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Bell-like inequality for the spin-orbit separability of a laser beam
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In analogy with Bell’s inequality for two-qubit quantum states, we propose an inequality criterion for the
nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable
spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As
the usual Bell’s inequality can be violated for entangled two-qubit quantum states, we show both theoretically
and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The
inequality is discussed in both the classical and quantum domains.
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I. INTRODUCTION

Experiments to show violation of Bell-like inequalities
have attracted much attention in the last years due to the
possibility of ruling out classical hidden-variable theories
which jeopardize the need of a quantum-mechanical model
to describe nature. The majority of proposed experiments
rely on a pair of entangled quantum particles for genuine
nonlocality tests [1] or not necessarily entangled in the case
of noncontextuality tests [2]. Entanglement in single-particle
degrees of freedom has already been investigated in Ref. [3],
where a Bell-like inequality was violated by entangling the
spin and the beam path of single neutrons in an interferometer.
The same kind of single-particle scheme has been proposed
for photonic setups using the polarization and transverse
(spin-orbit) modes [4]. We have proposed a similar setup to
investigate the spin-orbit separability of a laser beam in [5].
Simulations of Bell inequalities in classical optics have also
been discussed in waveguides [6] and imaging systems [7]. The
combination of the polarization and spatial photonic degrees
of freedom open interesting possibilities in the quantum optics
and quantum-information domains [8–10]. The ability to pro-
duce and transform beams carrying orbital angular momentum
has allowed the development of important techniques with
potential applications to quantum information [11,12].

In this work we present our experimental results together
with the theoretical background developed for the analogy
between the usual quantum-mechanical context of Bell in-
equality and our classical spin-orbit counterpart. Moreover, we
discuss the quantum-mechanical description of the experiment
and investigate its predictions for different initial quantum
states, namely, a coherent, a single-photon, and a mixed state.
Although no genuine entanglement is present in the classical
optics implementation, entanglement will be present if single
photons are sent through the same apparatus.

II. SPIN-ORBIT SEPARABILITY OF THE
CLASSICAL AMPLITUDE

Following Ref. [13], we define as separable those spin-
orbit modes that can be written in the form �ES(�r) = ψ(�r)ê,
where ψ(�r) is a normalized c-number function of the transverse
spatial coordinates (transverse mode) and ê is a normalized
polarization vector. However, there are modes that cannot be

written in this form, which we shall refer to as nonseparable.
For example, consider the following normalized mode:

�EMNS(�r) = 1√
2

[ψV (�r)êV + ψH (�r)êH ], (1)

where ψH (�r) and ψV (�r) are the first-order Hermite-Gaussian
transverse modes with horizontal (H ) and vertical (V ) ori-
entations [14], and êH and êV are the horizontal (H ) and
vertical (V ) linear polarization unit vectors. This mode cannot
be written as a product of a spatial part times a polarization
vector. In the space of spin-orbit modes of a classical beam,
it plays a role analogous to a maximally entangled two-qubit
state, and we shall refer to it as a maximally nonseparable
mode (MNS). While the separable spin-orbit modes have a
single polarization state over the beam wave front, the
nonseparable modes exhibit a polarization gradient leading
to a polarization-vortex behavior [15].

Let us take the arbitrary spin-orbit mode

�E(�r) = A1ψV (�r)êV + A2ψV (�r)êH

+A3ψH (�r)êV + A4ψH (�r)êH (2)

and discuss its separability with the aid of a concurrence-
like quantity [13,16] C = 2|A2A3 − A1A4|, where Ai (i =
1, . . . ,4) are complex numbers satisfying

∑4
i=1 |Ai |2 = 1. It

turns out that 0 < C � 1 for nonseparable modes. In particular
we say that C = 1 corresponds to a maximally nonseparable
mode. It can be easily verified that any separable mode �ES(�r)
has C = 0.

