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We extend the study of Kapitza-Dirac diffraction to the case of two-particle systems. Due to the exchange
effects the shape and visibility of the two-particle detection patterns show important differences for identical and
distinguishable particles. We also identify a quantum statistics effect present in momentum space for some values
of the initial particle momenta, which is associated with different numbers of photon absorptions compatible
with the final momenta.

DOI: 10.1103/PhysRevA.82.033814 PACS number(s): 42.50.Xa, 03.75.Dg, 61.05.J−

I. INTRODUCTION

A long time ago Kapitza and Dirac proposed that a
standing-wave light field can act as a diffraction grating [1].
This proposal is interesting in two main aspects. On the one
hand, from the fundamental point of view, it provides a nice
demonstration of the wave-particle duality where the diffrac-
tion grating is not massive, but made of massless entities, the
photons. On the other hand, from a more practical perspective,
it allows for the design of matter-wave interferometers (see,
for instance, [2]). The effect has been experimentally observed,
first with atomic beams [3,4], later with cold atoms [5], and
finally with electrons [6,7].

More recently, following the seminal work of Hong-Ou-
Mandel (HOM) [8], the effects associated with the quantum
statistics of the particles have been extensively studied in
many-particle interferometry. These studies were mainly
concerned with two-photon interferences originated by the
interaction in a beam splitter. Later, it has been suggested that
the exchange effects can also play an important role in interfer-
ometry of identical massive two-particle systems by diffraction
gratings [9,10]. In particular, in that paper it was shown that the
diffraction patterns originated at a single slit are very different
for distinguishable particles and fermions and bosons.

It seems natural to study the behavior of two-particle
systems interacting with the Kapitza-Dirac arrangement.
However, this is an almost unexplored subject. Up to our
knowledge, only in [11] has a numerical simulation of some
basic aspects of the problem for identical particles been
considered. We want to present in this paper a more general
treatment of the subject for two-particle systems, emphasizing
the differences with distinguishable particles. We shall mainly
analyze two aspects of the problem: the spatial dependence
of the detection patterns and the exchange effects present in
momentum space. With respect to the first point we shall
find that, as in the case of a single slit reported in [10], the
patterns show notorious differences for distinguishable and
identical particles, in particular, for the shape and visibility of
the interference figures. The second aspect, exchange effects
in momentum space, is a less studied subject. For some values
of the initial momenta of the particles we identify an effect of
this type present in our system. It is reflected in the changes
experienced by the probabilities of finding the particles in some
final states. The physical mechanism underlying these changes
is the possibility of different numbers of photon absorptions
(the mechanism in the basis of the diffraction of the particles)

compatible with the final state of the particles. This effect
occurs in addition to the usual bunching and antibunching
effects in momentum space, which take place for close values
of the momenta.

The calculations will be first carried out for single-mode
states to present the main ideas in a simple way. Later, we
shall move to the more realistic case of multimode states.

The plan of the paper is as follows. In Sec. II we present
the basic equations. The single-mode diffraction patterns are
evaluated in Sec. III. Section IV deals with the same problem,
but for multimode states. In Sec. V we move to momentum
space, in which we describe the existence of exchange effects
for some values of the parameters. Finally, in Sec. VI, we
discuss the principal results of the paper.

II. GENERAL EXPRESSIONS

We consider a pair of particles, distinguishable or not,
interacting with an optical standing wave, usually a laser
beam. The wave acts as a Kapitza-Dirac diffraction grating
(see Fig. 1). After the grating we place detectors measuring
the interference pattern, which can be obtained after many
repetitions of the experiment.

