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Solitonic Bloch oscillations in two-dimensional optical lattices
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A theoretical description for nonlinear beam propagation in a two-dimensional optical lattice in the presence
of a refractive-index gradient has been developed. This problem is associated with nonlinear Bloch oscillations; it
has been reduced to a nonlinear Schrödinger equation with a varying dispersion coefficient. It is shown that, if the
periodicity of longitudinal modulation coincides with the transverse gradient of the refractive index, a stationary
oscillatory picture emerges in the nonlinear regime.
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I. INTRODUCTION

Bloch oscillations [1] of electrons in a perfect lattice
in a static electric field (see, e.g. [2]) have stimulated a
number of investigations in completely different physical
systems: Optical waves in waveguide arrays [3–7], ultracold
atoms in optical lattices [8–11], acoustic waves in supersonic
superlattices [12], and elastic mechanical systems [13] are
just recent examples. The influence of additional nonlinear
terms in the wave equations that are generated, for exam-
ple, by noninear response of the medium (light) or by a
mean-field treatment of quantum many-body interactions in
Bose-Einstein condensates (BECs), has been analyzed. These
terms generally lead to decoherence and deterioration of the
Bloch oscillations, which was observed on time scales of a
few oscillation periods in ordinary [14–18] and disordered
lattices [19–21]. In the optical context this means that Bloch
oscillations for stationary beams can be observed only in the
case of low intensities, while for strong intensities a transition
to chaotic light distribution is observed.

Very recently, some new scenarios have been suggested for
observation of persistent Bloch oscillations in the nonlinear
limit. In Ref. [22] it was suggested to make the nonlinear
coefficient spatially periodic, while in Refs. [23,24] the
authors considered a time-dependent nonlinear term in the
BEC context. In the present paper I consider optical spatial
soliton propagation in a film of Kerr medium for which the
nonlinear coefficient is constant, while the linear refractive
index is modulated along both spatial directions. In the case of
refractive-index modulation along only one spatial (transverse)
direction n, noninear Bloch oscillations do not survive, as
has been shown in previous studies. I show here that, if
one has a certain periodicity of refractive-index modulations
(coinciding with the Bloch oscillation period) along the
longitudinal direction as well, it is possible to see persistent
Bloch oscillations even in the nonlinear regime, as displayed
in the main plot of Fig. 1.

II. NONLINEAR EVOLUTION OF INTERACTING
BLOCH MODES

Let us start by writing the nonlinear Schrödinger equation
(NLS) describing the stationary distribution of a linearly
polarized light envelope in an optical film in the paraxial

FIG. 1. (Color online) (a) Results of numerical simulations (with
only the first Bloch mode excited) of Eq. (1) showing persistent
Bloch oscillations in the case of refractive-index modulation along
both spatial dimensions; they are displayed as a gray contour plot
(light areas correspond to the larger-refractive-index regions). A
refractive-index gradient α = 1/800 is applied along the x axis;
the nonlinearity parameter χ = 0.016; the wave envelope is initially
normalized to unity |�(z = 0)|max = 1; and modulation along z has
the form w(z) = 0.25 cos(2πz/α). (b) The two first Bloch bands in
this two-dimensional lattice. (c) The calculated trajectory from the
simplified model according to the formula (12), assuming the initial
excitation of the first Bloch band.

approximation:

i
∂�

∂z
+ 1

2

∂2�

∂x2
+ [αx − w(z) cos(x)]� + χ |�|2� = 0, (1)

where I assume light propagation along the z direction, the
complex wave envelope is normalized as |�(x,z = 0)|max =
1,χ is a nonlinearity coefficient, the potential term (including
harmonic and gradient parts) represents the linear refractive-
index variation

αx − w(z) cos(x) = k2(n − n0)/n0K
2, (2)
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the spatial variables x and z are scaled in units of 1/K and
k/K2, respectively, K is the inverse spacing of the harmonic
transverse modulations, and k is the carrier wave number, de-
fined as k = n0ω/c with ω being the laser beam frequency and
n0 the averaged refractive index; pinned boundary conditions
�(0,z) = �(L,z) = 0 are considered.

