho^{1/2} A_0 \rho^{1/2} B_0)
=
$$
\sum_{i,j=1}^{\infty} (\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2}) a_{ij} b_{ji}
$$

=
$$
\sum_{i \neq j} (\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2}) a_{ij} b_{ji}
$$

=
$$
\sum_{i < j} [(\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2}) a_{ij} b_{ji}
$$

+
$$
(\lambda_j - \lambda_j^{1/2} \lambda_i^{1/2}) a_{ji} b_{ij}].
$$

Thus we have

$$
|\text{Corr}_{\rho}(A,B)| \leq \sum_{i < j} \left(|\lambda_i - \lambda_i^{1/2} \lambda_j^{1/2} ||a_{ij}|| b_{ji}| + |\lambda_j - \lambda_j^{1/2} \lambda_i^{1/2} ||a_{ji}|| b_{ij}|\right).
$$

Since $|a_{ij}| = |a_{ji}|$ and $|b_{ij}| = |b_{ji}|$, taking a square of both sides and then using Schwarz inequality for a scalar and Lemma 1, we have

$$
|\text{Corr}_{\rho}(A,B)|^2
$$

\n
$$
\leqslant \left(\sum_{i
\n
$$
= \left(\sum_{i
\n
$$
\leqslant \left(\sum_{i
\n
$$
\leqslant I_{\rho}(A)J_{\rho}(B).
$$
$$
$$
$$

In a similar way, we also have

$$
|\text{Corr}_{\rho}(A,B)|^2 \leqslant I_{\rho}(B)J_{\rho}(A).
$$

Thus we have

$$
|\text{Corr}_{\rho}(A,B)|^2 \leqslant U_{\rho}(A)U_{\rho}(B),
$$

which is equivalent to the inequality

$$
U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2 \geq \frac{1}{4}|\text{Tr}(\rho[A,B])|^2,
$$

since we have

$$
|\text{Im}\{\text{Corr}_{\rho}(A,B)\}|^2 = \frac{1}{4}|\text{Tr}(\rho[A,B])|^2.
$$

Ξ Theorem 1 improves the uncertainty relation [\(4\)](#page-0-0) shown in Ref. [\[8\]](#page-2-0), in the sense that the upper bound of the right-hand side of our inequality (7) is tighter than that of Luo's (4) .

Remark 1. For a pure state $\rho = |\varphi\rangle\langle\varphi|$, we have $I_{\rho}(H)$ = $V_{\rho}(H)$, which implies $U_{\rho}(H) = V_{\rho}(H)$ for an observable *H* and $Corr_{\rho}(A, B) = Cov_{\rho}(A, B)$ for two observables *A* and *B*. Therefore our Theorem 1 coincides with the Schrödinger uncertainty relation [\(2\)](#page-0-0) for a particular case that a given quantum state is a pure state, $\rho = |\varphi\rangle \langle \varphi|$.

Remark 2. As a similar problem, we may consider the following uncertainty relation:

$$
U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 \geq \frac{1}{4}|\text{Tr}(\rho[A,B])|^2.
$$

However, the above inequality does not hold in general, since we have a counterexample as follows. We take

$$
\rho = \frac{1}{4} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
$$

and then we have

$$
U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 - \frac{1}{4}|\text{Tr}(\rho[A,B])|^2 = -\frac{3}{4}.
$$

Remark 3. From Theorem 1 and Remark 2, we may expect that the following inequality holds:

$$
|\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 \ge |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2. \tag{8}
$$

However, the above inequality does not hold in general, since we have a counterexample as follows. We take

$$
\rho = \frac{1}{10} \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}, \quad A = \begin{pmatrix} 4 & 4 \\ 4 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix},
$$

and then we have

$$
|\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^2 - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^2 \simeq -0.1539.
$$

Actually, from Theorem 1, the example in Remark 2, and the above example, we find that there is no ordering between $|Re{Cov_o(A, B)}|²$ and $|Re{Corr_o(A, B)}|²$.

