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Cavity QED with an ultracold ensemble on a chip: Prospects for strong magnetic
coupling at finite temperatures
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We study the nonlinear dynamics of an ensemble of cold trapped atoms with a hyperfine transition magnetically
coupled to a resonant microwave cavity mode. Despite the minute single-atom coupling, one obtains strong
coupling between collective hyperfine qubits and microwave photons, enabling coherent transfer of an excitation
between the long-lived atomic qubit state and the mode. Evidence of strong coupling can be obtained from
the cavity transmission spectrum even at finite thermal photon number. The system makes it possible to study
further prominent collective phenomena such as superradiant decay of an inverted ensemble or the building of a
narrowband stripline micromaser locked to an atomic hyperfine transition.

DOI: 10.1103/PhysRevA.82.033810 PACS number(s): 37.30.+i, 42.50.Pq

I. INTRODUCTION

The idea of resonant coupling of an ensemble of atoms
to a single cavity mode has been addressed in numerous
aspects and contexts, some dating back several decades [1].
Recently, in the context of quantum information processing,
such Hamiltonians attracted renewed attention because the
ensemble can serve as quantum memory with long coherence
times [2–5]. Despite small coupling of individual atoms, the
strong collective coupling of the ensemble to a particular cavity
mode allows for the coherent transfer of an excitation to the
ensemble, its storage and its retrieval after some time shorter
than the coherence time of the system. Hence, due to collective
effects, one can utilize atomic transitions and geometries for
which the strong coupling regime would not be accessible
otherwise.

As a particularly striking example, one can even envisage
the use of states that are very weakly coupled to the field, for
example, an optically forbidden hyperfine transition, which
only couple to the field via magnetic dipole interaction. What
makes this idea attractive and possibly feasible with current
technology is the fact that it should be possible to fabricate
high-Q stripline waveguide cavities on the superconducting
surface of a microchip, which confine the microwave mode
to a very small effective volume and to simultaneously trap
a large ensemble of cold atoms very close to the surface.
The combination of high-Q stripline waveguide cavities and
atom-trapping technology surely will involve new challenges,
but there seem to be no fundamental problems. As already
demonstrated, such a cavity can be strongly coupled to on-chip
Cooper-pair box qubits [6]. By combining the two systems, one
thus could establish a connection between the atomic ensemble
and solid-state qubits. This setup hence bridges an enormous
range of time scales starting from the submicrosecond scale
of solid-state qubits, over the millisecond lifetime of micro-
wave photons, to the atomic hyperfine coherence lifetime of
seconds.

In the particular setup discussed here, the ensemble consists
of a cloud of ultracold 87Rb trapped in an on-chip magnetic
wire trap and pumped to one of the trappable hyperfine levels,
for example, F = 1, mF = −1. The interaction between the
atoms and the field is dominated by the magnetic dipole

transitions between |F = 1,mF 〉 and |F = 2,m′
F 〉. These

transitions are widely used for hyperfine manipulations of
cold atomic ensembles by externally injected microwaves [7].
We assume in the following that the experimental setup
guarantees that the cavity is resonant with only one of
the possible transitions (e.g. mF = −1 and m′

F = 1 with
transition frequency ωa/(2π ) = 6.83 GHz, corresponding to
T ≈ 330 mK), and hence allows for the atoms to be treated as
two-level systems. Actually, in some cases it is more favorable
to use Raman-type coupling employing an extra radio-wave
field to choose a suitable microwave transition [8].

We ignore some of these technical details at this point
and focus on the three main topics: After the introduction
of the model in Sec. II, we first investigate conditions for
strong coupling between the ensemble and the cavity and
the experimental consequences when one adds the obscuring
effects of thermal photons due to a finite cavity temperature. In
Secs. III A and III B we discuss the methods we use, whereas
in Secs. III C–III F we address several aspects of the resulting
dynamics. Here the optically aligned ensemble, which has
much lower effective temperature, can be expected to act as a
heat sink for the cavity mode removing thermal photons. As
the upper and lower hyperfine states have a virtually infinite
lifetime compared with other system time scales, we can also
completely invert the system, mimicking an effective negative
temperature, and use it to pump energy into the system. As
a prominent example, we study in Sec. IV the superradiant
decay of a fully inverted ensemble again with some thermal
photons initially present. Finally, we exhibit in Sec. V the
possibility of building an ultranarrow linewidth single-chip
stripline micromaser operating directly on an atomic clock type
transition, which is in close analogy to an optical-lattice-based
setup, as recently suggested in [9].