The particles passing through the standing-wave light
experience a potential of the form V = V0 cos2 kLx, with kL

the wave number of the light field and x the coordinate in the
direction parallel to the light beam [12]. The wave function
after the interaction can easily be calculated using standard
techniques (see [12] for the diffraction and Bragg regimes
and [13] for the intermediate region between them). For the
short interaction times between the particles and the light
field the Raman-Nath approximation, equivalent to neglect
the particle motion during the interaction, holds [2]. This
approximation is usual in the diffraction regime, the only
one we shall consider in this paper. The single-mode wave
function of a particle prior to the interaction is given by
ψ(x,X,t = 0) = exp[i(k0x + K0X)], with X the coordinate
of the direction perpendicular to the optical wave and k0 and
K0 the initial wave numbers. The evolved wave function after
the interaction is given by

ψ(x,X,t) = e−iV t/h̄ψ(x,X,t = 0) = eiK0Xe−iV0t cos2 kLx/h̄eik0x,

(1)

where t is the interaction time. The evolution in the X axis
is not modified by the interaction. Recalling the well-known
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FIG. 1. Schematic representation of the arrangement. The con-
tinuous and dashed lines represent the two particles.

expressions exp(iz cos ϕ) = ∑
n inJn(z) exp(inϕ), with Jn the

Bessel functions and cos2 ϕ = 1
2 + 1

2 cos 2ϕ, we easily obtain

ψ(x,X,t) = eiK0X

∞∑
n=−∞

bne
i(2nkL+k0)x, (2)

with bn = ine−iwJn(−w) and w = V0t/2h̄.
The wave number of the particle can only be modified by

double recoils. For atoms, the first one is associated with the
photon absorption whereas the second one corresponds to stim-
ulated emission. In the case of electrons, the double scattering
can be understood as a stimulated Compton scattering [12].

We consider now the case of two particles. We de-
note by ψk0K0 (x,X,t) and ψq0Q0 (y,Y,t) two wave func-
tions with an obvious notation. When the particles are
identical the usual product wave function �(x,X,y,Y,t) =
ψk0K0 (x,X,t)ψq0Q0 (y,Y,t), valid for distinguishable particles,
must be replaced by

�(x,X,y,Y,t) = 1√
2

[
ψk0K0 (x,X,t)ψq0Q0 (y,Y,t)

±ψk0K0 (y,Y,t)ψq0Q0 (x,X,t)
]
. (3)

In the double sign expressions the upper one holds for bosons
and the lower one for fermions.

From the above expressions one can see that, in the case
of identical particles, we have simultaneously two different
interference effects. On the one hand, for both distinguishable
and identical particles, the distributions |ψk0K0 (x,X,t)|2
display the interference effects associated with the diffraction
grating. On the other hand, for identical particles we
have another interference effect that is not present for
distinguishable ones. This follows immediately from the term
±2Re[ψ∗

k0K0
(x,X,t)ψ∗

q0Q0
(y,Y,t)ψk0K0 (y,Y,t)ψq0Q0 (x,X,t)],

contained in the expression of |�(x,X,y,Y,t)|2. This form
agrees with the standard interpretation of exchange effects as
interference effects [14].

III. SPATIAL PROBABILITY DISTRIBUTIONS

In this section we evaluate the spatial distribution of simul-
taneous two-particle detections and the correlation functions
associated with it. The simplest experimental implementation

of the arrangement consists of two detectors, one fixed at
a given position and the other placed at different points in
successive repetitions of the experiment. In a first step we
restrict our calculations to single-mode states, postponing the
discussion of multimode ones to the next section.

The evaluation of the probability distribution is simple. We
assume the detection time is fixed at t and we can drop the
temporal variable from all the expressions. We rewrite Eq. (2)
as

ψ(x,X) = eiK0Xeik0xφ(x), (4)

with

φ(x) =
∞∑

n=−∞
bne

i2nkLx. (5)

With this notation the two-particle probability distribution
becomes

|�dis(x,X,y,Y )|2 = |φ(x)|2|φ(y)|2, (6)

for distinguishable particles and

|�(x,X,y,Y )|2 = |φ(x)|2|φ(y)|2{1 ± cos[(K0 − Q0)(X − Y )

