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Nonlinear long-range plasmonic waveguides
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We report on plasmonic waveguides made of a thin metal stripe surrounded on one or both sides by a Kerr
nonlinear medium. Using an iterative numerical method, we investigate the stationary long-range plasmons
that exist for self-focusing and self-defocusing Kerr-type nonlinearities. The solutions are similar to the well-
known case of infinitely wide nonlinear waveguides—they are strongly power-dependent and can experience
symmetry-breaking bifurcations under appropriate conditions.
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I. INTRODUCTION

Over the past decade, a variety of low-loss plasmonic
components based on thin metal stripes has been demonstrated,
including Bragg gratings [1], several couplers and interferom-
eters [2–6], as well as thermo- and electro-optic modulators
[7,8]. These structures can be designed and fabricated with
a high degree of accuracy and may find useful applications
as optical sensors or modulators [9]. To operate as low-loss
waveguides, the metal stripes must be placed in a symmetric
or slightly asymmetric environment. This condition ensures
that the guided modes are long-range surface plasmons (SPs)
characterized by a weak field confinement [10]. In practice,
the symmetry requirements can be satisfied by burying the
metallic structures in a dielectric host [1–8] or by patterning the
stripes on ultrathin flexible membranes [11]. The surrounding
media may also consist of nonlinear materials but the potential
offered by this configuration remains largely unexplored for
metal stripes of finite width.

While the number of studies on finite-width stripes em-
bedded in nonlinear media is scant, there exists an abundant
literature on nonlinear SPs guided by infinitely wide films
[12–24]. Historically, the case of two-dimensional metal films
bounded by materials exhibiting a power-dependent refractive
index (Kerr nonlinearity) has occupied a central place in these
investigations [14–20]. It was shown that the short- and long-
range SPs that exist in the linear regime evolve into stationary
nonlinear solutions, which are modes with properties that
strongly depend on the power but that do not vary along the
propagation direction [15,16]. In addition, a number of purely
nonlinear stationary branches was also discovered, including
nonintuitive SPs with a transverse electric polarization rather
than the usual transverse magnetic polarization [17]. The
properties of the stationary solutions result from the self-
action of their electromagnetic fields on the surrounding Kerr
media. Despite serious mathematical difficulties, the field
distribution and dispersion relation of these modes have been
successfully described with increasingly rigorous analytical
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theories [15–19]. Note that solving for the stationary modes
is generally not sufficient for characterizing real nonlinear
waveguides, if only because losses by absorption in the metal
reduce the power carried by the modes as they propagate
along the film. However, various numerical techniques are
available to describe the evolution of real SPs from these
solutions [24–28].

In this article, we extend the work done in two dimensions
by solving for the stationary long-range SPs of thin metal
stripes of finite width surrounded by various Kerr nonlinear
media. As already shown for the purely linear case, SPs
guided by the stripe geometry cannot be solved analytically
because their electric and magnetic fields have nonzero
components in all three directions that cannot be uncoupled in
Maxwell’s equations [10]. Here, we have computed the modes
numerically with an iterative scheme in which a series of linear
problems representing increasingly accurate descriptions of
the system are solved using full-wave vectorial simulations.
For each case considered in this study, we calculate the
power dispersion relations that relate the wavevector of
the modes with the power they carry. We discuss these
results by comparing the computed curves with the evolution
of the transverse electromagnetic field distribution of the
modes.

Figure 1 shows the geometry considered in our study: A
straight Au stripe (width w = 4 µm, thickness t = 50 nm,
and permittivity ε = −132 + 12.65i) is sandwiched between
a nonlinear cladding and a substrate which can be either
linear or nonlinear. The calculations are performed at the
telecommunication wavelength λ = 1.55 µm. The refractive
index of the cladding varies with the electromagnetic power I

as nc = n0 + n2cI , where n0 = 1.75 and n2c = ±10−9 m2/W.
The substrate is assumed to have either a constant index of
refraction ns = n0 = 1.75 or the same material properties
as the cladding (ns = nc). Note that the values of n2c have
been taken from numerical studies investigating the stationary
solutions of nonlinear dielectric waveguides [29–31], enabling
a direct comparison with these structures. However, the
nonlinear coefficients of real Kerr materials are usually much
lower and exhibit saturation and anisotropy that are neglected
in this article.

