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Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure, CNRS, Case 74,

4 place Jussieu, F-75252 Paris, Cedex 05, France
(Received 19 July 2010; published 30 September 2010)

We consider a quantum memory scheme based on the conversion of a signal pulse into a long-lived spin
coherence via stimulated off-resonant Raman process. For a storing medium consisting of alkali-metal atoms, we
have calculated the Autler-Townes resonance structure created by a strong control field. By taking into account
the upper hyperfine states of the D1 optical transition, we show important deviations from the predictions of
the usual three-level �-scheme approximation and we demonstrate an enhancement of the process for particular
detunings of the control. We estimate the memory efficiency one can obtain using this configuration.
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I. INTRODUCTION

Long-lived and highly efficient quantum memories for
light are a crucial tool for quantum information processing,
quantum computing, long-distance secure communication,
and scalable networks [1,2]. Various physical systems are
intensively investigated and many significant advances have
been recently reported [3,4]. In particular, large ensembles
of identical atoms, as gases at room temperature [5–9] or
ultracold samples [10–12], have been successfully used for
demonstrating the storage and retrieval of quantum states in
different regimes.

In the theoretical investigations of such quantum memories,
the description of the light-atoms interface is usually based on
a three-level � configuration, with two ground states and one
excited state [13–15]. However, the hyperfine interaction in
the upper states of alkali-metal atoms is not strong enough for
the system to be perfectly described by this approximation.
The multilevel structure of alkali-metal atoms has thus to be
taken into account for a correct description of the quantum
memory effect [16,17]. In this article, we show for the D1

optical transition how an additional level significantly modifies
the stimulated Raman process and we finally evaluate the
efficiency of pulse storage and retrieval in this configuration.

The article is organized as follows. Section II first intro-
duces the energy diagram and the assumptions on which our
work is based. We then present the theoretical model and pro-
vide a general expression of the atomic sample susceptibility.
In Sec. III, we study the susceptibility behavior for different
frequency detunings of the control and probe modes and we
explain how the multilevel structure significantly modifies
the quantum light transport driven by coherent scattering
mechanism in the conditions of electromagnetically induced
transparency or stimulated Raman process. In Sec. IV, we
present calculations for the transport of a signal pulse in an
optically dense sample. The signal pulse is tuned in the spectral
region where the Autler-Townes resonance would be maximal
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in its amplitude and the stimulated Raman scattering would
be most effective. The achievable efficiency of a quantum
memory protocol performed in this configuration is finally
discussed, in both cases of forward and backward retrieval.

II. AUTLER-TOWNES EFFECT IN THE D1 LINE
OF ALKALI-METAL ATOM

In this section, we present the energy configuration under
study and we detail the theoretical model used to fully describe
this configuration. A general expression of the susceptibility
of the medium is finally given.

A. Basic assumptions

In this article we consider the case of alkali-metal atoms
and focus in particular on the D1 optical transition. Figure 1
shows the energy diagram and Fig. 2 shows the excitation
geometry. The atoms populate the upper hyperfine sublevel of
their ground state with maximal spin projection {F+ = I +
1/2,M = F+} (where I is atomic nuclear spin) and we denote
this state as |m〉.

The control field has a right-handed circular polarization
(σ+). In this configuration, there is no interaction of the control
field with the populated sublevel and only the presence of the
probe mode in the orthogonal left-handed circular polarization
(σ−) opens the excitation channel. The probe and control
modes coherently couple the populated state |m〉 with the
Zeeman sublevel {F+,M = F+ − 2} in the ground state, which
we denote as |m′〉, and with two Zeeman sublevels in the
excited state {F ′

− = I − 1/2,M ′ = F+ − 1} and {F ′
+ = I +

1/2,M ′ = F+ − 1}, which we denote respectively |n〉 and |n′〉.
Such a configuration leads to the Autler-Townes (AT)

effect [18,19]. As shown in Fig. 1, the energy levels of the
excited atomic states |n〉 and |n′〉 are modified by the presence
of the control field. If the control field is tuned precisely
in resonance with the nondisturbed transitions, either |n〉 or
|n′〉, the interaction with the control mode splits the originally
degenerate system of the atomic and field oscillators into two
quasienergy sublevels. However, the interaction of the control