+ (k0 − q0)(x − y)]}, (7)

for identical ones.
We assume from now on that X = Y , that is, the positions

of the detectors in the direction perpendicular to the light
field to be equal. Several consequences easily emerge from
the previous expressions. In the case of identical particles, the
distribution is the product of the distinguishable distribution by
the term 1 ± cos[(k0 − q0)(x − y)]. The first one reflects the
two-particle interferences associated with the dispersion by
the light field. It is a function, through φ, of kL and bn(V0t) the
parameters of the optical diffraction grating. That dependence
is similar for both identical and distinguishable particles. On
the other hand, the term containing the cosine function is
related to the exchange effects. For fixed x and y it is only
function of the initial momenta of the particles in the direction
of the light field. The bunching and antibunching effects
directly emerge from the previous equations. In the case of
bosons, for x ≈ y we have |�B (x,X,y,X)|2 ≈ 2|φ(x)|2|φ(y)|2
(i.e., the probability of two-boson detection almost doubles
that of two distinguishable particles). For double detection
at the same point x = y, we have, as discussed in [10],
|�B(x,X,x,X)|2 = 2|φ(x)|4 (i.e., a dependence on the fourth
power of the wave function modulus). By contrast, for
fermions we have for x ≈ y, |�F (x,X,y,X)|2 ≈ 0 that is the
antibunching effect. When x = y the probability is strictly null
according to the exclusion principle. There is another situation
in which the two-fermion detection probability is, for any x

and y, identically null. It occurs for equal initial momenta
in the direction of the light field q0 = k0. This is so even
when K0 �= Q0 (in the case of K0 = Q0 it is evident that the
distribution must be null because it is impossible to prepare
two fermions in the same state).

Next we present a graphical representation of the previous
equation. As discussed before we fix one of the detectors at
y = 0 and move the other at different positions x. A simple
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calculation gives the explicit form for φ(x) and its squared
modulus

|φ(x)|2 = 1 +
m>n∑
n,m

2(−1)n+mJn(w)Jm(w)

× cos
[
(m − n)

(
2kLx + π

2

)]
. (8)

In the calculation we have used, the properties
∑

n |bn|2 =
1 that derives directly from the normalization condition and
Jn(−w) = (−1)nJn(w).

The normalization of �dis is automatically guaranteed
by the normalization of φ. On the other hand, for iden-
tical particles, |�|2 contains terms of the form cos[(m −
n)2kLx + π/2] cos[(k0 − q0)x]. The integration over x of
these terms is not null (see, for instance, [10] where similar
integrations are carried out) when (m − n)2kL = ±(k0 −
q0). When this condition is fulfilled the normalization is
not given by |φ(0)|2 ∑

n |bn|2 = 1, but by the expression
|φ(0)|2(

∑
n |bn|2 ± I ) = 1 with I the result of the above

integration. The figure shows a large increase of the visibility of
the two-particle detection probabilities for identical particles.
As usual the visibility is defined as

V = |�(x,X,0,X)|2max − |�(x,X,0,X)|2min

|�(x,X,0,X)|2max + |�(x,X,0,X)|2min

. (9)

In the case of distinguishable particles the probability approxi-
mately oscillates between 0.98 and 1.02, whereas for identical
ones it does between 0 and 2. Then we have, respectively,
Vdis ≈ 0.02 and Vide ≈ 1 (i.e., a very large difference).

The curves for bosons and fermions are very similar, with
small changes of intensity due to the modulation introduced
by the multiplicative factor |φ(x)|2|φ(0)|2 and a phase-π
displacement associated with the sign ± (which explains the
difference between bunching and antibunching at x ≈ 0).

We could analyze in a very similar way the behavior of the
correlation functions. See [10] for the explicit treatment of the
problem in near-field interferometry.

IV. MULTIMODE STATES

Up to now we have only considered single-mode states.
Now, we move to the more realistic case of multimode
ones. The simplest way to study them is to assume that
the distribution of initial wave numbers of each particle is
a Gaussian one. The one-dimensional Gaussian distribution
is given by f (k0) = (4π )1/4σ−1/2 exp[−(k0 − �)2/2σ 2] with
σ the width of the distribution and � its central value. The
initial wave function reads as ψ(x,t = 0) = ∫

dk0f (k0)eik0x .
Note that, for the sake of simplicity, we have not included the
variable X, which is irrelevant in the following discussion. The
wave function after passing through the light grating is

ψ(x) =
∞∑

n=−∞
bne

i2nkLx

∫
dk0f (k0)eik0x

∼ e−x2σ 2/2
∞∑

n=−∞
bne

i2(nkL+�)x

= e−x2σ 2/2ψ�(x), (10)
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FIG. 2. (Color online) In the vertical axis we represent the two-
particle detection probability and in the horizontal one the coordinate
x (in arbitrary units). The continuous red, dashed black, and dotted
blue curves correspond, respectively, to bosons, distinguishable
particles, and fermions. We use the values w = 0.2, k0 = 0.9,
q0 = −0.9, and kL = 1.

where we have carried out a trivial integration over k0 and ψ�

represents the wave function of a particle with initial wave
number �. For the matter of simplicity we have not included
the constant coefficients of the distribution and those derived
from the integration. We conclude that the multimode wave
function after the interaction equals that of a single-mode
particle with the central value of the distribution, but spatially
modulated by a Gaussian distribution.

