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Correlated imaging through atmospheric turbulence

Pengli Zhang, Wenlin Gong, Xia Shen, and Shensheng Han*

Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences, Shanghai 201800, China
(Received 18 June 2010; published 17 September 2010)

Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing
turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce
the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by
numerical simulations, in which turbulence-induced phase perturbations are simulated by random-phase screens
inserted into propagation paths.
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As correlated imaging has been well developed in recent
years [1–4], more attention has been focused on how to apply
this technique to practical applications to overcome the limits
in conventional optical systems. For an imaging system that
must look through atmosphere, turbulence-induced wavefront
variations distort the point spread function (PSF) of the system
from its ideal diffraction-limited shape, which leads to the
degradation of image resolution [5]. To mitigate turbulence
effects, a number of methods, such as speckle imaging and
adaptive optics techniques [5], have been proposed and applied
in optical astronomy. Nonetheless, each of these techniques has
its own set of performance limits and hardware and software
requirements. New approaches to the problem of reducing
these effects are still of much interest. Here we investigate
the performance of correlated imaging through atmospheric
turbulence and find that the influence of turbulence can be
weakened by the second-order intensity correlation.

A schematic of correlated imaging through the atmosphere
is depicted in Fig. 1. The beam splitter (BS) divides thermal
light into two beams propagating through two distinct optical
paths. One is the test arm, which includes an unknown object
and a telescope setup consisting of a lens with focal length f

and a detector Dt . The object is located at a distance d1 from
the source as well as d2 to the telescope setup. The other path
is the reference arm, where another telescope setup consisting
of a lens and a detector Dr is placed at d0 = d1 + d2 from the
source. For remote sensing (i.e., d1,d2 � f ), the detector Dt

(or Dr ) generally lies close to the back focal plane of the lens
(i.e., d3 ≈ f ). The test arm is imbedded in the atmosphere,
and turbulence-induced wavefront fluctuations in propagation
paths d1 and d2 are represented by �1 and �2, respectively. The
reference arm corresponds to free-space propagation through
the distance d0 by assuming that there exists no turbulence.
The assumption is based on the fact that the optical field in
the reference arm is totally predictable if the field distribution
of the source is well known [1,2]. In practice, the far-field
distribution of the reference arm can be also obtained by the
f -f system, where Dr is fixed on the focal plane of a lens
with focal length f [6,7].
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In the test arm, the field Et (xt ) at the detector Dt can be
given by

Et (xt ) =
∫∫

dx dξEs(x)h1(ξ,x)t(ξ )h2(xt ,ξ ), (1)

where Es(x) corresponds to the source field, and t(ξ ) denotes
the transmission function of the object. h1(ξ,x), h2(xt ,ξ ) are
the impulse response functions from the source to the object
and from the object to the detector Dt , respectively.

Furthermore, according to the extended Huygens-Fresnel
integral [8], h1(ξ,x) and h2(xt ,ξ ) have the forms

h1(ξ,x) = 1√
jλd1

e
jk

2d1
(x−ξ )2+�1(x,ξ )

, (2a)

h2(xt ,ξ ) = 1

jλ
√

d2d3

∫
dηe

− jk

d2
(ξ−xt /M)η+�2(ξ,η)

, (2b)

where k = 2π/λ is the wave number with λ being the
wavelength, and M = −d3/d2 is the magnification of the
telescope setup. �1(x,ξ ) and �2(ξ,η) account for the random
parts (due to atmospheric turbulence) of the complex phases
of the fields in the propagation paths d1 and d2, respectively.

The field Er (xr ) at the detector Dr is connected to the source
field Es(x) by the Fresnel diffraction integral

Er (xr ) = 1√
jλd1|M|

∫
dxEs(x)e

jk

2d1
(x−xr /M)2

. (3)

It’s worth pointing out that the apertures of the lenses are
regarded as being large enough that the diffraction limit of the
lenses can be neglected.