1050-2947/2010/82(3)/033838(7) 033838-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.033838


A. S. SHEREMET et al. PHYSICAL REVIEW A 82, 033838 (2010)

M=F+

F'-            M'=F +-1

F+      M=F +-2

∆∆∆∆

σσσσ++++ σσσσ−−−−

F'+            M'=F +-1

|n〉

|n'〉

|m〉|m'〉

∆∆∆∆
} ΩHF

FIG. 1. (Color online) Energy levels and excitation channels
considered for the D1 line of alkali-metal atoms. The atoms populate
the upper hyperfine sublevel of their ground state. The system
is dressed by a strong control field with a right-handed circular
polarization (σ+) and a frequency detuning �. The system is
probed by a weak mode with left-handed circular polarization (σ−)
and frequency detuning �̄. The three Autler-Townes resonances
(AT triplet) are shown by the red dashed lines.

with the other upper hyperfine atomic state is not negligible
and the presence of the control mode affects on the locations
of both the hyperfine resonances. For an arbitrary detuning of
the control, we refer to the joint atom-field quasienergies as the
AT triplet (instead of the usual AT doublet) resonance structure.
The location of these three resonances for a particular detuning
of the control mode is shown by the dashed red lines in Fig. 1.

Let us note finally that the �-scheme approximation is the
asymptotic limit of our approach: in this limit, the hyperfine
interaction is considered to be much stronger than either
the natural decay rate γ , the Rabi frequency of the control
mode, or the detuning �. We will show the limit of this
widely used approximation via the full calculation of the AT
structure for the D1 line of 133Cs atom, which has the largest
hyperfine splitting among alkali-metal atoms �HF = 1168
MHz = 256 γ .

B. Calculation approach

We now turn to our theoretical model. The AT resonance
structure can be observed by passing a probe pulse through
the sample that will excite the atoms from the populated
state |m〉. The propagation of the probe mode through the
medium, in the geometry shown in Fig. 2, is described by the
standard macroscopic Maxwell equation, where the dielectric
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FIG. 2. (Color online) Schematic diagram showing the excitation
geometry for the transitions specified in Fig. 1.

susceptibility of the medium, being linear in response to the
probe mode, accumulates all the orders of nonlinearities for the
control mode. Due to the linearity for the probe field, we can
consider an arbitrary set of probe field frequencies forming the
signal pulse and we follow the temporal and spatial dynamics
of this pulse in a finite sample. The dynamics of the signal
pulse and control mode come from the characteristics of the
stimulated Raman process, as shown in Refs. [19,20]. The
absorption and dispersion parts of the AT resonances in the
sample susceptibility result from the combined action of this
process on the signal pulse transport.

The positive frequency component E (+)(r,t) of the signal
pulse can be described by a wave packet propagating along
the direction z, with a carrier frequency ω̄ and wave number
k̄ = ω̄/c, such as:

E (+)(r,t) = ε(z; t)e−iω̄t+ik̄z. (2.1)

For the sake of simplicity the transverse profile of the wave
packet is not taken into account, and we thus ignore any
diffraction and transverse inhomogeneity of the atomic sample
during the propagation process. However, let us point out
that the analysis could be generalized for an inhomogeneous
system as well.

We then make use of the Fourier expansion of the slow-
varying amplitude ε(z; t) of the probe field:

ε(z; �) =
∫ ∞

−∞
dt ei�t ε(z; t). (2.2)

The Fourier component ε(z; �) obeys the following Maxwell
equation:[

−i
�

c
+ ∂

∂z

]
ε(z; �) = 2πi

ω̄

c
χ̃(z; �) ε(z; �), (2.3)

where χ̃(z; �) is the Fourier component of the sample suscep-
tibility. The spectral dependence of the sample susceptibility
is shifted by the carrier frequency such that

χ̃(z; t − t ′) = eiω̄(t−t ′)χ (z; t − t ′), (2.4)

where χ (z; t − t ′) is the kernel of the susceptibility operator
standardly defined in time representation and determining
response of the polarization wave at time t on the driving
signal wave (2.1) considered at retarded time t ′ < t .