In the next step we consider two particles in multimode
states, with central values � and ϒ and widths σ and µ. The
probability distribution after the interaction is

|�(x,y)|2 = 1
2e−x2σ 2

e−y2µ2 |φ(x)|2|φ(y)|2
+ 1

2e−y2σ 2
e−x2µ2 |φ(y)|2|φ(x)|2

± e−(x2+y2)(σ 2+µ2)/2|φ(x)|2|φ(y)|2
× cos[(x − y)(� − ϒ)]. (11)

We represent this distribution in Fig. 3. We take the same
values of Fig. 2, in particular, � = k0 and ϒ = q0. For the
width of the distribution we take σ 2 = µ2 = 0.2. As in the
single-mode case, there is a notorious difference between
the curves of distinguishable and identical particles. For the
first one, there is an almost flat distribution in the center
followed by an exponential-like decreasing superposed with
small oscillations [associated with |φ(0)|2|φ(x)|2]. On the
other hand, for identical particles there is an interference
pattern. In the proximities of the point x = 0 we observe the
bunching and antibunching effects. The values of the visibility
are clearly different for the three figures, but not so much as
in the single-mode case. These contrasts in the visibility are
strongly enhanced for small values of σ .

V. MOMENTUM SPACE

In the two previous sections we have studied the spatial
two-particle interference patterns. Now we consider the
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FIG. 3. (Color online) The same as in Fig. 2, but for multimode
states.

momentum space to see how the exchange effects manifest in
this representation. The methodology is similar to that used
previously, first we consider single-mode states where the
principal ideas can be analyzed in a simple way, and later
we address the multimode case.

The wave function in momentum space (the momentum and
wave number are related by the trivial relation p = h̄k, and it is
justified to speak about the momentum space although really
we are dealing with wave numbers) is given by the Fourier
transform of the wave function in the position representation
	(k) = ∫

dxe−ikxψ(x). For the identical two-particle system
we have

	(k,q) =
∫

dx

∫
dye−i(kx+qy)�(x,y)

= 1√
2
	k0 (k)	q0 (q) ± 1√

2
	k0 (q)	q0 (k), (12)

where the single-particle wave functions are characterized by
the value of the initial wave number (for multimode states by
the central value of the distribution).

The experimental variable to measure is the probability of
detecting one particle with the value k and the other with q. In
the arrangement we must replace the detectors of the previous
sections by momentum measurement devices. In a large series
of measurements, for instance fixing k and scanning for
different values of q, we can compare the experimental data
with the theoretical distribution

|	(k,q)|2 = 1
2

∣∣	k0 (k)
∣∣2∣∣	q0 (q)

∣∣2 + 1
2

∣∣	k0 (q)
∣∣2∣∣	q0 (k)

∣∣2

± Re
[
	∗

k0
(k)	∗

q0
(q)	k0 (q)	q0 (k)

]
. (13)

This expression shows that the probability distributions in
momentum space have a structure similar to that in the position
representation. In particular, for k ≈ q we have the bunching
and antibunching effects in momentum space. This effect has
been numerically discussed in [11].

To get a better understanding of that distribution we shall
consider specific examples, starting with the single-mode
states.

A. Single-mode states

We consider successively the cases of a single particle, two
distinguishable particles, and two identical ones.

1. One particle

This case is particularly simple because the wave function
reduces to a superposition of Dirac’s deltas

	(k) =
∑

n

bnδ(k − 2nkL − k0). (14)

For a single particle the probability of finding in a momentum
measurement the value 2nkL + k0 is |bn|2 because, in the sense
of the distributions, for r �= n the terms δ(k − 2nkL − k0)δ(k −
2rkL − k0) are zero.