Performing the intensity correlation measurement between
the test arm and the reference arm, we get

G(xt ,xr ) = 〈It (xt )Ir (xr )〉 − 〈It (xt )〉〈Ir (xr )〉
= c0

∫
dx dx ′ dx ′′ dx ′′′ dξ dξ ′〈Es(x)E∗

s (x ′′′)〉
× 〈E∗

s (x ′)Es(x
′′)〉〈h1(ξ,x)h∗

1(ξ ′,x ′)〉
× 〈h2(xt ,ξ )h∗

2(xt ,ξ
′)〉t(ξ )t∗(ξ ′)

× e
jk

2d1
[(x ′′−xr /M)2−(x ′′′−xr/M)2]

, (4)

where c0 is a constant (λ3d1d2d3|M|)−1, and It (xt ) and Ir (xr )
represent the intensity distributions at Dt and Dr , respectively.
Here, we have supposed that the thermal field and the two
turbulent regions are statistically independent of each other.
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FIG. 1. Schematic of correlated imaging through atmospheric
turbulence.

If the source is fully spatially incoherent and its intensity
distribution is of the Gaussian type, the first-order correlation
function of the source has the form

〈Es(x)E∗
s (x ′)〉 = I0e

− x2+x′2
r2
e δ(x − x ′), (5)

where I0 denotes the mean intensity at the center of the source,
and re is the 1/e2 intensity radius. With the help of Eqs. (2a),
(2b), and (5), Eq. (4) can be rewritten as

G(xt ,xr ) = I 2
0

∫
dx dx ′ dη dη′ dξ dξ ′ t(ξ )t∗(ξ ′)

× e
− 2(x2+x′2)

r2
e e

jk

2d1
[(x ′−xr/M)2−(x−xr /M)2]

× e
jk

2d1
[(x−ξ )2−(x ′−ξ ′)2]〈e�1(x,ξ )+�∗

1 (x ′,ξ ′)〉
× e

jk

d2
[(ξ−xt /M)η−(ξ ′−xt /M)η′]

×〈e�2(ξ,η)+�∗
2 (ξ ′,η′)〉. (6)

The ensemble average of phase variations arising from
turbulence can be approximated by [8]

〈e�i (x,ξ )+�∗
i (x ′,ξ ′)〉 ∼= e

− 1
ρ2
i

[(x−x ′)2+(x−x ′)(ξ−ξ ′)+(ξ−ξ ′)2]
, (7)

where ρi = (0.545C2(i)
n k2di)−3/5 (i = 1,2) is the coherence

length of a spherical wave propagating in the turbulent
medium, and C2(i)

n corresponds to the refractive-index structure
constants describing the strength of atmospheric turbulence
along the propagation path di . It is worth emphasizing that
we have adopted a quadratic approximation of the Rytov
phase structure function in Eq. (7) to obtain the analytical
formula, and this approximation has been used widely in the
literature [4,8–11].

Substituting Eq. (7) into Eq. (6) and integrating over
η,η′,x,x ′, we have

G(xt ,xr ) =
√

πI 2
0 c0√

αβ2(α + 2β1)

∫
dξ |t(ξ )|2

× e
− 2A2

α+2β1
(ξ−xr /M)2

e
− B2

β2
(ξ−xt /M)2

, (8)

where A = k/2d1, B = k/2d2, α = r−2
e /2, and βi = ρ−2

i .
By making xr = xt in Eq. (8), we carry out a special point-

to-point intensity correlation [12] and obtain the PSF of the
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FIG. 2. Simulated (open circles) and theoretical (solid line)
on-axis irradiance variance vs the propagation distance. The outer
scale and inner scale of turbulence are L0 = 3 m and l0 = 1 cm,
respectively.

correlated imaging system

hg(xr,ξ ) = e
− 2A2

α+2β1
(ξ−xr /M)2

e
− B2

β2
(ξ−xr /M)2

. (9)

For the sake of comparison, we also present the intensity
distribution at Dt ,

It (xt ) =
√

πI0c0√
αβ2

∫
dξ |t(ξ )|2e− B2

β2
(ξ−xt /M)2

, (10)

and the PSF of the test arm

ht (xt ,ξ ) = e
− B2

β2
(ξ−xt /M)2

. (11)

From Eqs. (9) and (11), we can see that the full widths at
half maximum (FWHM) of hg and ht both broaden with
the increase of βi (apart from the influence of the size
of the source), which indicates that the resolution, whether
for correlated imaging or direct imaging, is degraded by
atmospheric turbulence. Additionally, and most importantly,
hg has a narrower FWHM compared to ht , which means that
correlated imaging is helpful in reducing turbulent effects and
achieving high-resolution images.