To develop the spin-orbit inequality, it will be useful
to define the following rotated basis of polarization and
transverse modes:

êα+ = (cos α)êV + (sin α)êH ,

êα− = (sin α)êV − (cos α)êH ,
(3)

ψβ+(�r) = (cos β)ψV (�r) + (sin β)ψH (�r),

ψβ−(�r) = (sin β)ψV (�r) − (cos β)ψH (�r).

Rewriting the maximally nonseparable mode given by
Eq. (1) in the rotated basis, we get

�EMNS(�r) = 1√
2
{cos(β − α)[ψβ+(�r)êα+ + ψβ−(�r)êα−]

+ sin (β − α)[ψβ−(�r)êα+ − ψβ+(�r)êα−]}. (4)
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Let I(±)(±)(α,β) be the squared amplitude of the
ψβ(±)(�r)êα(±) component in the expansion of �EMNS(�r) in
the rotated basis. They play the same role as the detection
probabilities in the quantum-mechanical context. Due to the
orthonormality of {ψβ+,ψβ−} and {êα+,êα−}, it can be easily
shown that

I++(α,β) + I+−(α,β) + I−+(α,β) + I−−(α,β) = 1. (5)

Following the analogy with the usual quantum-mechanical
Clauser-Horne-Shimony-Holt (CHSH) [17] inequality for spin
1/2 particles, we can define

M(α,β) = I++(α,β) + I−−(α,β) − I+−(α,β)

− I−+(α,β) = cos [2(β − α)], (6)

and derive a Bell-type inequality for the quantity

S = M(α1,β1) + M(α1,β2) − M(α2,β1) + M(α2,β2). (7)

For any separable mode, −2 � S � 2, however, this condition
can be violated for nonseparable modes. A maximal violation
of the previous inequality, corresponding to S = 2

√
2, can be

obtained for the set α1 = π/8, α2 = 3π/8, β1 = 0, β2 = π/4.

III. THE EXPERIMENT

The experimental setup to observe maximal violation of the
nonseparability inequality is shown in Fig. 1 and is composed
of two stages: preparation of the maximally nonseparable
mode and measurement of the intensities I(±)(±)(α,β). The
preparation stage consists of a Mach-Zender (MZ) interfer-
ometer with a half-wave plate (HWP) oriented at 45◦ with
respect to the horizontal plane in one arm and a Dove prism
(DP) also oriented at 45◦ with respect to the horizontal plane in

(α/2)HWP

(β/2)DP

Preparation

φ

χ

Mask
BS1

BS4

BS3

MZIM

M2

M1

PBS2

PBS1
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SOURCE
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D2
D3

D4

o

o

DP (45  )

HWP (45  )

FIG. 1. Experimental setup for the Bell-type inequality violation
using a nonseparable classical beam. HWP, half-wave plate; DP,
Dove prism; (P)BS, (polarizing) beam splitter; D1–D4, photocurrent
detectors.

the other arm. Before the MZ interferometer, the horizontally
polarized TEM00 beam from a high-stability laser (Lightwave
142H-532-400SF) at 532 nm passes through a holographic
mask [18–20] and produces mode �E(�r) = ψV (�r)êH at the first
diffraction order. In the MZ interferometer, the half-wave plate
converts êH into êV , and the Dove prism changes ψV (�r) into
ψH (�r) so the resulting mode at the output beam splitter (BS2)
is

�E(�r) = 1√
2

[ψH (�r)êH + eiφψV (�r)êV ], (8)

where φ is the phase difference between the two arms of the
MZ interferometer. Mirror M1 is mounted on a piezoelectric
transducer (PZT) to allow fine control of the phase difference
φ. The other output of BS2 is used to check the alignment
between the two components of the mode prepared.

The measurement stage is composed by a Dove prism
oriented at a variable angle β/2, a half-wave plate oriented
at a variable angle α/2, a Mach-Zender interferometer with
an additional mirror (MZIM) [21], and one polarizing beam
splitter (PBS) after each of the MZIM outputs. Four photocur-
rent detectors (D1–D4) are used to measure the intensities
at the PBS outputs. The HWP at α/2 combined with DP at
β/2 define in which basis we are going to measure our initial
mode.