2. Two distinguishable particles

Now, the probability distribution is∣∣	k0 (k)
∣∣2∣∣	q0 (q)

∣∣2 =
∑
n,m

|bnbm|2δ(k − 2nkL − k0)

× δ(q − 2mkL − q0). (15)

The probability of obtaining in simultaneous measurements
the values 2nkL + k0 and 2mkL + q0, denoted as P (n,m), is
|bnbm|2.

To illustrate the form of this probability we graphically
represent it in Fig. 4 for the lower values of n and m.
Note that this probability is equal to the probability of n

absorptions by the particle with initial wave number k0 and
m by that with q0. For small values of w there is only
one absorption. When w increases the probability of two
absorptions becomes dominant. The probability of symmetric
absorption [one photon each particle, P (1,1)] is much larger
than the asymmetric one [one particle two photons and the
other none, P (0,2)]. For larger values of w the terms with
three absorptions become important. However, here there is,
again, a notorious difference between P (1,2) that increases
with w and P (0,3) that remains negligible for all the range of

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

0.06

0.08

0.10

w

P
R

O
B

FIG. 4. Representation of the probability P (n,m) versus w (in
arbitrary units). The dashed curves correspond to P (0,1) (upper),
P (0,2) (middle), and P (0,3) (lower), the continuous ones to P (1,1)
(upper) and P (1,2) (lower), and the dotted one to P (2,2).

033814-4



TWO-PARTICLE KAPITZA-DIRAC DIFFRACTION PHYSICAL REVIEW A 82, 033814 (2010)

values considered. At the end of the graphic, the term P (2,2)
becomes comparable to (or larger than) the other terms.

3. Two identical particles

The two direct terms in |	(k,q)|2 are similar to those for
distinguishable particles. We evaluate now the term associated
with the exchange effects

	∗
k0

(k)	∗
q0

(q)	k0 (q)	q0 (k)

=
∑

n,m,r,s

b∗
nb

∗
mbrbsδ(k − 2nkL − k0)δ(q − 2mkL − q0)

× δ(q − 2rkL − k0)δ(k − 2skL − q0). (16)

The product of the two deltas containing k is zero (in the sense
of the distributions) unless the relation 2nkL + k0 = 2skL +
q0 holds. Similarly, we must have 2mkL + q0 = 2rkL + k0 in
order for the product of the deltas containing q not be null.
These two relations can be expressed as

n − s = N ; m − r = −N ; N = q0 − k0

2kL

, (17)

with N an integer. The difference between the initial wave
numbers must be an integer number of times 2kL.

When these relations hold, we have that the terms related
to the deltas containing n and m must be rewritten as

1
2 |bnbm|2δ(k − 2nkL − k0)δ(q − 2mkL − q0)

+ 1
2 |bnbm|2δ(q − 2nkL − k0)δ(k − 2mkL − q0)

± Re(b∗
nb

∗
mbm+Nbn−N )δ(k − 2nkL − k0)

× δ(q − 2mkL − q0). (18)

The two first terms correspond to the absorption of n photons
by a particle with initial wave number k0 and m by one with
q0. If (q0 − k0)/2kL is not an integer, the third term does not
contribute and we have the two final wave numbers 2nkL + k0

and 2mkL + q0 with probability |bnbm|2. On the other hand,
when the condition holds we obtain the same final wave
numbers 2nkL + k0 and 2mkL + q0, but with probability

PN (n,m) = |bnbm|2 ± Re(b∗
nb

∗
mbm+Nbn−N ). (19)

This result can easily be understood in terms of indistinguisha-
bility of alternatives. If the final wave numbers are the same
for both types of absorptions, we cannot distinguish if the final
result corresponds to the alternative of absorptions n and m,
or to the other alternative, n − N and m + N . In quantum
theory the amplitudes of probability for indistinguishable
alternatives must be added, obtaining an interference effect.
The indistinguishable alternatives correspond to different
numbers of absorptions yielding the same final wave numbers.
The situation is different for distinguishable particles. In this
case, we can know, in principle, at any instant if the particle is
of one type (that whose wave number is denoted by k) or the
other (wave number q), and consequently, if its initial wave
number was k0 or q0. Then one particle of the first kind cannot
reach the final wave number 2nkL + k0 by n − N absorptions.
There are not different alternatives to reach the final wave
number and there is not an interference effect.

