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Motivated by recent experiments, we study four-wave-mixing in an atomic double-� system driven by a
far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the
medium, we calculate the classical and quantum properties of seed and conjugate beams beyond the linear
amplifier approximation. A continuous-variable approach gives us access to relative-intensity noise spectra
that can be directly compared with experiments. Restricting ourselves to the cold-atom regime, we predict the
generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum
limit (down to −6 dB). Moreover, entanglement between seed and conjugate beams measured by an inseparability
down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing
in a cold-atom sample.
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I. INTRODUCTION

Four-wave mixing (FWM) was identified early on as
a very efficient process to generate intense, nonclassical
beams [1]. Indeed, the first experimental demonstration of
squeezed light was made using FWM in a sodium atomic
beam almost 25 years ago [2]. More recently, FWM in
three-level � systems was predicted to generate squeezing
by using a counterpropagating geometry [3–6]. In addition
electromagnetically induced transparency (EIT) in double-�
atomic systems adds flexibility to the control of the FWM
process, leading to large parametric gain and oscillations [7,8].
With such a system, van der Wal et al. generated intensity
correlations between light pulses with a corresponding 0.2 dB
of noise reduction below the standard quantum limit (SQL) [9].
FWM in a double-� system in a hot rubidium vapor and
with a copropagating laser geometry was implemented in
Refs. [10–15] and by some of us in Ref. [16] to generate bright
correlated beams with a high degree of intensity correlations.

In order to produce paired photons or twin beams tuned
near an atomic resonance, efficient FWM in atomic samples
with a low parametric gain requires large optical depths. On
the other hand, cold-atom samples provide a precise control
of atomic parameters as inhomogeneities and decoherence
processes. Thus, the combination of double-� EIT and cold
atoms has allowed the observation of FWM at ultralow
optical powers. An optically thick cesium magneto-optical trap
(MOT) allowed Kuzmich et al. [17] to generate nonclassical
photon pairs with a programmable delay. Generation and
control of narrow-band paired photons were demonstrated in
a rubidium MOT [18–21] by reaching a high optical depth
of around 60 [22]. Correlated photons were also produced by
using cold atoms inside a cavity [23].

Following [24], recent publications [25–27] have theoreti-
cally explored the time correlations between photons observed
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in cold-atom experiments. Propagation of the generated
photons through the optically thick medium and Langevin
forces represent the key elements of these theoretical analyses.
Following the seminal papers in [4,5,24] and the analysis
of [26], we investigate the generation of quantum-correlated
beams in copropagating beam geometry. This work presents
a detailed theoretical treatment of FWM in an optically thick
medium composed by cold atoms described by a four-level
model, in a double-� configuration.

The main target is to explore the production of correlated
beams in the atom-laser configuration experimentally inves-
tigated in Refs. [10–16], but using a cold-atom sample as
in Refs. [19–22]. While the theoretical descriptions [25–27]
concentrated on the few photon regime, the experiments dis-
cussed in Refs. [10–16] require one to tackle the large photon
number regime where a description based on continuous
variables is required [28,29]. Within this approach, we derive
the quantum noise frequency spectra and quantify the quantum
entanglement between the generated beams.

Several additional original points of our analysis should
be listed. First, we investigate the pump-seed copropagating
geometry, a setup which enabled us to produce large-intensity
quantum correlations in the experiments [10–16]. Further-
more, in contrast to the phenomenological description of
Ref. [12], gain and propagation losses are intrinsically included
in our microscopic approach. As the most important result,
our analytical and numerical analysis predicts that a very
large degree of intensity quantum correlation can be achieved
also in a cold-atom FWM experiment, comparable to that
achieved in Refs. [10,11,16]. We also investigate the ability
of such a medium to simultaneously generate large phase
anticorrelations, leading to entanglement, a key resource for
quantum information [29].

The paper is organized as follows. Section II introduces
the microscopic model as described by Heisenberg-Langevin
equations. Section III discusses the analytical solution for the
propagating quantum fields. In Sec. IV we derive the mean
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FIG. 1. (Color online) Level diagram with relevant detunings.
The two large red arrows indicate the pump coupling between levels
|1〉 and |3〉 (respectively, |2〉 and |4〉), with equal Rabi frequency �.
δ represents the two-photon detuning on both � subsystems. The
strong pump and weak seed configuration leads to optical pumping
of the atoms into level |2〉.

values of the generated beams. We introduce and calculate in
Sec. V the intensity quantum correlation and phase quantum
anticorrelation spectra between seed and conjugate beams
including the Langevin forces contribution. Finally, in Sec. VI,
we discuss the effect of decoherence processes and compare
the results with those from hot-vapor experiments.