We want MZIM to work as a parity selector delivering odd
modes ψV (�r)êH and ψH (�r)êV in one port and even modes
ψV (�r)êV and ψH (�r)êH in the other port. Parity is evaluated
according to the eigenvalue of the respective mode under
reflection over the horizontal plane. Let χ be the optical phase
difference between the two arms of the MZIM. Note that proper
functioning of the MZIM as a parity selector occurs only when
χ = 2nπ (n = 0,1,2, . . .). For χ = (2n + 1)π , the even and
odd outputs are interchanged.

After propagating through DP oriented at β/2 and through
HWP oriented at α/2, the maximally nonseparable mode given
by Eq. (1) transforms to

�E′(�r) = A+
e (φ)ψV (�r)êV + A−

o (φ)ψV (�r)êH

+A+
o (φ)ψH (�r)êV + A−

e (φ)ψH (�r)êH , (9)

where

A±
e (φ) = eiφ/2{cos(φ/2) cos(β − α)

± i sin(φ/2) cos(β + α)},
(10)

A±
o (φ) = eiφ/2{± cos(φ/2) sin(β − α)

+ i sin(φ/2) sin(β + α)}.
If MZIM phase χ = 0, then the four amplitudes above

would be the ones measured by the detectors, since the MZIM
interferometer together with PBS1 and PBS2 would separate
the modes ψV (�r)êV , ψV (�r)êH , ψH (�r)êV , and ψH (�r)êH . But we
will still consider the case in which χ may differ from zero,
and then the corresponding intensities normalized to the total
intensity are given by

I1 = I2 = cos2

(
χ

2

)
|A±

e (φ)|2 + sin2

(
χ

2

)
|A±

o (φ)|2,
(11)

I3 = I4 = sin2

(
χ

2

)
|A±

e (φ)|2 + cos2

(
χ

2

)
|A±

o (φ)|2.
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FIG. 2. Experimental results for the maximally nonseparable
initial mode, measured in the (α1,β1) basis. Time parametrizes the
MZIM phase χ .

We can test the violation of the nonseparability inequality
by making measurements in the bases (α1,β1), (α1,β2),
(α2,β1), and (α2,β2) and obtaining the values of M(α,β) and
subsequently S. The value of S for arbitrary φ and χ is given by

S(χ,φ) = 2
√

2 cos χ cos2(φ/2). (12)

Thus maximal violation of the nonseparability inequality is
accomplished for φ = χ = 0. This is a key result, because
it shows that experimental errors in the phases will only
diminish the violation, not increase it.

In our experiment, the MZIM phase χ is continuously
varied by applying a voltage ramp to the PZT on M2 while
intensities I1 through I4 are monitored at the oscilloscope. An
example of our experimental results is presented in Fig. 2,
showing the oscillations caused by the variation of χ . We
know from the intensities dependence on φ and χ that
χ = 0 corresponds to the peaks in the graphics, and φ = 0
corresponds to a maximal visibility of these oscillations. Since
we have repetitions of these peaks, we obtain an ensemble
of intensities which allows us to calculate the averages and
standard deviations of M(α,β) and S. For this end, we take 30
points distributed over the ten peaks measured. This procedure
is repeated for all four bases, and the results are shown in
Table I. The value of S obtained for the MNS mode is 2.10 ±
0.03, which violates the inequality by 3.3 standard deviations.
In this table, we also show our experimental results for a
separable mode ψV (�r)êV , which is easily obtained by blocking
the Dove prism arm of the preparation MZ interferometer.

TABLE I. Mean values for M and S for maximally nonseparable
and separable modes.