)b()a(

(c)

n m n-N m+N

FIG. 5. Representation of the exchange effects. Black and white
circles represent particles labeled by k and q. (a) The standard (anti)
bunching effect in the spatial representation. The detections can occur
in two alternative ways, these represented by the continuous and
dashed lines. (b) The same effect in momentum space. The dashed
horizontal lines correspond to the two momenta at which the particles
are detected and the continuous vertical ones to the trajectories in
momentum space. The (anti) bunching is observed when the two
final momenta are very close. (c) The effect discussed in this paper.
The dotted lines correspond to the initial momenta. The arrows
represent the absorption of photons. Being the particles identical
the two represented alternatives are indistinguishable.

We remark that this novel exchange effect is different from
(anti) bunching (see Fig. 5). The last one only takes place
when we consider particles very close in momentum space. In
contrast, the effect described here only depends on the initial
values of the momenta (which can be rather different for all
the cases with N �= 0) and can occur for well-separated final
momenta. The previously described effect is a purely quantum
one. To justify this statement we show that it cannot be
described by a classical treatment. We use a qualitative model
where the particles collide with the photons and the collisions
are ruled by the classical law of momentum conservation
(classical description of the Compton effect assuming the
existence of photons). We assume that all of the momentum
of the photon is transferred to the particle, in such a way that
its momentum changes from p0 to p0 + h̄kL. In the cases with
2n collisions the final momentum of the particle would be the
same predicted by quantum theory. However, in the absence of
additional unnatural assumptions, the classical theory allows
for odd numbers of collisions. The agreement between the
model and quantum theory would be even worse for couples of
particles. Classically, both particles behave in an independent
way, and the stochastic collision events are uncorrelated. The
probability of one particle experiencing 2n collisions and
the other 2m factorizes. The result would be similar to that
for quantum distinguishable particles. In conclusion, in the
classical model (a reasonable one) there is not room for the
previous exchange effect.

Next we represent these probabilities for a particular exam-
ple in Fig. 6. A simple calculation using the expression for bn

and the property of the Bessel functions J−n(w) = (−1)nJn(w)
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FIG. 6. (Color online) Representation of the probability of finding
the final wave numbers 2nkL + k0 and 2mkL + q0 versus w (in
arbitrary units). The black curve (the third one from top to bottom)
represents the distinguishable case for n = 1 and m = 0. The red (first
and fourth) and blue (second and fifth) ones correspond to bosons and
fermions with N = 1 (continuous) and N = −1 (dashed).

gives P0(1,0) = J 2
1 J 2

0 ± J 2
1 J 2

0 , P1(1,0) = J 2
1 J 2

0 ± J 2
1 J 2

0 and
P−1(1,0) = J 2

1 J 2
0 ∓ J 2

1 J0J2. We see that P0(1,0) = P1(1,0).
The figure clearly shows that the probabilities of finding the

particle in the targeted final wave-number state are different
for the all the cases. For N = 1 the detection rate notoriously
increases for bosons, whereas it becomes null for fermions.
The detection rate is not always enhanced for bosons; for
N = −1 it is smaller than that of distinguishable particles.
Similarly, the fermion rate can increase with respect to that of
distinguishable particles (also N = −1).

B. Multimode states

In this section we analyze how the previous results are
modified in the more realistic case of multimode distributions.
We mainly restrict our considerations, as in Sec. IV, to
Gaussian distributions which can be tackled analytically. As
in the previous section we consider successively the cases of a
single particle, two distinguishable particles, and two identical
ones.

1. One particle

The wave function in momentum space for a particle with a
multimode distribution f (k0) of initial wave numbers is easily
obtained

	(k) =
∫

dxe−ikxψ(x)

=
∫

dxe−ikx
∑

n

∫
dk0f (k0)bne

i(2nkL+k0)x

=
∑

n

∫
dk0f (k0)bnδ(k − 2nkL − k0)

=
∑

n

bnf (k − 2nkL). (20)

The probability of finding the particle with final wave
number k is |	(k)|2 = ∑

n,m b∗
nbmf ∗(k − 2nkL)f (k − 2mkL).