II. MICROSCOPIC MODEL—LANGEVIN EQUATIONS

We consider a collection of atoms having the double-�-type
four-level scheme of Fig. 1. The four atomic levels |u〉 are
defined by their energies Eu, and we introduce the angu-
lar frequencies ωuv = (Eu − Ev)/h̄, where u,v ∈ {1,2,3,4},
u > v. The populations of levels |3〉 and |4〉 decay with a rate
�. The atomic coherence between levels |1〉 and |2〉 decays
with rate γ and we neglect |1〉 and |2〉 population decays since
we consider cold-atom samples.

The atoms interact with three optical fields, pump (angular
frequency ωp) and seed (angular frequency ωa) driving the
first � subsystem (|1〉 → |3〉 → |2〉), and conjugate (angular
frequency ωb) and pump driving the second � subsystem
(|1〉 → |4〉 → |2〉). The detuning of the pump field from the
|1〉 → |3〉 transition is denoted �. The pump and the seed
are near-resonant with the |1〉 → |3〉 → |2〉 Raman transition
with a two-photon detuning δ. The double � is closed by
the conjugate and pump beams driving the |1〉 → |4〉 → |2〉
Raman transition, assuming energy matching. As shown in
Fig. 1, the pump laser is detuned by � + ω0 + δ from the
|2〉 → |4〉 transition, where ω0 = ω21 − ω43.

The interactions of the pump beam with the atoms are
described semiclassically. For the sake of simplicity, we limit
our study to a one-dimensional model with propagation along
the z axis. The seed and conjugate beams are described by two
slowly varying quantum-mechanical operators; the annihila-
tion (creation) operators being denoted â (â†) and b̂ (b̂†).

Following the approach of Ref. [24], the properties of the
medium are described by collective, slowly varying operators
σ̂uv(z,t) averaged over small layers denoted by their position

z. For each layer containing a large number of atoms Nz, we
define the following population and coherence operators σ̂uv:

σ̂uv(z,t) = 1

Nz

Nz∑
j=1

|uj 〉〈vj |e(−iω̃uv t+ikuvz), (1)

where ω̃31 = ω̃42 = ωp, ω̃32 = ωa , ω̃41 = ωb, and ω̃21 =
ω̃43 = ωp − ωa . The kuv are the projections of the wave vectors
�kuv on the z axis with �k31 and �k42 equal to the pump wave
vector, �k32 equal to the seed wave vector, and �k41 equal to the
conjugate wave vector, �k21 = �k23 − �k13 and �k43 = �k42 − �k32,
with the convention �kuv = −�kvu.

We write the laser-atom interaction Hamiltonian V̂ in the
rotating wave approximation, omitting for simplicity the z and
t dependencies of the atomic operators:

V̂ = −h̄N

L

∫ L

0
dz

[
(ω0 + � + δ) σ̂44 + �σ̂33 + δσ̂22

+ gaâ(z,t)σ̂32 + gbb̂(z,t)σ̂41 + �

2
(σ̂31 + σ̂42)

]
+ H.c.,

(2)

where N is the number of atoms in the quantization volume
V of length L. ga,b are the atom-field coupling constants:
ga = ℘32εa

h̄
and gb = ℘41εb

h̄
where ℘uv is the transition dipole

moment, and εa,b =
√

h̄ ωa,b

2ε0V
is the electric field of a single

photon. In the following, we consider ga = gb = g. Finally,
� = 2℘E

h̄
is the pump laser Rabi frequency with E the pump

laser electric field amplitude. We assume the transition dipole
moment ℘ to be equal for the two pump-driven transitions
|1〉 → |3〉 and |2〉 → |4〉.

As described in Ref. [26], the evolution of atomic oper-
ators is determined by the following Heisenberg-Langevin
equations:(

∂

∂t
+ γuv

)
σ̂uv = i

h̄
[V̂ ,σ̂uv] + r̂uv + F̂uv, (3)

where γuv are the atomic dephasing rates and r̂uv are the
source terms produced by spontaneous emission as defined
in [26]. Following Ref. [25], the Langevin operators F̂uv are
characterized by

〈F̂uv(z,t)〉 = 0, (4)

and

〈F̂ †
uv(z,t)F̂u′v′(z′,t ′)〉 = 2Duv,u′v′δ(t − t ′)δ(z − z′). (5)

Equation (5) defines the 256 diffusion coefficients Duv,u′v′ ; we
show in Appendix B that only a few of them will be required
in the next section.