II. MODEL

A. Collective atom-field Hamiltonian

A single atom, formally represented here by a two-level
system resonantly coupled to a cavity mode, can be well
described by the Jaynes-Cummings Hamiltonian. For N two-
level systems trapped so close to each other in the cavity that
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they see the same field and thus are coupled to the mode with
equal strength g, we then get the generalized Hamiltonian:

H = h̄ωma†a + h̄ωa

2

∑
j

σ z
j + h̄g

∑
j

(σ+
j a + a†σ−

j ), (1)

with a being the annihilation operator for a cavity photon,
σ+

j being the excitation operator for the j th two-level system,
and [σ+

i ,σ−
j ] = σ z

i δij . The frequency of the two-level systems
and the mode are denoted by ωa and ωm, respectively. The
coupling strength g = �B(�r) · �µ/h̄ depends on the strength of
the magnetic field per photon �B at the position �r of the atoms
and the magnetic moment �µ of the considered transition.

What make an ensemble of atoms coupled to a cavity
interesting are collective effects emerging from the common
coupling of all atoms to the same mode. This can be well
illustrated by introducing collective atomic operators S± =∑

j σ±
j and Sz = 1

2

∑
j σ z

j . The treatment in terms of collective
operators provides a convenient basis for classifying the
possible states of the ensemble and is therefore discussed here.
As we see in Sec. II B, we have to resort to Hamiltonian (1) in
our particular treatment. The introduction of S± and Sz leads
to the Tavis-Cummings form of this Hamiltonian:

HTC = h̄ωma†a + h̄ωaS
z + h̄g(S+a + a†S−), (2)

where single photons are coupled to distributed (delocalized)
excitations in the ensemble [1]. Let us shortly review some of
its most known properties here. Mathematically, the collective
operators follow the standard commutation relations for
angular momentum operators S = (Sx,Sy,Sz), with S± =
(Sx ± iSy). The corresponding eigenstates of S2 and Sz are
the so-called Dicke states |J,M〉, with S2|J,M〉 = J (J + 1)
|J,M〉 and Sz|J,M〉 = M|J,M〉, where J = 0,1, . . . ,N/2
and M = −J, . . . ,J . Formally, a fully inverted ensemble
corresponds to the maximum angular momentum of J = N/2
[10,11] and projection M = N/2. Repeated application of
the collective downward ladder operator S− on the initial
state |J,J 〉 =̂ |e,e, . . . ,e〉 gives the lowest state |J, − J 〉 =̂
|g,g, . . . ,g〉.

The states in between are generated according to

S±|J,M〉 =
√

(J ± M + 1) (J ∓ M)|J,M ± 1〉. (3)

The interaction can then be conveniently rewritten in terms
of normalized collective operators S̃± = 1√

N

∑
i σ

±
i to obtain

H̃ = h̄ωma†a + h̄ωaS̃
+S̃− + h̄geff(S̃

+a + a†S̃−), (4)

with geff = g
√

N . Note that in the case where the atoms in the
ensemble couple to the cavity with different coupling constants

gi , we generalize to S̃± = 1
geff

∑
i giσ

±
i , with geff =

√∑
i g

2
i .

This reduces to geff = g
√

N if all gi are equal. To simplify
matters, we remain with the case of equal coupling strength.