The susceptibility of the medium is then given by the
following expansion:

χ̃ (z; �) = −
∑

n1=n,n′

∑
n2=n,n′

1

h̄
(d · e)∗n1m

(d · e)n2m

×
∫

d3p

(2πh̄)3
n0(z)f0(p)

× G(−−)
n1n2

(
p⊥,pz + h̄k̄; h̄(ω̄ + �) + p2

2m

)
. (2.5)

We have used the following notations: the transition matrix
elements of the dipole operator d are projected onto the
polarization vector of the probe mode e, n0(z) is the density
distribution of atoms, and f0(p) is their momentum distribu-
tion, normalized such as∫

d3p

(2πh̄)3
f0(p) = 1. (2.6)
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The spectral behavior of the susceptibility (2.5) is determined
by the spectral properties of the contributing Green’s functions
G(−−)

n1n2
, describing the dynamics of the upper atomic states

dressed by the control mode. The derivation details and precise
definitions of the Green’s function, matrix elements, etc.,
are given in the Appendix. We point out here that these
functions for all possible n1 = n,n′ and n2 = n,n′ built the
2 × 2 matrix so the expansion (2.5) consists of four terms. Two
diagonal terms asymptotically (for highly resolved hyperfine
structure) reproduce the �-scheme results for either upper
state |n〉 or |n′〉. The two others terms, which are interference
terms, significantly modify the predictions of the �-scheme
approximation, as we will show in the following.

III. SPECTRAL BEHAVIOR OF THE SAMPLE
SUSCEPTIBILITY

In the case of monochromatic excitation, it is convenient to
analyze the Fourier component of the dielectric susceptibility
as a function of either its carrier frequency ω̄ or its detuning
�̄ = ω̄ − ω0 from the atomic resonance frequency ω0. In this
section we present our calculation of the sample susceptibility
χ = χ (�̄) = χ ′(�̄) + iχ ′′(�̄), which were obtained for an
homogeneous medium consisting of 133Cs atoms. We assume
a typical configuration of magneto-optical trap (MOT) such
that the effects of atomic motion on the time scale of a few
microseconds can be disregarded.

In the following, the susceptibility given by Eq. (2.5) will be
scaled in units of n0λ-3, where n0 is the density of atoms and λ- =
λ/2π . In typical MOT conditions, the atomic gas is dilute and
n0λ-3 � 1 but the sample can be optically thick if n0λ-2L � 1,
where L is the sample length. It is very important to underline
that the transition matrix elements Vnm′ and Vn′m′ , contributing
to the Green’s functions given by Eqs. (A4) and (A5), cannot
be considered as independent parameters. They are expressed
by one reduced matrix element multiplied by two different,
but dependent, algebraic factors, which are determined by an
electronic and nuclear coupling scheme in the upper hyperfine
states and by the polarization of the exciting field. As an
external characteristic of the coupling strength with the control
mode, we use the Rabi frequency �c = 2|Vnm′ |/h̄ defined
with respect to the lower energy transition. The results of our
calculations will be compared with the usual � scheme where
only state |n〉 is taken into consideration.

Figure 3 gives the spectral dependencies for imaginary
(absorption) and real (dispersion) components of the suscep-
tibility χ (�̄) (scaled in units of n0λ-3) for a Rabi frequency
�c = 15γ and for the control field on resonance with the
atomic transition � = 0. In these conditions, there is no
light absorption in the medium. The imaginary part of the
susceptibility is responsible for the losses caused by incoherent
scattering. All three AT components are shown as well as
the doublet approximation calculated in the three-level �

model when the upper state |n′〉 is disregarded. At first
sight, the discrepancy between the exact result and the �-
scheme approximation seems small. However, two important
qualitative differences can be pointed out.