If the mode distribution is a Dirac’s delta (the single-mode
distribution) f (k0) = δ(k0 − K0), the probability becomes
|	(k)|2 = ∑

n |bn|2δ(k − 2nkL − K0).
When the initial distribution is a Gaussian, f (k0) ∼

e−(k0−�)2/2σ 2
, we have

|	(k)|2 ∼
∑
n,m

b∗
nbme−(k−2nkL−�)2/2σ 2

e−(k−2mkL−�)2/2σ 2
. (21)

These two exponentials correspond to two Gaussians with
the same width of the initial ones, but centered around
2nkL + � and 2mkL + �. Two different regimes can be
obtained. For 2kL � σ we have that the overlapping between
the Gaussians centered around 2nkL + � and 2(n ± 1)kL + �

(and, of course, any m with |n ± m| > 1) is negligible. The
sum in the above expression reduces to the diagonal terms
|	(k)|2 	 ∑

n |bn|2e−(k−2nkL−�)2/σ 2
. After the interaction, we

can only detect the particle with wave numbers contained in
the Gaussian distributions centered in the points 2nkL + �

(with 1/
√

2 times the width of the initial one). There is
not a contribution of the crossed terms to the probability of
detection. In the limit of very peaked Gaussians we recover
the behavior described by Dirac’s delta distributions. The other
regime takes place when σ � 2kL. In this case, there is a
nonnegligible overlapping between the distributions centered
around 2nkL + � and 2(n ± 1)kL + � (and perhaps the other
m with |n − m| > 1). The crossed terms can no longer be
neglected, leading to interference terms. These interference
terms can be understood by the impossibility of distinguishing
if a particle detected with wave number k belongs to one or
the other of the distributions.

2. Two distinguishable particles

The discussion closely follows that of one particle. If the
initial distributions of the particles are f (k0) and g(k0), the
probability of finding one particle with k and the other with
q is

|	f (k)|2|	g(q)|2

∼
∑

n,m,r,s

b∗
nbmb∗

r bsf
∗(k − 2nkL)f (k − 2mkL)

× g∗(q − 2rkL)g(q − 2skL). (22)

We assume the two distributions to be Gaussian ones.
For 2kL � σ and 2kL � µ, we have that the overlap-
ping between the Gaussians centered around 2nkL + �

and 2(n ± 1)kL + � and 2nkL + ϒ and 2(n ± 1)kL + ϒ

are negligible, becoming the probability |	f (k)|2|	g(q)|2 	∑
n,m |bnbm|2e−(k−2nkL−�)2/σ 2

e−(q−2nkL−ϒ)2/µ2
. The probabil-

ity is the product of the one-particle distributions without
crossed terms. When the conditions σ � 2kL and/or µ � 2kL

hold we have crossed terms leading to interference effects.

3. Two identical particles

The two-particle probability contains the terms of the
form |	f (k)|2|	g(q)|2, which can be treated as before, and
the exchange term that transforms into

∑
n,m,r,s Re[b∗

nf
∗

(k − 2nkL)b∗
mg∗(q − 2mkL)brf (q − 2rkL)bsg(k − 2skL)].
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We again consider Gaussian distributions, for which the
exchange term reads proportional to

∑
n,m,r,s

Re(b∗
nb

∗
mbrbs)e

−(k−2nkL−�)2/2σ 2
e−(q−2mkL−ϒ)2/2µ2

× e−(q−2rkL−�)2/2σ 2
e−(k−2skL−ϒ)2/2µ2

. (23)

For the sake of simplicity we take σ = µ. For |2(n − s)kL +
� − ϒ)| � σ or |2(m − r)kL − � + ϒ)| � σ (for any n and
s and m and r) the overlapping between the curves is negligible
and the product of the two distributions with the same argument
(k or q) is almost null. The contribution of the exchange terms
can be neglected. In contrast, when |2(n − s)kL + � − ϒ)| �
σ for some n and s and |2(m − r)kL − � + ϒ)| � σ for
some m and r the product of the distributions cannot be
neglected. The exchange effects become important in this
case. However, the conditions for the presence of the exchange
effect are much less stringent than in the case of single-mode
states.