Remark 4. The example given in Remark 2 shows

$$
V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^{2} - \{U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^{2}\} \simeq -0.232\,051.
$$

The example given in Remark 3 also shows

$$
V_{\rho}(A)V_{\rho}(B) - |\text{Re}\{\text{Cov}_{\rho}(A,B)\}|^{2} - \{U_{\rho}(A)U_{\rho}(B) - |\text{Re}\{\text{Corr}_{\rho}(A,B)\}|^{2}\} \simeq 13.7862.
$$

Therefore there is no ordering between $V_{\rho}(A)V_{\rho}(B)$ – $|Re\{Cov_{\rho}(A,B)\}|^2$ and $U_{\rho}(A)U_{\rho}(B) - |Re\{Corr_{\rho}(A,B)\}|^2$ so we can conclude that neither the inequality [\(2\)](#page-0-0) nor the inequality [\(7\)](#page-1-0) is uniformly better than the other.

III. CONCLUSION

As we have seen, we proved an alternative Schrödinger-type uncertainty relation for a quantum state (generally a mixed state). Our result coincides with the original Schrödinger uncertainty relation for a particular case that a quantum state is a pure state. In addition, our result improves the uncertainty relation shown in Ref. [8] as well as the original Heisenberg uncertainty relation. Moreover, it is impossible to conclude that our result is always better than the original Schrodinger ¨ uncertainty relation for a mixed state, from the viewpoint of finding a tight upper bound for $\frac{1}{4}$ $Tr(\rho[A,B])|^2$, where $Tr(\rho[A,B])$ can be regarded as an average of the commutator $[A, B]$ for two observables *A* and *B* in a quantum state ρ . However, in other words, it is also impossible to conclude that our result is a trivial one, since there is no ordering between the left-hand side of the inequality (2) and that of (7) .

ACKNOWLEDGMENTS

The author was supported in part by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists (B), No. 20740067.

- [1] W. Heisenberg, Z. Phys. A **43**[, 172 \(1927\).](http://dx.doi.org/10.1007/BF01397280)
- [2] E. Schrödinger, Proc. Prussian Acad. Sci. Phys. Math. Sec. 19, 296 (1930).
- [3] E. P. Wigner and M. M. Yanase, [Proc. Natl. Acad. Sci. USA](http://dx.doi.org/10.1073/pnas.49.6.910) **49**, [910 \(1963\).](http://dx.doi.org/10.1073/pnas.49.6.910)
- [4] E. H. Lieb, Adv. Math. **11**[, 267 \(1973\).](http://dx.doi.org/10.1016/0001-8708(73)90011-X)
- [5] S. Luo and Q. Zhang, [IEEE Trans. Inf. Theory](http://dx.doi.org/10.1109/TIT.2004.831853) **50**, 1778 (2004); **51**[, 4432 \(2005\).](http://dx.doi.org/10.1109/TIT.2005.858974)
- [6] H. Kosaki, Int. J. Math. **16**[, 629 \(2005\).](http://dx.doi.org/10.1142/S0129167X0500303X)
- [7] K. Yanagi, S. Furuichi, and K. Kuriyama, [IEEE Trans. Inf.](http://dx.doi.org/10.1109/TIT.2005.858971) Theory **51**[, 4401 \(2005\).](http://dx.doi.org/10.1109/TIT.2005.858971)
- [8] S. Luo, Phys. Rev. A **72**[, 042110 \(2005\).](http://dx.doi.org/10.1103/PhysRevA.72.042110)
- [9] S. Luo and Q. Zhang, [Phys. Rev. A](http://dx.doi.org/10.1103/PhysRevA.69.032106) **69**, 032106 [\(2004\).](http://dx.doi.org/10.1103/PhysRevA.69.032106)
- [10] S. Luo, [Theor. Math. Phys.](http://dx.doi.org/10.1007/s11232-005-0098-6) **143**, 681 (2005).
- [11] K. Yanagi, [J. Math. Anal. Appl.](http://dx.doi.org/10.1016/j.jmaa.2009.09.060) **365**, 12 (2010).