We write the electric field of the long-range SPs as E =
E0(x,y,P ) exp[β(P ).z], where E0 is the transverse electric
field, β = βr + iβi is the complex wavevector, and P is
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FIG. 1. Geometry of the nonlinear long-range plasmonic wave-
guide. The material parameters of the different regions summarize
the different cases that will be considered in this study.

the total power carried by the mode. Since we focus on
the stationary solutions, the problem can be formulated in
two dimensions because E0 and β are invariant along the
propagation direction z. The main difficulty in studying the
structure shown in Fig. 1 is that the refractive index of
the nonlinear region(s) has a gradient that depends itself on the
solution. To address this problem, an iterative scheme must be
applied to find the solutions at a given power P . The process
starts by computing the transverse field pattern and wavevector
of the linear long-range SP. For this task we use a commercial
eigenmode solver based on the finite-element method (COMSOL

Multiphysics). Next, we take the transverse power distribution
Plin(x,y) of this solution to generate a nonlinear refractive
index of the form n0 + Pn2cPlin(x,y)/

∫ ∫
Plin(x,y) dx dy.

This index profile is entered into the mode solver and a
new long-range SP is computed. At this stage the mode is
not physically valid because its field distribution is different
from the solution that has been used to define the nonlinear
refractive index. Therefore the process must be reiterated until
a self-consistent solution is found. We terminate the iterations
when the field overlap integral between two consecutive passes
approaches 1 with a residual of 10−5.

To better explore the space of possible solutions, we also
used slightly modified versions of this simple iterative model.
For example, we noticed that some simulations do not converge
well at very high powers, in which case we seed the mode with a
nonlinear solution obtained for a smaller value of P rather than
with the linear SP. In addition, certain configurations studied in
this article admit two modes above a certain power threshold.
To capture this behavior, it is necessary to pursue the iterations
after the simulations have converged to the first mode because
small numerical instabilities eventually cause an abrupt jump
in the convergence process that lead to the second solution.
It should be noted that variants of this iterative approach
have already been widely used for studying the modes of
three-dimensional nonlinear dielectric waveguides [29–33]. It
is known to provide reliable solutions, even when multiple
modes exist at the same power [30].

To validate our model, we have first simulated the nonlinear
modes supported by an infinitely wide metal film and verified
that the results are in quantitative agreement with the theoreti-
cal solutions supported by this geometry. An example of such
comparisons between two-dimensional numerical simulations
and theory will be shown later in this article.

II. LINEAR SUBSTRATE AND SELF-DEFOCUSING
CLADDING

We first consider a metal stripe sandwiched between a linear
substrate and a cladding with a self-defocusing nonlinearity
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FIG. 2. (Color online) (a) Dispersion of the long-range SP
supported by a metal stripe lying on a linear substrate and covered by
a nonlinear cladding with n2c = −10−9 m2/W. The continuous curve
corresponds to the evolution of βr while the dashed curve shows the
dispersion of βi . (b) Evolution of the y component of the electric
field at P = 0 µW, P = 40 µW, and P = 76 µW. Note that we have
plotted the y component of the field because its amplitude is orders
of magnitude higher than the x component [10]. For P = 76 µW, we
have replaced the right half of the field pattern by the corresponding
refractive index distribution.

n2c = −10−9 m2/W. Figure 2(a) shows the dispersion of
the real and imaginary parts of the wavevector (βr and
βi) with respect to the power carried by the mode. The
curve representing the dispersion of βr has a negative slope
and tends to a horizontal asymptote βr = 1.75k0, where
k0 = 2π/λ. This value corresponds to the wavevector of a
plane wave propagating in the linear substrate, suggesting
that the long-range SP becomes unconfined at very high
power levels. The evolution of βi , which represents the
attenuation of the mode, indicates that the transition from
a guided mode to an unbound solution is not monotonic
because the curve passes through a maximum at P ≈
60 µW.