In simulations, we consider correlated imaging through
horizontal paths in the atmosphere, and thus C2

n can be regarded
as constant in the whole turbulent region. The numerical
modeling of light propagation in turbulence is well developed
[13,14]. The spatial power spectral density of the index of
refraction fluctuations can be described by the Von Karman
spectrum [13],


n(K,z) = 0.033C2
n(z)

(
K2 + L−2

0

)−11/6
e−(Kl0/2π)2

, (12)

where K2 = K2
x + K2

y + K2
y , z is the propagation distance

from the source, and L0 and l0 represent the outer scale
and inner scale of the turbulence, respectively. By using
the spectrum in Eq. (12) to filter a complex Gaussian
pseudorandom field and inverse transforming the result, one
obtains a two-dimensional phase screen which has the same
statistics as the turbulence-induced phase variations [13]. For
long atmospheric paths, the multiple phase-screen model [14]
has been used in simulations. The turbulent region with the
propagation length di is broken into a number of layers with a
thickness �z. Phase fluctuations in each layer are represented
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FIG. 3. Reconstructed images (from left to right) via the cor-
relation in the atmosphere with turbulent levels C2

n = 10−16, 2.5 ×
10−16, 5 × 10−16, and 10−15 m−2/3, respectively.

by a phase screen inserted at the middle of the layer. The
effect of field propagation through these continuous layers can
be calculated separately and then combined to characterize
propagation through the entire turbulent region, provided the
index of refraction fluctuations for each layer are statistically
independent [5].

First of all, to verify the computer programm, we investigate
the behavior of a Gaussian beam (waist radius w0 = 7 cm and
wavelength λ = 2 µm) traveling through the atmosphere with
a strong turbulence level (C2

n = 10−12 m−2/3). The thickness
of each layer is �z = 50 m. The on-axis normalized intensity
variance, defined as [13]

σ 2
I = 〈I 2〉 − 〈I 〉2

〈I 〉2
, (13)

is plotted as a function of the propagation distance in Fig. 2.
The good coincidence between the simulated data (open
circles) and the theoretical result (solid line) predicted by [15]
proves the validity of the programm.

After the validation, we apply the program to simulate the
correlated imaging system shown in Fig. 1. The thermal source
(λ = 0.532 µm and diameter D = 2re = 5 cm) was described
by a grid of 512 × 512 with a sample spacing �x = �y =
5 mm. The distances were set as d1 = d2 = 10 km and the
focal length f = 1 m. The turbulence regions in the paths
di(i = 1,2) were divided into 20 layers with a thickness �z =
500 m, respectively. The turbulent parameters were assumed
constant at the outer scale L0 = 100 m and the inner scale
l0 = 5 mm. By averaging over 104 samples, simulated results
[see Fig. 3] clearly show the image resolution decrease with
the increase of the turbulent strength, which accords with the
analytical calculation from Eq. (8).

To compare direct imaging and correlated imaging, a simple
double slit (slit width 10 cm and center-to-center separation
20 cm) was used. After statistics over 104 samples, we obtained
a blurred image detected by the test arm directly [see Fig. 4(a)]
and a clear image reconstructed through the correlation [see
Fig. 4(b)]. This confirms the analytical result that corre-
lated imaging could reduce turbulent effects and improve
resolution.
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FIG. 4. Acquired images of the double slit in the atmosphere with
turbulent level C2

n = 10−15 m−2/3. (a) Obtained by the test arm, and
(b) extracted from the correlation. The normalized horizontal sections
of the images are plotted in (c), where open circles correspond to the
simulated data and solid lines show the theoretical predictions from
Eqs. (8) (left plot) and (10) (right plot).

It is worth pointing out that the transmission object, for
simplicity, has been used in the analytical calculations and the
simulations, and thus the test arm is a unidirectional path. In
practice, light incident on the object will be reflected. When
illumination of the object is carried out from the ground, the
detector of the test arm can be located at much the same
position with the source. And then the test arm can be divided
into up-atmospheric and down-atmospheric paths, in which
turbulent effects should be dealt with separately.

In summary, by taking advantage of the extended Huygens-
Fresnel integral, we have presented the theoretical expressions
that describe how atmospheric turbulence corrupts the image
resolution. Meanwhile, the analytical calculations and the nu-
merical simulations have demonstrated that correlated imaging
can provide imaging performance superior to direct imaging
through the atmosphere. As a unique two-arm imaging method,
correlated imaging can also be effectively combined with
conventional phase-compensating techniques (e.g., adaptive
optics) to further eliminate turbulent effects.
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