Maximally nonseparable Separable

M(α1,β1) 0.609 ± 0.006 0.490 ± 0.008
M(α1,β2) 0.486 ± 0.009 0.000 ± 0.005
M(α2,β1) −0.522 ± 0.004 −0.56 ± 0.01
M(α2,β2) 0.482 ± 0.009 0.000 ± 0.004

S 2.10 ± 0.03 1.05 ± 0.03

(β/2)DP

HWP (α/2)

χ

BS4
MZIM

M2
a 1

b

b2

b3

b4

1

BS3

a 2

PBS1

a 3

PBS2
a 4

FIG. 3. Input and output modes of the measurement apparatus.

IV. QUANTUM-MECHANICAL FORMULATION

To describe our experiment in a complete quantum-
mechanical frame, we must take into account all possible
inputs and describe the evolution of the field operators inside
the apparatus. In our notation, the mode amplitudes that enter
the interferometer are ai

σλ, where the index i represents the
input, σ stands for polarization, and λ for transverse mode. In
Fig. 3, the input and output modes are indicated in the sketch
of the measurement setup. The output mode amplitude b

j
µν is

a combination of the input amplitudes with coefficients uiσλ
jµν .

Therefore, the field amplitude Ej at output j is

Ej =
∑
µ,ν

bj
µν êµψνe

i �kj ·�r , (13)

where

bj
µν =

∑
i,σ,λ

uiσλ
jµνa

i
σλ. (14)

Since the intensities are expectation values calculated in
normal ordering, all input modes in the vacuum state (a1

HV ,
a1

V H , a2
σλ, a3

σλ, and a4
σλ) will not contribute. Assuming that

MZIM is set for proper functioning (χ = 0), the only occupied
output modes are

b1
HH = cos α cos βa1

HH + sin α sin βa1
V V ,

b2
V V = sin α sin βa1

HH + cos α cos βa1
V V ,

(15)
b3

V H = − sin α cos βa1
HH + cos α sin βa1

V V ,

b4
HV = − cos α sin βa1

HH + sin α cos βa1
V V .

The only nonzero contributions to the normalized detected
intensities Ij = 〈E†

j · Ej 〉/I0 are

I1 = 〈
b

1†
HH b1

HH

〉/
I0,

I2 = 〈
b

2†
V V b2

V V

〉/
I0,

(16)
I3 = 〈

b
3†
V H b3

V H

〉/
I0,

I4 = 〈
b

4†
HV b4

HV

〉/
I0,

where I0 = ∑4
j=1〈E†

j · Ej 〉.
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To evaluate the inequality, according to the CHSH prescrip-
tion, we calculate M(α,β) = I1 + I2 − I3 − I4 for the four
bases and S as given by Eq. (7). With the description of the
inequality above, we can calculate the theoretical value of S

for different input quantum states.

A. Coherent state

For measurements made within its coherence length, the
laser source can be described by a coherent state. The
preparation part of our experiment (taking φ = 0) produces
the two-mode coherent state |ν,ν〉, where the first slot of the
ket refers to mode HH and the second one to V V . We can use
this state to calculate the mean values of Eq. (16), knowing
that the complex amplitude ν = √

I0/2, where I0 is the total
initial intensity of the laser. The results are in the equations
below:

I1 = I2 = 1
2 cos2 (β − α),

(17)
I3 = I4 = 1

2 sin2 (β − α).

They give S = 2
√

2 for the same choice of bases used in
the experiment, showing maximal violation for the two-mode
coherent state. Since this state is a tensor product, this violation
cannot be attributed to entanglement. In fact, we will see that
this violation is closely related to optical coherence when we
investigate the statistical mixture case.