To gain insight into this behavior, we plot in Fig. 2(b)
the transverse profile of the mode (the y component of the
electric field) at selected powers. The mode evolves from the
symmetric, linear solution in the limit of weak fields into a
more complex asymmetric pattern where the electric field is
predominantly located in the lossless cladding. For the smallest
powers, the asymmetric mode is more confined than the linear
long-range SP, thereby increasing the losses by absorption in
the metal. However, this trend is eventually inverted after the
upturn in the dispersion of βi . All these changes arise from the
self-defocusing properties of the cladding, leading to smaller
values of nc in the vicinity of the metal stripe as P increases.
An example of the refractive index distribution associated with
a nonlinear SP is shown in the last plot of Fig. 2(b) for P =
76 µW.
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FIG. 3. (Color online) (a) Dispersion relation of the long-range
SPs supported by a metal stripe surrounded on both sides by a
nonlinear medium with n2c = −10−9 m2/W. The evolution of the
symmetric and asymmetric modes is shown in black and red (gray),
respectively. (b) Plots showing the y component of the electric field
before and after the bifurcation. From left to right: linear long-range
SP at P = 0 µW, asymmetric branch at P = 78 µW, and symmetric
branch at P = 80 µW.

Interestingly, the evolution of the nonlinear SP shown in
Fig. 2 is very similar to the case of the infinitely wide metal
film [15,16]. We shall see that the same remark is also true for
the other configurations studied in this article.

III. SELF-DEFOCUSING SUBSTRATE AND CLADDING

We next study the case where both the substrate and
the cladding have a self-defocusing nonlinearity n2c =
−10−9 m2/W. The corresponding power dispersion relations
are plotted in Fig. 3(a). As in the previous case, the real part
of the wavevector βr decreases with increasing P because the
refractive index around the stripe is depleted by the power
carried by the mode. However, the curve splits into two
branches at P ≈ 30 µW. The upper branch is characterized
by a monotonic decrease of βi whereas the behavior of the
lower branch is reminiscent of the evolution of the asymmetric
nonlinear mode considered in Fig. 2.

The transverse field profiles before and after the symmetry-
breaking bifurcation are shown in Fig. 3(b). The simulations
indicate that the upper branch corresponds to a symmetric
solution. Its field profile becomes gradually less confined but
conserves the original symmetry of the linear mode, which is
consistent with the monotonic behavior of both βr and βi . The
lower branch corresponds to an asymmetric solution having an
electromagnetic field predominantly located in the cladding. In
fact, this mode is degenerate and the same solution also exists
with the field extending in the substrate. The field pattern of the
asymmetric branch closely resembles the solution computed
in Fig. 2, where only the upper cladding is nonlinear, so it is

not surprising that its wavevector follows a similar evolution,
with βi passing through a maximum at P ≈ 65 µW.

IV. LINEAR SUBSTRATE, SELF-FOCUSING CLADDING

We now turn to self-focusing Kerr nonlinearities and
compute the power dispersion relations for a linear substrate
and a cladding with n2c = +10−9 m2/W. The results are
summarized in Fig. 4(a). It can be seen that only one branch
was found and that the curves representing βr and βi have a
positive slope. This behavior is consistent with the fact that
the refractive index of the cladding increases in the presence
of the mode, improving its confinement but also increasing the
losses by absorption in the metal.

This being said, the mode appears rather insensitive to
the presence of the Kerr medium because the dispersion of
βr is relatively flat. This result can be better understood by
visualizing the transverse field pattern and refractive index
distribution of the solutions [left and right insets of Fig. 4(a),
respectively]. These plots reveal that the mode becomes
asymmetric and that most of the signal propagates in the
substrate. In other words, the interactions between the electric
field and the nonlinear cladding are more limited than those
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FIG. 4. (Color online) (a) Dispersion relation of the long-range
SP supported by a metal stripe lying on a linear substrate and covered
by a nonlinear cladding with n2c = +10−9 m2/W. The insets show
the y component of the electric field at P = 100 µW (left) and the
refractive index distribution at P = 100 µW (right). (b) Dispersion
relation in the case of an infinitely wide metal film with no material
loss. All the other geometrical and material parameters are identical
to those considered in (a). The continuous curve has been calculated
using the theory developed in [15,16] while the red open circles are
the results of our numerical simulations.
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occurring in the case of self-defocusing Kerr materials, leading
to smaller variations of the refractive index nc.

It is instructive to compare the results of Fig. 4(a) with
those obtained for a metal film of infinite width [Fig. 4(b)].
Here we have computed the solutions of this two-dimensional
case using two different approaches: The continuous curve
corresponds to the dispersion of βr predicted by the theory
[15,16], while the data points are the results of our numerical
simulations. The theory predicts bistable solutions with a
turning point at P ≈ 1000 mW/mm. The lower portion of the
curve resembles the branch found for the three-dimensional
case of Fig. 4(a). It is connected to an upper branch with a
negative slope that abruptly goes toward smaller values of P .