First, in the multilevel configuration, the spectral point,
where due to electromagnetically induced transparency (EIT)
the absorption falls down to its minimum level, is shifted to
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FIG. 3. (Color online) Absorption part (upper panel) and dis-
persion part (lower panel) of the sample susceptibility in the
presence of the control field tuned in resonance with the atomic
transition (� = 0), for a Rabi frequency �c = 15γ . The susceptibility
components are scaled by n0λ-3. Red solid curves show the result of
the exact calculations and blue dashed curves are plotted for the usual
�-scheme approximation. For reference, gray curves give the profiles
of the atomic resonances without control field. As shown in the inset
of the upper panel, the EIT resonance is shifted to the red and the
medium looses its perfect transparency at this point.

the red and the EIT resonance does not occur for �̄ = �, as it
always does in the case of the � model. As clearly shown in
the inset of Fig. 3, the light shift is significant and it depends on
the Rabi frequency of the control field. This light shift was first
observed by Hau and co-workers in the pioneering experiment
on slow light [21]. Second, the medium does not have a perfect
transparency at the optimal EIT point as it also always does
for the �-scheme approximation. In our example this effect
seems rather weak, but it is nonvanishing, even in the limit
of �c → 0, and it can become important if the medium has a
very large optical depth, where the losses caused by incoherent
scattering can accumulate [22].

In Fig. 4, the absorption and dispersion parts of the sample
susceptibility are shown for two detunings of the control
mode: � = −50γ and � = 50γ . For both detunings, the lines
close to the atomic resonances are only slightly disturbed by
the control field and we show only the part of the spectral
domain where �̄ ∼ �. We compare the profile of the AT
resonance located near the frequency of the control mode with
predictions of the �-scheme approximation. The dependencies
of Fig. 4 show much larger deviation with the calculations
based on the � scheme than in the situation of Fig. 3. This
is a direct consequence of the fact that the detuning � is
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FIG. 4. (Color online) Same as in Fig. 3 but for two different
detunings. The upper panel corresponds to � = −50γ and the lower
panel to � = 50γ . Only one component of the AT triplet, which is
located near �̄ ∼ �, is shown.

comparable with the hyperfine interaction between electronic
angular momentum and nuclear spin.

If the hyperfine interaction was negligible, which asymptot-
ically occurs when one moves the AT resonance either much
lower than state |n〉 or much higher than state |n′〉, then the
considered scheme would be equivalent to the excitation of
an atom with the nuclear spin decoupled from the electronic
angular momentum, which has one-half value. The considered
�-type interaction between the ground-state Zeeman sublevels
is impossible in this case. This explains why, when the detuning
� is not negligible with respect to the hyperfine splitting
�HF (here � = −50γ = −�HF/5.12), the amplitude of the
AT resonance, shown in the upper panel of Fig. 4 is reduced
as compared to the value given by calculations based on
the �-scheme model. On the other hand, both models show
approximately the same narrowing of the resonance linewidth
with increasing of �. More generally modifications of the AT
resonance in the vicinity of either D1 or D2 transition due to
the interplay between the hyperfine interaction and the optical
detunings have a strong impact on observation of the EIT
effect in the hot atomic gas and will be discussed in detail in
Ref. [22].

The situation changes if the control mode is tuned between
the hyperfine components as shown in the lower panel of
Fig. 4 for � = +50γ . One can observe an enhancement of
the AT effect in comparison with predictions of the �-scheme
approximation. This enhancement is even slightly larger for the
dispersion component, as it is more sensitive to the interference
terms contributing into the sample susceptibility [see Eqs. (2.5)

and (A4)]. As a consequence the signal pulse passing through
the atomic ensemble can undergo longer delay at the output
than it would be expected from the �-scheme model. This
constitutes an interesting advantage when the Raman process
is applied to a quantum memory protocol in this configuration.
This is detailed in the next section.

IV. APPLICATION TO QUANTUM MEMORY

As shown before, the Raman configuration with positive
detuning may lead to an improvement for the storage of a
signal pulse. We evaluate here the performances of a memory
in this particular case, where the control mode is tuned between
the upper state hyperfine levels. In all the following, the Rabi
frequency of the control mode is �c = 15γ and it is detuned
by � = 50γ , as in the lower panel of Fig. 4.

A. Delay of the pulse transport in the atomic sample

We consider a coherent pulse with rectangular profile
impinging on the sample. Using Eqs. (2.5) and (2.3) we can
calculate the shape of the outgoing pulse for various situations.
We have considered here three signal pulses having identical
shape but different carrier frequencies. This approach allows
to model a multimode situation where we make a discrete
Fourier expansion with frequencies that are multiples of 2π/T ,
where T is the pulse duration. In the following, we use a
dimensionless amplitude for the signal field denoted by α(z,t).
We assume input pulses with rectangular profile, such that
αin (t) = θ (t) − θ (t − T ), where θ (t) is the step function,
θ (t) = 1(t > 0) or = 0 (t < 0). Figure 5 shows how this pulse
is delayed and how its shape is modified after passing through
the atomic medium.