Following the approach of Refs. [5,7,26], the description
of the atom-laser system is completed by a set of nonlinear,
coupled differential equations describing the propagation and
temporal evolution of the quantum field operators(

∂

∂t
+ c

∂

∂z

)
â(z,t) = igN σ̂23(z,t), (6)(

∂

∂t
+ c

∂

∂z

)
b̂†(z,t) = −igN σ̂41(z,t), (7)

where N = N/V is the atomic density.
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III. ANALYTICAL SOLUTION

The system evolution is described by a set of nonlinear,
coupled differential equations for quantum fields and atomic
operators which require further approximations to be solvable
analytically. We assume a pump beam highly saturating
the medium and very intense compared to the seed and
conjugate beams. Within these assumptions the populations
σ̂11,σ̂22,σ̂33,σ̂44 and the coherences σ̂31,σ̂13,σ̂42,σ̂24 are dom-
inantly driven by the pump beam. In this case the complete
nonlinear differential equation system can be separated into
two subsystems. In the first subsystem [Eq. (A1)], the
effect of seed and conjugate can be neglected and these
equations are solved in the steady state. The corresponding
solutions are given in Appendix A. These solutions are then
injected into Eq. (B1), which determines the coherences
σ̂14,σ̂41,σ̂23,σ̂32,σ̂12,σ̂21,σ̂34,σ̂43 as a function of â and b̂† as
described in detail in Appendix B.

Equations (6) and (7) can then be written in a closed form
and solved analytically in the Fourier space. The Fourier
transforms of â(t,z),b̂†(t,z) will be denoted â(ω,z),b̂†(ω,z),
where for simplicity we have used the same notation for
operators in the time and frequency domains.

Notice our notation for the Fourier transform of an operator
and its conjugate

â(ω) =
∫ ∞

−∞
â(t) eiωt dt, â†(ω) =

∫ ∞

−∞
â†(t) eiωt dt, (8)

leading to [â(ω)]† = â†(−ω). The Fourier transforms of the
quantum operators satisfy then the following equations:

1

k32

∂

∂z
â(ω) = ηa(ω)â(ω) + κa(ω)b̂†(ω) + F̂ at

a (ω), (9)

1

k41

∂

∂z
b̂†(ω) = κb(ω)â(ω) + ηb(ω)b̂†(ω) + F̂ at

b† (ω), (10)

where ηa(ω) [ηb(ω)] is the complex refractive index of the
medium “dressed” by the pump laser for the mode â (b̂†).
κa(ω) [κb(ω)] is the parametric conversion coefficient from
mode â to b̂† (b̂† to â), and F̂ at

a and F̂ at
b†

are the Langevin
terms originating from the atomic Langevin forces and can be
calculated from Eq. (B10).

Following a standard approach of quantum optics [30],
we use the input-output formalism to compute the quantum
operators of seed and conjugate fields. We introduce the input
operators, âin and b̂

†
in for z = 0 and the output operators âout

and b̂
†
out for z = L. The formal solution of the propagation

Eqs. (9) and (10) is given by[
âout(ω)

b̂
†
out(ω)

]
=

[
A(ω) B(ω)

C(ω) D(ω)

]([
âin(ω)

b̂
†
in(ω)

]
+

[
F̂a,out(ω)

F̂b,out(ω)

])
,

(11)

for which the coefficients A(ω), B(ω), C(ω), and D(ω) and
the Langevin terms F̂b,out(ω) and F̂a,out(ω) are defined in
Appendix C. Equation (11) allows us to compute both the
output field mean values (〈âout〉,〈b̂†out〉) and their fluctuations
(δâout,δb̂

†
out).

As in typical FWM experiments, in the following we will
suppose that the input on the conjugate mode b̂ is the vacuum

(〈b̂in〉 = 0) and that the input on the seed mode is an arbitrary
field of mean value 〈âin〉. The average values of the output seed
and conjugate fields are given by

〈âout(ω = 0)〉 = A(0)〈âin〉, (12)

〈b̂†out(ω = 0)〉 = C(0)〈âin〉. (13)

We define then Ga = |A(0)|2 as the seed gain, and Gb =
|C(0)|2 as the ratio between the conjugate output and seed
input intensities.

IV. CLASSICAL PROPERTIES OF THE MEDIUM

The mean value expressions for the seed and conjugate
output operators allow us to calculate the output intensities
which can be experimentally measured. The parameters used
in the following for laser intensities and detunings are derived
from hot-vapor experiments such as in [10–16], so that in our
numerical calculations, we will use 0.7 < �/2π < 3 GHz and
0.3 < �/2π < 2 GHz.

We consider the D1 transition of 85Rb: lasers wave-
length 795 nm; ω0/2π = 3 GHz; natural linewidth �/2π =
5.7 MHz; resonant absorption cross section σ0 = 10−9 cm2

[31]. For the optical depth defined by Nσ0L, we use the value
of 150 reachable by improving a cold-atom configuration such
that of Ref. [22]. In cold-atom experiments, magnetic-field
inhomogeneity and atomic collisions may determine the γ

decoherence rate. In a state-of-the-art experiment, γ depends
mainly on the relative phase stability of the lasers and is as low
as γ /2π � 10 Hz [32]. However, as specifically discussed
in Sec. VI A, our results shows a weak dependence on this
parameter, and γ /2π = 10 kHz will be usually assumed.