Figure 4(b) indicates that our numerical simulations capture
well the evolution of the lower branch but fail to predict the
upper branch. In fact, this is a known limitation of the iterative
solver adopted in this article. As is now well understood,
branches with a positive slope are stable modes that do not
change their character as the mode propagates. Conversely,
branches with a negative slope correspond to a range of
unstable solutions that quickly evolve into other guided and
unguided modes [25,26]. These modes cannot be found with
our iterative approach because it relies on a self-consistent
process that only converges to stable solutions [30–32].

Based on these considerations, it is not impossible that
the metal stripe of finite width investigated in Fig. 4(a)
also exhibits a bistable behavior. This hypothesis is further
reinforced by the fact that bistability arises frequently with
optical waveguides bound by a linear substrate and a self-
focusing cladding (see, e.g., [30–32]). Further work is required
to elucidate this question. As proposed in [31] for nonlinear
dielectric waveguides, it should be possible to find the unstable
solutions by reformulating the system of differential equations
solved at each iteration in such a way that its eigenvalue is the
square root of P instead of the wavevector β.

V. SELF-FOCUSING SUBSTRATE AND CLADDING

Finally, we consider a metallic stripe surrounded on both
sides by self-focusing nonlinear media (n2c = +10−9 m2/W).
The transverse field profiles shown in Fig. 5 reveal that the
mode remains rigorously symmetric but increasingly confined.
The dispersion of the mode is therefore monotonic, with both
βr and βi indefinitely increasing as P → ∞. In addition,
nc and ns quickly tend to arbitrarily high values—for P ≈
100 µW, for example, the changes in the refractive index are
six times larger than those occurring when only the cladding
is nonlinear [compare the last plot of Fig. 5(b) to the right
inset of Fig. 4(a)]. Note however that in real Kerr materials,
the saturation of the nonlinear index prevents nc and ns from
diverging.

These results are once again very similar to the case of an
infinitely wide metal film bound by the same nonlinear media.
However, the two-dimensional film admits another branch in
addition to the symmetric one [15,16]. This additional solution
corresponds to a degenerate mode with a transverse field
distribution having a maximum in one of the nonlinear media.
The asymmetric solution is a purely nonlinear mode with a
cutoff at low power. It has an evolution similar to that of
the symmetric SP, except that it can only occur above a certain
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FIG. 5. (Color online) (a) Dispersion relation of the long-range
SP supported by a metal stripe surrounded on both sides by a nonlinear
medium with n2c = +10−9 m2/W. (b) y component of the electric
field at P = 0 µW (left) and P = 98 µW (middle), and refractive
index distribution of the mode at P = 98 µW (right).

power threshold above which a self-focusing channel is created
in the nonlinear medium.

We have not been able to find a purely nonlinear asymmetric
solution for the metal stripe of finite width. However, this
negative result does not necessarily imply that an asymmetric
mode cannot be sustained. It should be noted that all the
modes must be seeded properly so one cannot exclude that
the asymmetric nonlinear solution requires a starting point
that has not been considered in this study.

VI. CONCLUSION

We have investigated the stationary long-range SPs sus-
tained by a metal stripe of finite width surrounded by different
combinations of linear and Kerr nonlinear media. To solve
for the modes, we have used an iterative numerical technique
that has already been successfully implemented in the past
to characterize nonlinear dielectric waveguides. This method
is very flexible and can be readily adapted to study other
plasmonic geometries as well. The main drawback is that it
requires an initial guess to converge to the different nonlinear
modes. A final comment should be made about the powers
required to observe the effects shown in Figs. 2–5. We have
seen that significant changes occur for powers smaller than
100 µW—interestingly, the wavevector shifts are comparable
to those predicted for dielectric waveguides with the same
levels of nonlinearity [29–31]. Nevertheless, it will be difficult
to directly observe these modes using continuous wave excita-
tion because real Kerr materials have nonlinear coefficients
that are usually much smaller than those considered here.
Further developments are thus needed to study the propagation
of pulsed SPs with high peak power densities along these
structures.
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