γ t
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(t

)|
2
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       (Ω+∆)/γ
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ω +ω−ω
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FIG. 5. (Color online) Time dependence of the outgoing signal
pulses. The time t = 0 corresponds to the arrival of the incoming pulse
front to the atomic medium. For the reference, the gray box gives the
outgoing pulse in the absence of atomic medium. Three pulses with
the same duration T = 10γ −1 but different carrier frequencies ω̄−,
ω̄, and ω̄+, where ω̄± are shifted by ±2π/T , propagate through the
optically thick sample with an optical depth n0λ-2L = 50. The inset
shows the pulse spectra with respect to the AT resonance. The ω̄−
pulse (red dotted line) experiences the longest delay but also the
largest level of losses due to incoherent scattering. The ω̄+ pulse
(green dashed line) has the lowest level of losses but also the smallest
delay. The central pulse has an intermediate carrier frequency and
corresponds to a balance between the losses and delay.
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As shown in the inset of Fig. 5, the central pulse has a
carrier frequency ω̄ chosen to ensure some balance between
transparency and delay. The two other pulses are shifted by
±2π/T , with ω̄± = ω̄ ± 2π/T , which makes them spectrally
orthogonal to the central mode. By extrapolating these se-
ries to infinite number of modes (ω̄q = ω̄ + 2πq/T , where
q = 0, ± 1, ± 2, . . .) we can extract the complete set of
Fourier modes and use them for the expansion of an input
signal pulse of arbitrary temporal profile with sharp bound.
Such a Fourier description of an arbitrary pulse of a finite
duration T allows one to follow the transformation of each
spectral component in the output and could be important for
the multimode quantum information processing.

The delay of the pulse propagating through the optically
dense medium of length L strongly depends on the optical
depth. For a monochromatic signal mode at frequency ω̄ the
optical depth b(ω̄) is given by

b(ω̄) = 4πχ ′′(ω̄)
L

λ-
. (4.1)

The depth varies from b(ω̄) � 1 near the points of the AT
resonances to b(ω̄) � 1 in the transparency domains. In the
�-scheme approximation, the resonance optical depth is
defined in a unique way. In the multilevel situation the optical
depth at resonance depends on the chosen transition. However,
it is always closes to b0 ∼ n0λ-2L, which was taken equal to 50
for the round of calculations presented in Fig. 5.

It can be seen in Fig. 5 that the shape of the outgoing pulses
is strongly modified as compared to the initial pulse. First,
all three pulses corresponding to ω̄, ω̄+, and ω̄− are delayed.
The pulse with frequency ω̄−, the spectrum of which overlaps
the most with the AT peak, spreads over longer times and has
a much longer average delay than the other ones. However,
this pulse has the highest level of losses due to the incoherent
scattering. The pulse with carrier frequency ω̄+ has a lower
level of losses and better preserves the original rectangular
shape, but the delay is quite small.

We can interpret the outgoing signal pulses in Fig. 5 in
the following way: The part of the pulse going out of the
medium at times smaller than the time duration of the original
pulse, T = 10γ −1, corresponds to direct transmission, while
the tail of the outgoing pulse, which is emitted after the end
of the incoming pulse, corresponds to a potentially stored and
recovered signal. This is a good approximation if the transient
processes associated with switching off (on) the control mode
as well as the retardation effects are negligible. The fact
that in off-resonant stimulated Raman scattering the transient
processes only weakly interfere with the transport of the signal
pulse was verified in Ref. [15].