Figure 2 reports numerical simulation results for the seed
and conjugate gains as functions of the two-photon detuning
δ. As described in Ref. [6], different elementary processes
contribute to the system dynamics. Effective coherent photon
redistribution from pump to seed and conjugate occurs when
the four-photon resonance condition is fulfilled (δ � 0). Let
us note that the same resonance condition holds for a Raman
absorption process involving the seed beam. While it is quite
obvious that mode b̂ will always be amplified as soon as the
nonlinearity exceeds the absorption loss, the behavior of mode
â is more complicated and relies on the interference between
redistribution and Raman processes. The spectrum profile
of the seed gain [Fig. 2(a)] is characterized by absorption
at δ � �, with a width imposed by � and the propagation
through the optically thick medium. For δ � 0, the seed gain
spectrum displays a sharp profile containing both gain and
absorption contributions [Fig. 2(a) inset]. The seed absorption
is due to the Raman process on the transition |2〉 → |1〉
involving one seed photon and one pump photon, while the
gain can be attributed to the FWM process. For a pump laser
in resonance with one “arm” of the � transition, the EIT
profile assumes the characteristic line shape of a narrow dip
inside a Lorentzian profile. In an EIT configuration with the
pump laser detuned from the resonance, the absorption profile
of the seed field becomes asymmetric about the two-photon
resonance assuming a characteristic Fano-like profile as in the
experiments of Refs. [33–36] and the theoretical analysis of
Ref. [37]. The δ � 0 profile of Ga is similar to the EIT Fano
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FIG. 2. (Color online) Spectra of (a) the Ga seed beam gain and
(b) the conjugate beam gain Gb as functions of the two-photon
detuning δ. The parameters used for the plot are γ /2π = 10 kHz;
�/2π = 0.3 GHz; �/2π = 1 GHz. The seed beam dip for δ � � in
(a) is originated by absorption on the |2〉 → |3〉 transition. Expanded
views of Ga and Gb gains around δ = 0 are shown in the insets. The
peculiar line shapes are the result of a nontrivial interplay between
the two processes discussed in the text.

profiles reported in the above references, except that Ga � 1
in a narrow frequency range. The precise positions of the seed
absorption and Fano-like feature are given by the ac Stark
shifts induced by the pump laser.

The Gb spectrum, shown in Fig. 2(b), reports a reduction
of the gain in the region δ � 0 with a width matching that of
the dip in the Ga spectrum. In a naive description, conjugate
gain does not increase along the propagation when the seed is
completely depleted.

V. QUANTUM PROPERTIES OF THE SYSTEM

A. Noise spectra

Now we focus our attention on the quantum properties of the
system. We follow the standard approach of the continuous-
variable formalism [30] to calculate the noise spectra. For
the seed mode â we introduce the following amplitude
and phase quadrature fluctuation components, δx̂a and δp̂a ,
respectively:

δx̂a = δâe−iϕa + δâ†eiϕa , (14)

δp̂a = −i(δâe−iϕa − δâ†eiϕa ), (15)

where ϕa is the phase of the mean field 〈â〉. We define
accordingly the amplitude quadrature fluctuations for the
conjugate mode b̂, δx̂b and δp̂b. Following the Wiener-
Khintchine theorem, the spectrum of a given quantity û can be

evaluated by taking the Fourier transform of its autocorrelation
function [30]:

Sû(ω)2πδ(ω − ω′) = 〈û(ω)û†(ω′)〉. (16)

We analyze the FWM configuration of Refs. [10–16] with a
coherent state for the seed input of mean value amplitude α. In
agreement with the symmetric ordering of the operators [30]
to be used hereafter, the covariance matrix for the input seed
field is given by

[
〈δx̂a,in(ω)δx̂†

a,in(ω′)〉 〈δx̂a,in(ω)δp̂†
a,in(ω′)〉

〈δp̂a,in(ω)δx̂†
a,in(ω′)〉 〈δp̂a,in(ω)δp̂†

a,in(ω′)〉

]

= 2πδ(ω + ω′)
[

1 0

0 1

]
, (17)

and a similar definition applies for covariance matrix of the
conjugate mode but with a zero mean input power. Notice that,
according to [38,39], the choice of ordering of the operators
should not influence the calculated spectra.