Allowing only one excitation in the system, we see
that the ground state |0〉a =̂ |J,−J 〉 =̂ |g,g, . . . ,g〉
is only coupled to the symmetric atomic excitation
state S̃+|0〉a = |1〉a = |J,−J + 1〉 =̂ 1√

N
(|e,g,g, . . . ,g〉 +

|g,e,g, . . . ,g〉 + · · · + |g, . . . ,g,e〉), while other atomic states
with only one excitation play no role. Hence, in this form
we end up again with a two-level atomic system, where the

dependence of the atom-cavity coupling on the number of
atoms is explicitly visible. Even for transitions with a very
small coupling constant g, strong coupling can be achieved
for sufficiently large N .

Note that in Eq. (4) we use S̃z ≈ − 1
2 + S̃+S̃−

N
, where S̃z =

1
2N

∑
i σ

z
i . This approximation is exactly valid only either for

a single atom or the special case where we consider only one
excitation in the system. The constant − 1

2 is neglected in the
Hamiltonian. In general, we find for a state with J = N

2 and
M = −J + s

〈J,−J + s|S̃z|J,−J + s〉 = −1

2
+ s

2J
(5)

and

〈J,−J + s|S̃+S̃−|J,−J + s〉 = s − s (s − 1)

2J
. (6)

For s � N we neglect the second term on the right-hand side
of Eq. (6) and find the approximation for S̃z, which becomes
exact for s = 1.

For large ensembles with few excitations this approxi-
mation is closely related to the bosonization procedure. For
M ≈ −J with J = N/2 and from

[S̃+,S̃−] = 1

N
[S+,S−] = 2Sz

N
=

[
−1 + O

(
1

N

)]
11, (7)

we find that for few excitations it is possible to identify S̃+ and
S̃− with bosonic creation and annihilation operators. Hence,
we end up with a system of coupled oscillators, for which a
great deal of solution techniques exist.

Let us now come back to the atom-field interaction [Eq. (4)].
It is well known that the eigenstates are coherent superpositions
of the two previously introduced basis states, where the
excitation is located either in the mode or in the ensemble.
Let |0〉m and |1〉m = a†|0〉m be the possible states of the mode
and |0〉a and |1〉a be the ensemble states. With ωa = ωm, the
two eigenstates then read

|+〉 = 1√
2

(|1〉a|0〉m + |0〉a|1〉m), (8)

|−〉 = 1√
2

(|1〉a|0〉m − |0〉a|1〉m), (9)

and as expected are separated by the energy difference 2geff . Of
course, the system possesses more states containing essentially
one excitation quantum, but those are not directly coupled
to the ground state if we consider only collective operators.
The collective operators couple states within one J manifold,
like the previously discussed manifold with maximum angular
momentum J = N/2 and M = −J · · · J . Taking into account
the manifolds of states with J < N/2, one can see that in
general there is a large number of states describing an ensemble
with n excitations. In the forthcoming calculations including
spontaneous emissions, such states with J < N/2 can be
populated as well [12]. In addition, we also do not restrict
the dynamics to a single excitation.

B. Master equation including decoherence and thermal noise

In any realistic implementation of the preceding model,
coupling of the thermal environment to the field mode and the
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atoms is unavoidable. This generates several sources of noise
and decoherence we have to address to be able to reliably
describe the dynamics. Despite its high Q value, the microwave
resonator still has a non-negligible finite linewidth κ = 1/τ . In
other words, a stored photon is likely to be lost from the cavity
after the time τ . Similarly, atomic excitations are assumed to
decay with a rate that is, fortunately, in our case negligibly
small in practice [13]. However, we have to consider trap
loss of atoms leaving the cavity mode, which generates an
effectively faster decay of the atomic excitation, denoted by
the rate γa . This can be to some extent controlled by a suitable
choice of the trapping states and trap geometry. An additional
and in general quite serious source of noise are thermal photons
that leak into the cavity. For an unperturbed cavity mode they
lead to an average occupation number of

n̄(ωm,T ) = e
− h̄ωm

kB T

1 − e
− h̄ωm

kB T

, (10)

where T denotes the temperature of the environment. In
principle, such thermal photons are also present on the atomic
transition and lead to a thermalization of the optically pumped
atomic ensemble. Fortunately, the weak dipole moment of
the atom renders this thermalization rate so slow that it can be
ignored at the experimentally relevant time scales. In principle,
even this rate could be collectively enhanced, but it largely
addresses collective states only very weakly coupled to the
cavity mode.