B. Efficiency of pulse storage and retrieval

We now turn to the full memory protocol, including storage
and retrieval stages. The control pulse is switched off when
the end front of the incoming signal pulse has entered the
sample. After short transient dynamics, the signal wave packet,
which is localized in the sample, is mostly converted into a
standing spin wave distributed into the whole sample. This
spin wave is given by the off-diagonal matrix elements (spin
coherence) between Zeeman sublevels m and m′ existing in
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FIG. 6. (Color online) Quantum memory. This figure shows the
dynamics of the system for the same parameters as described in Fig. 5.
Upper panel shows the spin distribution σ (z,T ) in the sample at time
T (“stored light”). In the lower panel the signal pulse is retrieved
on demand after a certain memory time via switching on the control
field in either forward (solid lines) or backward (yellow filled area)
direction. The leakage of each pulse, which is the light transmitted
during the write-in stage, is indicated by the dotted line [(a) the input
pulse carrier frequency is ω̄−, (b) the input pulse carrier frequency
is ω̄, and (c) the input pulse carrier frequency is ω̄+]. The read-out
stage is characterized by the memory efficiency for the forward (fw)
or backward (bw) retrieval.

the system at time T , which we denote as σ (z,T ). To calculate
the spin distribution we have applied the theoretical approach
developed in Ref. [16] and modified it for the present case by
including the dissipation processes. The spin distribution is
shown in the upper panel of Fig. 6.

After a controllable delay, the spin wave can be converted
back into the signal wave packet by sending the second
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control pulse. This can be done in either forward or backward
directions. In the first case, the retrieved pulse would reproduce
the tail of the outgoing signal pulse, the propagation of which
was interrupted in the writing stage of the memory protocol.
This can be seen by comparing the graphs of Figs. 6 and 5.

The pulse retrieval in the backward direction leads to some
advantages. As discussed in Ref. [13], while applying the
time-reversal arguments one can expect a higher efficiency
for backward retrieval after a round of optimization. Also, the
shape of the pulse recovered in the backward direction better
reproduces its original profile. Our numerical simulations
confirm this statement. The spin distribution for the mode ω̄−
indicates that the signal is mostly stored near the left bound of
the sample. Then it seems more natural to redirect the retrieved
pulse in the backward direction where it would have less
absorption and, according to time-reversal arguments, would
be regenerated by the medium to its original profile. That can
be seen in Fig. 6, which shows approximately rectangular re-
trieved profile for the ω̄− mode with efficiency more than 60%.

To conclude this section let us underscore the fact that the
predicted quality of the considered memory channel is quite
good. The obtained results show that in conditions currently
attainable for a MOT the efficiency of the memory protocol
could be expected up to 60%. We can expect further improve-
ment in the efficiency by using the optimization of the temporal
profile of the input pulse, as described in Refs. [13,23].

V. CONCLUSION

In this article we have considered the propagation of a signal
pulse in conditions of stimulated Raman process through a
sample of alkali-metal atoms. We have shown that the presence
of the hyperfine interaction in the upper state significantly
modifies the Autler-Townes effect observed in the D1 line of
such atoms. In particular, we have demonstrated that it is more
efficient to tune the control mode between the upper state
hyperfine sublevels where the stimulated Raman process is
enhanced and provides more effective delay of the signal pulse.

We have analyzed the dynamics of a signal pulse with initial
rectangular profile and calculated how such a pulse is delayed
and how its shape is modified after passing through the atomic
medium. This dynamics reveals that the outgoing pulse is quite
sensitive to the detuning of the pulse carrier frequency from the
Autler-Townes resonance created by the control field. We have
used our results to evaluate the efficiency of a quantum memory
protocol based on the same stimulated Raman process. This
has been done both for the forward and the backward retrieval
schemes. We have shown that the backward retrieval can be
more effective and the shape of recovered pulse can better
reproduce its original profile. In particular, our results show
that in conditions currently attainable for a cesium magneto-
optical trap the efficiency of the memory protocol could be
expected more than 60%.
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APPENDIX: THE ATOMIC GREEN’S FUNCTIONS AND
SAMPLE SUSCEPTIBILITY

The atomic Green’s functions and sample susceptibility
are found in the second quantization formalism using a
nonstationary diagram technique [15,24,25]. The Maxwell
equation considered in the main text of the article can be
expressed by the following diagram equation:

= +- - - - -
n1

m

n2

. (A1)

Here the double wavy single-ended lines describe the signal
field amplitude dressed by the interaction process shown in
Fig. 1 when this field propagates through the sample. The
single double-ended wavy line is the retarded Green’s function
for light propagating freely in vacuum. The loop consisting
of the atomic Green’s functions and the vertices describes
the polarization operator or susceptibility of the sample in
response to the probe field. For the sake of clarity, we show
the internal indices n1 and n2 running the quantum numbers
of excited atomic states n,n′ (Fig. 1).