Using Eq. (11) for the propagation of the quantum operators
for the seed and conjugate fields and the input covariance
matrix defined in Eq. (17), the quantum noise spectra for the
quadrature amplitude of the fields are given by

Sx̂a,out (ω) = |〈âout〉|2
2

{|A(ω)|2[1 + Daa† (ω)]

+ |A(−ω)|2[1 + Da†a(−ω)]

+ |B(ω)|2[1 + Db†b(ω)]

+ |B(−ω)|2[1 + Dbb† (−ω)]}, (18)

Sx̂b,out (ω) = |〈b̂out〉|2
2

{|C(ω)|2[1 + Daa† (ω)]

+ |C(−ω)|2[1 + Da†a(−ω)]

+ |D(ω)|2[1 + Db†b(ω)]

+ |D(−ω)|2[1 + Dbb† (−ω)]}, (19)

where the calculation method of the four atom-driven Langevin
diffusion terms Daa† , Da†a Db†b, and Dbb† is presented in
Appendix D. All those coefficients are, by construction, real
and positive quantities and act as additional noise source terms
on the quantum noise spectra. Their specific contribution will
be discussed below.

The interest in the double-� FWM system stems in par-
ticular from its ability to generate quantum field correlations.
Such correlations can concern a single quadrature of seed and
conjugate fields (e.g., intensity correlations as in Refs. [40,41])
or two conjugated quadratures (e.g., intensity correlations and
phase anticorrelations). In the second case, seed and conjugate
fields can be entangled. Let us note that while most FWM
experiments have investigated intensity squeezing, Ref. [14]
reports entanglement in a hot atomic vapor. In order to detect
the entanglement, we will here use the I(ω) < 1 sufficient
criterion introduced in [42,43] and, based on the inseparability
parameter, defined by

I(ω) = 1
2 (S−

x + S+
p ). (20)
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Here S−
x is the intensity correlation spectrum and S+

p the
phase anticorrelation spectrum both normalized to the standard
quantum limit (SQL). S−

x is derived by applying Eq. (16) to

û = 1√
2

[δx̂a,out(ω) − δx̂b,out(ω)] (21)

and normalizing it to the sum of gain on mode â and mode b̂:
(Ga + Gb). Correspondingly S+

p is obtained with

û = 1√
2

[δp̂a,out(ω) + δp̂b,out(ω)], (22)

with the same normalization. Inseparability will be used below
to give a higher bound for entanglement as discussed in
Ref. [44]. Equation (20) leads to the following expressions
for the normalized intensity correlation spectrum and the
normalized phase anticorrelation spectrum:

S−
x (ω) = 1

2(Ga + Gb)
{[|A(0)∗A(ω) − C(0)∗C(ω)|2]

× [1 + Daa†(ω)] + [|A(0)A(−ω)∗ − C(0)C(−ω)∗|2]

× [1 + Da†a(−ω)] + [|A(0)∗B(ω) − C(0)∗D(ω)|2]

× [1 + Db†b(ω)] + [|A(0)B(−ω)∗ − C(0)D(−ω)∗|2]
× [1 + Dbb† (−ω)]}, (23)

S+
p (ω) = 1

2(Ga + Gb)
{[|A(0)C(ω) − C(0)∗A(ω)∗|2]

× [1 + Daa† (ω)] + [|A(0)C(−ω)∗

−C(0)∗A(−ω)∗|2][1 + Da†a(−ω)]

+ [|A(0)D(ω) − C(0)∗B(ω)∗|2][1 + Db†b(ω)]

+ [|A(0)D(−ω)∗ − C(0)∗B(−ω)∗|2]

× [1 + Dbb† (−ω)]}. (24)

In contrast to the case of Eq. (18), which is a sum of positive
terms, a nonvanishing set of coefficients A,B,C,D could exist
in Eq. (23), such that the spectrum of the intensity difference
S−

x (ω) → 0 [the same holds for Eq. (24)]. For example, in
the case of a system behaving as an infinite bandwidth ideal
linear amplifier having gain equal to G [|A(ω)|2 = |D(ω)|2 =
G and |B(ω)|2 = |C(ω)|2 = G − 1, and vanishing Duv], the
relative-intensity noise spectra is given by

S−
x (ω) = 1

2G − 1
, (25)

as reported in [12]. Let us note that our model describes the
frequency dependence of the noise spectra as well as the
Langevin forces contribution through the coefficients Daa† ,
Da†a , Db†b, and Dbb† .

Figure 3 displays the intensity correlation and phase
anticorrelation spectra versus ω/2π (analysis frequency) for
two values of � and �. For each set of values, the two-
photon detuning δ is chosen in order to optimize the noise
reduction, close to the maximum gain value. In both cases
the output beams are entangled, since they display both
nonclassical intensity correlations and phase anticorrelations.
Our calculation shows that, within the explored range of
parameters, at fixed �/� the optimum entanglement increases
with �. Let us note that both seed and conjugate output beams
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FIG. 3. (Color online) Intensity correlation (black dashed) and
phase anticorrelation (red continuous) spectra (in dB) as functions of
analysis frequency for (a) �/2π = �/2π = 0.3 GHz and δ/2π =
−48 MHz and (b) �/2π = �/2π = 2 GHz and δ/2π = −217 MHz.
Inseparability can be obtained by taking the half sum of the two
correlation spectra.

display an intensity noise above the standard quantum limit as
reported in hot-atomic-vapor experiments [10].