Putting all these noise sources together, we can use standard
quantum optical methods to derive a corresponding master
equation for the reduced atom-cavity density matrix [14]:

d

dt
ρ = 1

ih̄
[H,ρ] + L[ρ], (11)

with the Liouvillian

L [ρ] = Lcavity [ρ] + Lspont [ρ]

= κ(n̄ + 1) (2aρa† − a†aρ − ρa†a)

+ κn̄(2a†ρa − aa†ρ − ρaa†)

− γa

2

N∑
j=1

(σ+
j σ−

j ρ + ρσ+
j σ−

j − 2σ−
j ρσ+

j ). (12)

We assumed here that direct thermal excitations of the atoms
can be neglected due to the weak coupling of the hyperfine
transition to the environment. The only significant influx of
thermal energy thus occurs via the cavity input-output couplers
(mirrors). Note that the part of the Liouvillian describing
spontaneous emission reflects the assumption that the atoms
are coupled to N statistically independent reservoirs. The main
reason for this treatment is that the decay rate γa summarizes
the very small decay rate of atomic excitations and the loss rate
of atoms from the trap. Since the loss of individual atoms from
the trap is a noncollective process, the independent reservoirs
assumption is advisable. This part of the Liouvillian cannot
be written in terms of collective operators, and therefore it
will not conserve J [15]. Therefore, states with J < N/2,
including dark states, become accessible.

III. SIGNATURES OF STRONG COUPLING

A decisive first step toward applications of such system
is the precise characterization and determination of their
limits. In particular, the experimental confirmation of suffi-
ciently strong atom-field coupling compared to the inherent
decoherence processes is of vital importance. This has to
be seen in connection with extra limitations induced by
thermal photons in the mode, which in contrast to optical
setups play an important role in the microwave domain. We
thus need reliable methods to determine the atom number,
their effective coupling strength, and noise properties. In
particular, we want to find the minimum temperature re-
quirements that would make it possible to observe strong
coupling.

A. Numerical solution for small particle number

To get some first qualitative understanding of finite T

effects, we study the coupled atom-field dynamics in the
regime of strong coupling under the influence of thermal
photons based on the direct numerical solution of the master
equation. Of course, here we have to resort to the limit
of only a few atoms with increased coupling per particle.
Nevertheless, at least the qualitative influence of thermal
photons will become visible. For the practical implementation,
we rely on the quantum optics toolbox for MATLAB to explicitly
calculate the dynamics of the density matrix [16], which allows
straightforward implementation of the Hamiltonian in Eq. (2)
formulated in terms of the collective operators.

The cavity is pumped by a coherent microwave field with
frequency ωl and strength η, which in the frame rotating with
ωl is represented in the Hamiltonian by the additional term
Hp = ih̄(ηa† − η∗a). From the stationary solution, we then
determine the steady-state photon number in the cavity for
different frequencies of the pump field to determine the central
system resonances, where the pump frequency matches the
eigenfrequencies ωm ± geff of the coupled ensemble-cavity
system. At zero temperature and weak pumping, we get
the well-known vacuum Rabi splitting showing two distinct
resonances separated by 2geff . With increasing temperature
and number of thermal photons, these two peaks will get
increasingly broadened and reside on a broad background.
Figure 1(a) illustrates the effect.

To compare the dynamics obtained from the restricted
Tavis-Cummings Hamiltonian HTC in Eq. (2) with the
dynamics of Hamiltonian H in Eq. (1), we compare the
results for both cases in Fig. 1(b). Even for the rather
small atom numbers chosen here, the difference and thus the
influence of the nonsymmetric states is hardly visible in this
observable.