The retarded-type Green’s functions of the excited atomic
states dressed by the interaction with the control and vacuum
modes and shown as double line in the polarization operator
of Eq. (A1) are expressed by the following Dyson equations:

= +- - - - - - - -
n1 n1 n1 m' n2n2 n'1 . (A2)

The outward and inward directed dashed arrows represent the
field amplitude of the control mode and the thick solid line
is the retarded-type Green’s function of state |n1〉 dressed by
interaction with the vacuum modes only. This function in the
first term in the right side should be multiplied by the factor
δn1 n2 (not shown). It is expressed by the diagram equation
defining the natural decay rate of the excited state:

= +- - - - - - - -
n1 n1 n1

n1 . (A3)

The thin solid and wavy lines are respectively nonperturbed
vacuum Green’s functions of the atom and field.

The minus signs in these diagrams indicate the causal (time-
ordered) character in averaging of the operators’ product. In
the case of field the expectation value is taken over its vacuum
state. But in the case of atoms the averaging is taken over
the initial state of atomic system. As a consequence, if in the
above diagrams the time naturally rises from right to left, the
backward directed thin line in the polarization operator (A1) is
proportional to the density of atoms in the initially populated
state |m〉. The diagrams (A1)–(A3) can be interpreted as a
graphical solution of the Bloch equations in the first-order
response to the signal field.

If the control mode is monochromatic then after Fourier
transform the integral equations (A2) can be written in a form
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of algebraic equations. These equations give us the set of
four Green’s functions G(−−)

n1n2
(p,E) defined in the reciprocal

space. These functions contribute into equation (A1) with
the “on shell” energy argument, which is given by E =
h̄(ω̄ + �) + p2/2m0, i.e., is expressed by the kinetic energy
of atom p2/2m0 (p and m0 are atomic momentum and mass,
respectively; the internal ground-state energy is considered as
zero level) plus the energy of a photon from the signal field
h̄(ω̄ + �). Let us point out that because of the momentum
conservation in the polarization operator the momentum of
excited atom p′ is shifted from p by the momentum of absorbed
signal photon such that p′

z = pz + h̄k̄.
The Green’s functions have the following analytical

expression:

G(−−)
nn (p,E) = h̄

{
E − p2

2m0
− En + ih̄

γ

2

− |Vnm′ |2[E − p2

2m
− En′ + ih̄

γ

2

]
[E − En′+(p,ω)][E − En′−(p,ω)]

}−1

,

G
(−−)
n′n (p,E) = Vn′m′V ∗

nm′

[E − En′+(p,ω)][E − En′−(p,ω)]

×G(−−)
nn (p,E) . . . . (A4)

Two other functions can be similarly written via transposing
the indices n ⇔ n′.

The following notation is used: Vnm′ = (d · E)nm′ , Vn′m′ =
(d · E)n′m′ are the matrix elements of interaction with the
control field; E is the complex amplitude of the field’s positive
frequency component E(+)(r,t) = E exp(−iωt + ik · r); En,
En′ are nonperturbed energies of the excited states; and γ is
the natural decay rate of the excited state. The quasienergies in
the denominators of Eqs. (A4) contribute to the excitation
spectrum dressed by interaction with vacuum modes and
control field while the hyperfine interaction is infinitely strong.
They are given by

En±(p,ω) = Em′ + p2

2m0
+ h̄

2

[
ω − k · p

m0
+ ωnm′ − i

γ

2

]

±
[
|Vnm′ |2 + h̄2

4

(
ωnm′ − ω + k · p

m0
− i

γ

2

)2
]1/2

(A5)

and similarly for n′. Here Em′ is the energy of state |m′〉, which
for the system of degenerate Zeeman sublevels shown in Fig. 1
coincides with the energy of state |m〉, such that Em′ = Em =
0. Quasienergies (A5) are convenient intermediate parameters
describing the AT structure if only one state either |n〉 or
|n′〉 is taken into consideration. But actual location of the AT
poles is described by full susceptibility of the sample given by
Eq. (2.5), where all four Green’s functions equally contribute.
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