B. Contribution of Langevin forces

Equations (23) and (24) show that the contribution of the
Langevin forces is purely detrimental to entanglement. In a
previous paper studying similar systems [26], the contribution
of Langevin forces was negligible. In our system we found
that it was not the case, and we have specifically investigated
their role. Figure 4 shows the inseparability spectra versus
the analysis frequency in the presence and absence of the
Langevin terms. Their effect is small but clearly non-negligible
and increases with ω. Let us point out that when neglecting
the Langevin correction terms, our calculation leads to
nonphysical spectra for the mode â, i.e., the noise can fall
simultaneously below the SQL for both phase and intensity
quadratures. On the contrary, by including the Langevin terms,
we always obtain, as mentioned above, excess noise on both
quadratures.
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FIG. 4. (Color online) Inseparability with (red line) and without
(black dashed) the Langevin noise correction. Parameters as in
Fig. 3(b).

VI. DISCUSSION

Below, we discuss briefly the role of the ground-state
decoherence rate as well as the comparison of the model to the
results of a hot-vapor experiment.

A. Role of the ground-state decoherence rate

Quantum correlations are notably sensitive to various
decoherence mechanisms. In Fig. 5, we present the evolution
of the maximal quantum correlations (in terms of the I
inseparability) as a function of the γ decoherence rate. While
high relaxation rates (γ /2π > 10 MHz) do not allow the
observation of entanglement, the smooth behavior in the
low-γ region shows that the system is quite robust against
mild decoherence mechanisms. These observations show that
coherences between hyperfine levels play a key role in the
production of entanglement in FWM experiments.

B. Comparison with hot-atomic-vapor experiments

The presented numerical results were obtained assuming
a stationary regime (no transient phenomena associated with
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FIG. 5. (Color online) Effect of the decoherence between the two
ground states on the I(ω) inseparability at ω/2π = 1 MHz. One can
see that the process is robust to decoherence up to 1 MHz. Parameters:
�/2π = �/2π = 2 GHz, δ/2π = −217 MHz.
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FIG. 6. (Color online) Gain spectrum Ga of a weak seed beam
as a function of the two-photon detuning δ. The black dashed line
reports the experimental data for a heated Rb cell [11]. These results
are obtained with a pump power P = 400 mW, a pump beam waist of
650 µm (�/2π = 330 MHz), a pump detuning �/2π = 700 MHz,
and L = 12.5 mm. The red solid line corresponds to the theoretical
predictions of our model using those parameters and an atomic
density N = 4 × 1012 cm−3 in agreement with that estimated from
the measured Rb cell temperature. The gray shaded area corresponds
to the spectrum reported in Fig. 2(a) (please note the reversed scale).
The absorption dip and the Fano-like profile on the right part of the
figure, absent in the simulation of Fig. 2, are originated by the seed
acting on the |1〉 → |4〉 transition.

transit time) and in the absence of inhomogeneous Doppler
broadening. The extension of the model to include these
effects is beyond the scope of the present work. However,
let us present the result of the calculation of the Ga seed
gain, using our cold-atom model, assuming the set of atom
and laser parameters explored by McCormick et al. [10]. For
the atomic density, we assume N � 4 × 1012 cm−3 falling
into the range explored by the experiments of Refs. [10–16].
We estimate the decoherence rate γ /2π = 500 kHz from the
mean transit time through the pump beam.

Figure 6 shows our numerical results for the Ga spectrum
and compares them with the experimental observations kindly
provided by P. D. Lett. Notice that the gain spectrum contains
twice the absorption and Fano-like feature of Fig. 2, because
the seed and conjugate beams exchange their roles in a large
scan of the seed laser frequency. Even if the cold-atom model
cannot reproduce exactly the data obtained in a heated cell
where the Doppler effect plays a major role, the main features
of the experimental transmission profile are well reproduced.
In addition the gain peaks occur at the predicted two-photon de-
tuning, the coherent absorption dips are present, and finally the
asymmetric profile of the left peak is also accounted for. The
gain peak values of the hot-vapor experiment are in very good
agreement with those predicted by the cold-atom simulation.