The peaks in the photon number in principle stay visible also
for higher temperatures, but they start to broaden and finally
vanish. Regardless, the detection on the thermal background
gets technically more challenging. The intracavity steady-state
amplitude of the field shows a similar behavior and a de-
termination of the splitting becomes increasingly impossible,
despite the fact that phase-sensitive detection (homodyne) can
help. An example is shown in Fig. 2. This effect is expected
to be less important if the ensemble contains a large number
of atoms. However, this regime is not accessible for direct
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FIG. 1. (a) Steady-state number of photons 〈a†a〉ss in the pumped
cavity for different detunings 
m = ωm − ωl and different tempera-
tures, obtained from Hamiltonian HTC. The parameters chosen were
κ = 1, N = 2, g = 3, γa = 0.05, η = 0.1. With increasing temper-
ature the two peaks indicating strong coupling are superimposed by
thermal photons. To compare the dynamics of HTC and H , we plot
both results for T = 0.04 K (n̄ = 3 × 10−4) in (b).

numerical simulations and we have to develop alternative
semianalytic approaches.

B. Truncated cumulant expansion of collective observables

To overcome the system size restrictions of a direct
numerical solution, we now turn to an alternative approach
that does not rely on the simulation of the dynamics of the
whole density matrix. Instead, we derive a system of coupled
differential equations for the expectation values of the relevant
system variables. The inversion of atom i then obeys

d

dt

〈
σ z

i

〉 = Tr

{
σ z

i

d

dt
ρ

}
= −i2g(〈σ+

i a〉 − 〈σ−
i a†〉) − γa

(〈
σ z

i

〉 + 1
)
, (13)

which couples to 〈σ+
i a〉 and 〈σ−

i a†〉 = 〈σ+
i a〉∗. We assume

that all atoms are equal, which allows us to replace 〈σ z
i 〉

with 〈σ z
1 〉. Expectation values for pairs of different atoms like

〈σ+
i σ−

j 〉 can be replaced with 〈σ+
1 σ−

2 〉.

While these equations are exact in principle, the procedure
ultimately leads to an infinite set of coupled equations. We thus
have to start approximations and truncate this set at a chosen
point, neglecting higher-order cumulants [9,17]. The trunca-
tion has to be carefully chosen and tested in general. Here we
stop at third order, which in similar situations has proven to be
well suited to describe the essential correlations [9].

The expansion for an expectation value of the form 〈ab〉
is the well-known relation 〈ab〉 = 〈ab〉c + 〈a〉〈b〉, with 〈ab〉c
being the covariance between a and b. Along this line, one
expands third-order terms in the form

〈abc〉 = 〈abc〉c︸ ︷︷ ︸
neglected

+〈ab〉c 〈c〉 + 〈ac〉c 〈b〉

+ 〈bc〉c 〈a〉 + 〈a〉 〈b〉 〈c〉. (14)

We make one exception in this expansion when it comes
to the quantity 〈a†aσ z

1 〉; the reason for this is discussed in
Appendix B.

The number of equations depends on the order of the
cumulants we wish to keep track of. Furthermore, the problem
is greatly simplified if there is no coherent input field driving
our cavity. In this case, no defined phase exists in our system,
so we can assume that 〈a〉 = 〈a†〉 = 〈σ±

1 〉 = 0. Note that
while for a single system trajectory a coherent field can build
up as in a laser, for an average over many realizations the
preceding assumption holds. For a covariance like 〈σ+

1 a〉c =
〈σ+

1 a〉 − 〈σ+
1 〉〈a〉, we therefore find 〈σ+

1 a〉 = 〈σ+
1 a〉c. The

four remaining equations are

d

dt

〈
σ z

1

〉 = −i2g(〈σ+
1 a〉 − 〈σ−

1 a†〉) − γa

(〈
σ z

1

〉 + 1
)
, (15)

d

dt
〈aσ+

1 〉 = −
(

κ + γa

2
+ i (ωm − ωa)

)
〈aσ+

1 〉

−ig

(〈
σ z

1

〉 + 1

2
+ 〈a†a〉〈σ z

1

〉 + (N − 1)〈σ+
1 σ−

2 〉
)