The solution of (1) is sought via the following expansion
over extended Bloch waves:

�(x,z) =
∞∑

n=−∞
ei(αz+n)x+λ(z)An(x,z), (3)

and by putting this into Eq. (1) one finds the following set of
equations:

i
∂An

∂z
−

(
β + (κ + n)2

2

)
An − w

2
(An−1 + An+1) + i(κ + n)

× ∂An

∂x
+ 1

2

∂2An

∂x2
+ χ

∑
n1,n2

An1A
∗
n2

An−n1+n2 = 0, (4)

where the z-dependent propagation constant β(z) = dλ/dz

and the wave vector κ(z) = αz have been introduced. Now
we turn to the weakly nonlinear approach, considering small
amplitudes and slowly varying variables; in other words, let
us consider the following representation:

An(x,z) =
∞∑


=1

ε
ϕ(
)
n (ξ,τ ), ξ = ε [x − θ (z)] , τ = ε2z.

(5)

This has to be substituted into (4), building perturbation theory
for various orders of ε. In particular, in the linear limit one gets
the following algebraic set of equations written in the matrix
representation:

∑
n′

Qnn′ϕ
(1)
n′ = −βϕ(1)

n , Qnn = (κ + n)2

2
Qnn±1 = w

2
.

This is an eigenvalue problem for given z, and one can define
the spectrum of the propagation constant βν [κ(z),w(z)] and
the corresponding orthonormalized real eigenvectors Rν

n(z).
By this we define a complete set of Bloch eigenmodes as a
function of z and write the function ϕ(1)

n as an expansion over
these modes:

ϕ(1)
n =

∑
ν

Rν
n(z)Eν(ξ,τ ),

∑
n′

Qnn′Rν
n′ = −βνR

ν
n, (6)

where Eν(ξ,τ ) are arbitrary functions to be defined in the
further approximations. Now let us make the assumption that
for given z one has only a single mode ν; in other words,
all amplitudes Eµ with µ �= ν are zero. Then, in a second
approximation over ε, choosing β ≡ βν from (4), we get the
following set of equations:

∑
n′

(βνδnn′ + Qnn′) ϕ
(2)
n′ = i [(κ + n) − v]

∂Eν

∂ξ
Rν

n, (7)

where v(z) = dθ/dz. Multiplying Eq. (7) by Rν
n and summing

over n, we get an expression for the velocity vν(z) associated
with the νth mode:

vν(z) =
∑

n

(κ + n)
(
Rν

n

)2 ≡ ∂βν(κ,w)

∂κ
. (8)

Proceeding in a similar way to the third approximation over
ε, we finally get from (4)

i
∂Eν

∂τ
− 1

2

∂2βν(κ,w)

∂κ2

∂2Eν

∂ξ 2
+ �ν |Eν |2Eν = 0 (9)

where the modified nonlinearity parameter is defined as
follows:

�ν = χ
∑

n,n1,n2

Rν
nR

ν
n1

Rν
n2

Rν
n−n1+n2

. (10)

Now, rescaling the slow variable τ → ∫
dτ�ν(τ ), we fi-

nally get the NLS equation with varying dispersion coefficient:

i
∂Eν

∂τ
+ �ν(τ )

2

∂2Eν

∂ξ 2
+ |Eν |2Eν = 0,

(11)

�ν = −∂2βν(κ,w)

∂κ2

/
�ν,

where it is assumed that as long as the refractive-index gradient
is small, α ∼ ε2, the dispersion coefficient varies slowly along
z and is a function of the variable τ = ε2z. As we will
see below, Eq. (11) can support a solitonic solution, and
then according to definitions (5) the center of the localized
stationary distribution should follow the trajectory

x = θ (z) =
∫

vν dz =
∫

dz
∂βν(κ,w)

∂κ
. (12)

III. ANALYSIS OF REDUCED NLS MODEL WITH
VARYING DISPERSION COEFFICIENT

It is clear that, if there is no longitudinal modulation of
the refractive index [w(z) is a constant] and the localized
solution is stable, then the trajectory x = βν(z)/α, and it
simply follows the corresponding Bloch band curve. Such a
scenario occurs in the case of only transverse modulations
of the refractive index and for low beam intensities (linear
regime). This is displayed in Figs. 2(a) and 2(c) and it can

FIG. 2. (Color online) (a) and (b) Results of numerical simu-
lations (stationary spatial light intensity distribution with first Bloch
mode excited) on the initial model (1) with only transverse modulation
and a gradient of the refractive index in the linear and nonlinear
regimes, respectively. (c) Dependence of the propagation constant on
z for the first two Bloch modes.