VII. CONCLUSION

We explored analytically and numerically the FWM gener-
ation process for an atomic double-� system. The Heisenberg-
Langevin formalism allowed us to describe the classical and
quantum properties of seed and conjugate beams beyond
the linear noiseless amplifier approximation. A continuous-
variable approach gave us access to relative-intensity noise
spectra (which can be directly compared with experiments).
In the very wide parameter space of this system, we explored
a range of large pump Rabi frequency and detuning, recently
addressed by hot-Rb-vapor experiments. However, Doppler
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broadening was not taken into account in our analysis, and
the optical depth was assumed compatible with a cold-atom
sample. In this previously unexplored regime, we predict
the generation of quantum-correlated beams with a relative-
intensity noise spectrum well below the standard quantum
limit, down to −6 dB. Moreover, the calculations predict en-
tanglement between seed and conjugate beams characterized
by an inseparability down to I = 0.25. We verified that in the
explored regime, the Langevin forces cannot be neglected and
reduce the performances of the system. We examined the role
played by the ground-state (hyperfine) coherence in the genera-
tion of quantum correlations: the smooth behavior in the low-γ
region let us predict that the system is robust against mild
decoherence mechanisms, as magnetic-field inhomogeneities.

Our model investigating the double-� scheme is quite gen-
eral. It may be applied to describe a wide range of systems hav-
ing the same level structure, for instance, in solid-state physics.
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APPENDIX A: STEADY STATE

In zeroth-order perturbation expansion, in which â and
b̂† go to zero, the Heisenberg-Langevin equations for
σ̂11,σ̂22,σ̂33,σ̂31,σ̂13,σ̂42,σ̂24 atomic operators are decoupled.
The mean values of these operators are required for the
next-order solution. We assume the pump beam to prop-
agate without depletion, as we verified numerically. Then
the subset of equations for the mean value variables
〈σ̂11〉,〈σ̂22〉,〈σ̂33〉,〈σ̂31〉,〈σ̂13〉,〈σ̂42〉,〈σ̂24〉 to be solved at the
steady state is written in matricial form as(

i[1]
∂

∂t
+ [〈M0〉]

)
|�0] = |S0], (A1)

with

[M0] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i �
2 i �

2 0 −�
2

�
2 0 0

i �
2 i �

2 0 0 0 −�
2

�
2

0 0 i� �
2 −�

2 0 0

−�
2 0 �

2 −� + i �
2 0 0 0

�
2 0 −�

2 0 � + i �
2 0 0

−�
2 −� −�

2 0 0 −� − ω0 + i �
2 0

�
2 � �

2 0 0 0 � + ω0 + i �
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

|�0] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ31

σ13

σ42

σ24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |S0] = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i�

i�

0

0

0

−�

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

The steady-state solution of Eq. (A1) is

|〈�0〉] = [M0]−1|S0]. (A4)

APPENDIX B: ATOMIC HEISENBERG-LANGEVIN
EQUATIONS

The first-order solution for the four coherences
σ̂23,σ̂41,σ̂43,σ̂21 is determined by the matricial equation(

i[1]
∂

∂t
+ [M1]

)
|�1] = |S1]|Â] + i|F1], (B1)

with

[M1] =

⎡
⎢⎢⎢⎣

i�/2 + (� − δ) 0 −�/2 �/2

0 i�/2 − (� + δ + ω0) �/2 −�/2

−�/2 �/2 i� − (δ + ω0) 0

�/2 −�/2 0 iγ − δ

⎤
⎥⎥⎥⎦ , (B2)
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|�1] =

⎡
⎢⎢⎢⎣

σ23

σ41

σ43

σ21

⎤
⎥⎥⎥⎦ , |S1] = g

⎡
⎢⎢⎢⎣

〈σ33 − σ22〉 0

0 〈σ11 − σ44〉
−〈σ42〉 〈σ13〉
〈σ31〉 −〈σ24〉

⎤
⎥⎥⎥⎦ , |Â] =

[
â

b̂†

]
, |F1] =

⎡
⎢⎢⎢⎣

F23

F41

F43

F21

⎤
⎥⎥⎥⎦ . (B3)

A similar set of equations holds for the Hermitian conjugate
operators.

The Langevin atomic forces |F ] are characterized by their
diffusion coefficients matrix [D] [Eq. (5)]. In order to comply
with the symmetrical ordering condition introduced in Sec. V,
we write the following symmetrize diffusion coefficients:

[D] = ([D1] + [D2]), (B4)

having defined

[D1]2δ(t − t ′)δ(z − z′) = 〈|F1(z,t)][F †
1 (z,t ′)|〉, (B5)

[D2]2δ(t − t ′)δ(z − z′) = 〈|F †
1 (z,t)][F1(z,t ′)|〉. (B6)

Langevin diffusion coefficients for operators can be calculated
using the generalized Einstein relation as in Ref. [30]. The
[D1] and [D2] diffusion matrices are given by

[D1] = 1

2τ

⎡
⎢⎢⎢⎢⎣

�
(
�2 + 4�2 + 2�2 + 8�ω0 + 4ω2

0

)
0 i��(� + 2i(� + ω0)) 0

0 0 0 −iγ�(� − 2i(� + ω0))

−i��(� − 2i(� + ω0)) 0 ��2 0

0 iγ�(� + 2i(� + ω0)) 0 ��2 + 2γ
(
�2 + 4�2 + �2 + 8�ω0 + 4ω2

0

)

⎤
⎥⎥⎥⎥⎦

[D2] = 1

2τ

⎡
⎢⎢⎢⎢⎣

0 0 0 −iγ (� − 2i�)�

0 �(�2 + 4�2 + 2�2) i�(� + 2i�)� 0

0 −i�(� − 2i�)� ��2 0

iγ (� + 2i�)� 0 0 ��2 + 2γ (�2 + 4�2 + �2),

⎤
⎥⎥⎥⎥⎦ , (B7)

where τ = 2�2 + 4�2 + 4ω2
0 + 8�2 + 8�ω0.