In order to investigate the quantum-mechanical relation
between the nonseparable mode and the HH and V V modes,
let us first write the two-mode coherent state in the Fock basis:

|ν,ν〉 = e−|ν|2
∞∑

n,m=0

νn+m

√
n!m!

|n,m〉

= e−|ν|2
∞∑

N=0

N∑
m=0

νN

√
(N − m)!m!

|N − m,m〉. (18)

In the second equality, terms corresponding to the same total
photon number (N = n + m) were grouped together. Note
that the single-photon component (N = 1) of the two-mode
coherent state is ν(|1,0〉 + |0,1〉) which is clearly entangled.
Let us define the operator a

†
MNS that creates this single-photon

component when acting on the vacuum state |0〉:

a
†
MNS = (a†

V V + a
†
HH )√

2
. (19)

Now one can easily put the two-mode coherent state given by
Eq. (18) in the form

|ν,ν〉 = e−|ν|2
∞∑

n=0

(
√

2ν)n(a†
MNS)n

n!
|0〉

= |
√

2ν〉MNS, (20)

where |√2ν〉MNS is a coherent state in the maximally nonsep-
arable mode of Eq. (1). Of course, there are three other non-
separable modes orthogonal to this one, in which photons are
created by the operators (a†

V V − a
†
HH )/

√
2, (a†

HV + a
†
V H )/

√
2,

and (a†
HV − a

†
V H )/

√
2. Since these modes are in the vacuum

state, they were omitted in the above equation.

B. Single-photon Fock state

Let us now assume the input mode prepared in a single-
photon state a

†
MNS |0〉 = 1√

2
(|1,0〉 + |0,1〉). As we already

mentioned, this state is clearly entangled. In this regime, the
intensity measurements translate to photocounts associated
with the detection probabilities in each output port of the
measurement device. These probabilities violate the CHSH
inequality, and one is left in the traditional framework of
Bell’s experiments, in this case for the spin-orbit degrees of
freedom of single photons [4]. The detection probabilities are
proportional to the mean values of the intensity operator in
each output port, and they are easily calculated to be the same
as the normalized intensity values shown in Eq. (17), obviously
giving the same value S = 2

√
2.

C. Statistical mixture

It is interesting to investigate the spin-orbit separability for
a statistical mixture of two coherent states such as

ρ = 1
2 (|ν,0〉〈ν,0| + |0,ν〉〈0,ν|), (21)

where, as before, the first and second slots in the kets
correspond to the HH and V V mode, respectively. Such a
statistical mixture can model two independent lasers (random
relative phase) prepared in modes HH and V V , and combined
in a beam splitter. The results for the intensity calculations of
Eq. (16) are shown below:

I1 = I2 = 1
2 (cos2 α cos2 β + sin2 α sin2 β),

(22)
I3 = I4 = 1

2 (sin2 α cos2 β + cos2 α sin2 β).

For the bases used in the experiment, they give S = √
2

which does not violate the separability inequality. This
shows that optical coherence plays an important role, so no
violation would be obtained if the modes were incoherently
combined.

V. CONCLUSION

We have proposed an inequality criterion, as a sufficient
condition, for the spin-orbit nonseparability of a classical
laser beam. The notion of separable and nonseparable spin-
orbit modes in classical optics builds a useful analogy with
entangled quantum states, allowing the study of some of their
important mathematical properties. This analogy has already
been successfully exploited to investigate the topological
nature of the phase evolution of an entangled state under
local unitary operations [13]. Many quantum computing
tasks require entanglement but do not need nonlocality,
so using different degrees of freedom of single particles
can be useful. This is the type of entanglement whose
properties can be studied in the classical optical regime
allowing one to replace time-consuming measurements based
on photocount by the much more efficient measurement of
photocurrents.

Although helpful, the notion of mode nonseparability must
not be confused with genuine quantum entanglement. In
order to avoid this confusion, we have included a detailed
quantum optical description of the experiment in which
different quantum states were considered. In the intense-beam
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regime, the comparison between the results obtained for the
tensor product of two coherent states and those obtained
for a statistical mixture reveals the important role played by
optical coherence. In the single-photon regime, we recover the
traditional scenario of the CHSH inequality in which violation
implies entanglement.
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