033816-2



SOLITONIC BLOCH OSCILLATIONS IN TWO- . . . PHYSICAL REVIEW A 82, 033816 (2010)

be seen that the beam follows the trajectory of the first Bloch
band. When the beam intensity is increased, the decoherence of
Bloch oscillations occurs, as shown in Fig. 2(b). This happens
because of variation of the effective dispersion coefficient
�1, which changes sign periodically, thus switching from the
focusing to the defocusing regime of the NLS equation (11).
This behavior is displayed in the inset of Fig. 3(a), where in
the main plot I show the evolution of the initially localized
wave packet according to the simplified model (11). In full
accordance with the numerical simulations on the initial model
(1) with only transverse modulations, the reduced NLS model
also shows the delocalization of the initial wave packet, and
this means deterioration of Bloch oscillations in the nonlinear
case.

As mentioned above, the coherent oscillatory regime can
reemerge if one introduces longitudinal modulation of the
nonlinear parameter χ , as was done in Ref. [25], or one can
consider time-dependent nonlinearity in the BEC context [24].
Then if the periodicity of this modulation coincides with
the Bloch oscillation period 1/α, the effective dispersion
coefficient �1 does not depend on z and (11) is always in the
focusing regime, maintaining the coherent Bloch oscillation
regime.

A similar consideration applies in the case of refractive-
index modulation along both spatial dimensions but with a
constant nonlinear coefficient. In this latter case, I take the
refractive-index modulation in the form cos(2πz/α) cos(x),
thus taking the longitudinal periodicity equal to the Bloch
oscillation period 1/α. Then the dependence of the effective
dispersion coefficient �1 on z is displayed in the inset of
Fig. 3(b). It shows that in some regions �1 is still negative
(defocusing regime), but this interval is considerably smaller

FIG. 3. (Color online) (a) and (b) Results of numerical simu-
lations of the simplified model NLS (11) with varying dispersion
coefficients �1 (see the insets). (a) corresponds to the case of only
transverse modulation of the refractive index in the initial Eq. (1),
while (b) represents the case of a two-dimensional optical lattice
when the longitudinal modulation and Bloch periodicities coincide
with each other.

FIG. 4. (Color online) (a) Typical result of numerical simulations
of the initial model (1) in the nonlinear regime when the periodicity
of the longitudinal modulation and the Bloch period do not coincide.
(b) z dependence of the propagation constant of the two first Bloch
modes. (c) Calculated trajectory (12) from the simplified NLS
model (11).

than in the case of only transverse modulations [compare
with the inset of Fig. 3(a)]. Thus the system “spends” less
in defocusing regime and the localized solution does survive
[see the main plot in Fig. 3(b)]. This fully explains our
findings using the initial model (1) with a two-dimensional
lattice, which are displayed in Fig. 1 and show persistent
nonlinear Bloch oscillations. Please note that the trajectory
profile derived from (12) [see Fig. 1(c)] is fully consistent
with the results of numerical simulations [Fig. 1(a)], although
it does not follow the first Bloch band curve [Fig. 1(b)] as long
as w(z) depends on z.

IV. DISCUSSIONS AND CONCLUSIONS

Next let us consider what happens if the longitudinal
modulation periodicity does not coincide with the Bloch
period. This scenario is displayed in Fig. 4. As in previous
simulations, the Bloch period is fixed as T = 1/α = 800,
while I now take the longitudinal modulation period T1 = 847.
The evolution of the propagation constant of the first and
second Bloch bands is displayed in Fig. 4(b) and, as is seen,
after several oscillation periods these two bands go close to
each other and then separate again. This happens after m

Bloch periods. This is calculated by taking the integer part
of the following relation:

(2T − T1)/[4(T1 − T )]. (13)

As a result, first a drift of the oscillatory regime takes
place, followed by Landau-Zener tunneling in the range
of z where the two band curves are close to each other.
Naturally this leads to the destruction of coherent Bloch
oscillations, and that is what we see in Fig. 4(a). In Fig. 4(c)
the trajectory calculated from the formula (12) is presented;
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it is in excellent agreement with numerical simulations.
Moreover, the destruction of Bloch oscillations takes place
around m = 4 Bloch periods, which coincides with the results
from formula (13), substituting there the values T = 800 and
T1 = 847.

In conclusion, the stationary solitonic oscillatory regime in
two-dimensional optical lattices under a field gradient has been
investigated. The results are directly applicable for BECs in a
harmonic optical potential and under an applied field. There,
time modulations of the optical lattice depth will be necessary
to see nonlinear Bloch oscillations. Another interesting issue
would be to consider interaction of the oscillatory solitons

from different bands, as was done in considering different
types of solitons in Ref. [26]. Longitudinal modulation of the
refractive index in an experimental setup with waveguides can
be achieved by photolithography, as, for example, in Ref. [15],
while in the BEC context the time modulation of the power
of counterpropagating optical beams creating optical lattice
could be considered.
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