The system of Eq. (B1) is solved by writing each atomic
operator as the sum of its mean value and a quantum fluctuation
term

|�1] = |〈�1〉] + |δ�1], (B8)

By linearizing Eq. (B1) we derive for the mean values

|〈�1〉] = [M1]−1|S1]|〈Â〉] (B9)

and for the Fourier-transformed quantum fluctuations

|δ�1] = ([M1] + ω[I])−1|S1]|δÂ] + i([M1] + ω[I])−1|F1].

(B10)

APPENDIX C: QUANTUM-FIELD
HEISENBERG-LANGEVIN EQUATIONS

The propagation matrix for the quantum-field operators of
Eq. (11) is obtained by replacing the σ̂23(t,z) and σ̂41(t,z)
solutions of Eq. (B8) into the differential Eqs. (6) and (7) and
solving these equations. By defining[

A(ω) B(ω)

C(ω) D(ω)

]
= e[M(ω)]L, (C1)

where [M(ω)] is a 2 × 2 matrix given by

[M(ω)] = −i
g2N

c
[T ]([M1] + ω[I])−1|S1], (C2)

with [T ] = [ −1 0 0 0
0 1 0 0

].

The Langevin force terms of Eq. (11) are given by[
F̂a,out(ω)

F̂b†,out(ω)

]
= L

∫ 1

0
e[M(ω)]Lz[MF (ω)]|F1] dz, (C3)

where

[MF (ω)] = −gN

c
[T ]([M1] + ω[1])−1. (C4)

Let us point out that the conjugate operators for the quantum
fields are given by

[
δâ

†
out(ω)

δb̂out(ω)

]
= e[M∗(−ω)]L

([
δâin(ω)

δb̂
†
in(ω)

]
+

[
F̂a†,out(ω)

F̂b,out(ω)

])
,

(C5)

with

[
Fa†,out(ω)

Fb,out(ω)

]
= L

∫ 1

0
e−[M∗(−ω)]Lz[M∗

F (−ω)]|F †
1 ]dz, (C6)

where we have introduced |F †
1 ] =

⎡
⎢⎢⎣

F32

F14

F34

F12

⎤
⎥⎥⎦.
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APPENDIX D: LANGEVIN FORCES CONTRIBUTION
TO NOISE SPECTRA

We will present this calculation for the 〈F̂a(ω)F̂a†(ω′)〉
term, since the extension to the remaining ones is straight-
forward. Substituting the expression of Eq. (C6), this term is
given by

〈F̂a(ω)F̂a†(ω′)〉

= 〈[1 0|
∫ 1

0
e−[M(ω)]Lz[MF (ω)]|F1(z,ω)] dz

×
∫ 1

0
[F †

1 (z′,ω′)| t [M∗
F (−ω′)]e−t [M∗(−ω′)]Lz′

dz′|1 0]〉.
(D1)

The Langevin forces are δ correlated in z, so integration over
z′ gives

〈F̂a(ω)F̂a†(ω′)〉
= [1 0|

〈∫ 1

0
e−[M(ω)]Lz[MF (ω)]|F1(z,ω)]

× [F †
1 (Lz,ω′)| t [M∗

F (−ω′)]e−t [M∗(−ω′)]Lz dz

〉
|1 0]. (D2)

By defining the Daa† (ω) coefficient as

〈F̂a(ω)F̂a†(ω′)〉 = Daa† (ω)2π δ(ω + ω′), (D3)

we obtain

Daa†(ω) = L2[1 0|
∫ 1

0
e−[M(ω)]Lz[MF (ω)][D]

×t [M∗
F (−ω′)]e−t [M∗(−ω′)]Lzdz〉|1 0], (D4)

within the [D] diffusion matrix given by Eq. (B4). In a similar
way it is possible to derive Da†a(ω), Dbb† (ω), and Db†b(ω), as
detailed in [45].

[1] H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979).
[2] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F.

Valley, Phys. Rev. Lett. 55, 2409 (1985).
[3] M. Shahriar and P. Hemmer, Opt. Commun. 158, 273

(1998).
[4] M. D. Lukin, P. R. Hemmer, M. O. Löffler, and M. Scully, Phys.
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