VI. DISCUSSION

We have analyzed in this work the extension of the Kapitza-
Dirac effect to the case of two-particle systems. The spatial
two-particle detection patterns display notorious differences
for distinguishable particles and fermions and bosons, in
particular, for the shape and visibility of the interference
figure.

We have also identified an exchange effect in momentum
space. The effect, which modifies the distribution of particles
detected with given momenta, only occurs for some values of
the initial momenta of the particles (or in the case of multimode
states for some values of the parameters of the initial momenta
distributions). For multimode states these conditions are much
less stringent than for single-mode ones. The verification of
this effect would be interesting in several aspects. Exchanges
effects are a striking manifestation of the departure between
classical and quantum descriptions of physical systems. Any
new example of these differences is worth investigating. The
effect here described has no relation with other exchange
effects such as (anti) bunching, exclusion in atoms, or
degeneracy in gases. The physical underlying mechanisms are
different; in our case, different numbers of photon absorptions.
Moreover, the confirmation of the effect would corroborate the
validity of the (anti)symmetrization principle in a framework
where strong interactions with other types of particles are
present.

In this paper, we have only considered the spatial part of
the wave function. This is equivalent to assume that the spin
states (and the electronic states for atoms) are symmetric and
do not play any role in the problem. The extension to the case
of antisymmetric spin or electronic states, where the relative
sign of the spatial part of the wave function can be reversed, is
simple.

Some other aspects of our approach must be commented
on. The wave functions have just been evaluated after the
interaction with the optical grating. The detectors must
be placed at these positions, and consequently, we are in
the near-field regime. However, in this type of problem one
usually works in the far-field one [7]. In the free evolution

of the particles between both regimes there is a dispersion
of the wave functions. Fortunately, that evolution is simple
(free evolution) and can easily be described. For instance, in
the spatial picture we have that the width of the Gaussian packet
increases with time. As the momentum peaks are determined
via spatial detection [7] we must take into account that
broadening to correctly interpret the data. For well-separated
peaks the effects of the spreading are negligible. For peaks
with appreciable overlapping the range of values of the initial
momenta for which the exchange effect described in this paper
takes place increases (as we can easily see with an argument
similar to that used for multimode states in Sec. V B). An
exact treatment of the problem would require a quantitative
evaluation of the evolution of the multimode states instead
of the qualitative one presented here. However, this will be
presented elsewhere. Another important aspect of the problem
is the question of the coherence between the two particles.
As is well-known, when they are only partially coherent the
two-particle interference properties, in particular the visibility,
are modified. Thus, the relative coherence of the two particles
should be checked for every type of source of pairs of particles.
When it is only partial we should introduce the necessary
modifications in the formalism. In our proposal there is an
additional question similar to that of the partial coherence: We
must analyze if the overlapping between the wave functions
is complete or partial (see also the next paragraph). In the
first case we can use a completely (anti)symmetrized wave
function. In the second one, we should include in the wave
function (or in a density matrix) the property of partial
overlapping. This is a subject worth analyzing since, as far
as we know, it is not considered in the literature. Here, by a
matter of simplicity, we have assumed complete coherence
between both particles in the two senses, coherence and
overlapping.

The last question we briefly address here is the possibility
of experimentally testing the previous effects. In the space
representation, the interchange effects are present when there
is a nonnegligible overlapping between the wave functions
of the two particles. Then we must prepare the particles in
such a way that they have a nonnegligible overlapping at the
time they reach the optical grating. Several sources of identical
particles, such as Bose-Einstein condensates, optical lattices,
or magnetic traps have recently been used to study correlation
functions [15–17]. If we would be able to select the cases in
which only two particles are released from any of the above
devices we would have an efficient source for our problem.
We would also carefully test that the times of the arrival of
the two particles to the optical grating are close enough. In
terms of wave-packet spread, the peaks of the two probability
distributions must reach the optical grating at the same time.
On the other hand, the interaction strength is given, as in
the one-particle case, by the parameter w. Using the same
values of the single particle arrangement [12] we can reach an
appreciable value for the number of pairs diffracted.
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