,

(16)
d

dt
〈a†a〉 = −igN (〈a†σ−

1 〉 − 〈aσ+
1 〉) − 2κ〈a†a〉+ 2κn̄, (17)

d

dt
〈σ+

1 σ−
2 〉 = −γa〈σ+

1 σ−
2 〉− ig

〈
σ z

1

〉
(〈σ−

1 a†〉− 〈σ+
1 a〉). (18)

To inject energy into our system without losing the property
of having no defined phase, we can introduce an incoherent
pump of the atoms. In essence, this gives an additional term in
the Liouvillian very much resembling spontaneous emission
in opposite direction. Formally, it reads −w

2

∑N
j=1(σ−

j σ+
j ρ +

ρσ−
j σ+

j − 2σ+
j ρσ−

j ), where w denotes the rate of the pump.
The modifications of Eqs. (15)–(18) narrow down to the
replacement of γa with γa + w and of −γa(〈σ z

1 〉 + 1) with
−(γa + w) (〈σ z

1 〉 + w−γa

w+γa
) in Eq. (15).

Introducing a coherent pump leads to a larger set of 13
coupled equations for the quantities 〈a〉, 〈σ z

1 〉, 〈σ+
1 〉, 〈aσ+

1 〉c,
〈aσ z

1 〉c, 〈σ+
1 σ−

2 〉c, 〈a†a〉c, 〈aσ−
1 〉c, 〈a†a†〉c, 〈σ−

1 σ−
2 〉c, 〈σ z

1 σ+
2 〉c,

〈σ z
1 σ z

2 〉c, and 〈a†aσ z
1 〉; for details, see Appendix A. In this case

we transform into a rotating frame with respect to the frequency
of the pump ωl . This results in 
m = ωm − ωl for the detuning
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FIG. 2. Effects of higher temperatures: For T = 0.1 K, (a) shows the steady-state number of photons, whereas (b) and (c) show the real
and imaginary part of the steady state field in the cavity. The peaks in the photon number start to broaden and finally vanish. The amplitude of
the field shows similar behavior. Panels (d), (e), and (f) show the same quantities for T = 0.7 K. The remaining parameters were chosen as in
Fig. 1.

of the cavity and 
a = ωa − ωl for the detuning of the atoms
with respect to the pump frequency.

In general, the set of equations is too complex for a direct
analytical solution and has to be integrated numerically. In this
way we obtain the steady-state expectation values of relevant
observables as the occupation number of the cavity 〈a†a〉 or
the inversion of the ensemble 〈σ z

1 〉.
To compare the results of the obtained equations with

the results in Sec. III A, we plot the steady-state number of
photons and the field in the cavity for different frequencies
of the pump laser in Fig. 3. We clearly see that effective
strong coupling appears for a sufficiently large number of
weakly coupled atoms and can stay visible also at higher
temperatures. Further discussion is given in Sec. III E. In Fig. 4
we schematically depict the setup including the described loss
and pump processes.

C. Cavity output spectrum at finite temperature

Naturally, the total field intensity in the cavity is only
part of the story and significant physical information can
be obtained from a spectral analysis of the transmitted field.
Using the quantum regression theorem, the spectrum of the
light transmitted through one of the mirrors can be expressed
in terms of the Fourier transform of the corresponding
autocorrelation function of the field amplitude.

At finite T this is not the full story, and to obtain the
actual spectrum of the light impinging on the detector, one has
to include the thermal photons in the output mode reflected

from the cavity. Hence, the normalized first-order correlation
function of the field outside the cavity will have additional
contributions from the correlation function of the thermal field,
as well as of the correlation between the thermal field and
the cavity field [18]. The latter is causing interference effects
between cavity field and the thermal field. The correlations
between reservoir operators and cavity operators can be
expressed in terms of averages involving cavity operators
alone [15,18]. For a cavity radiating into a thermal reservoir,
we find for the normalized first-order correlation function

g (τ ) = 1

N

{
1

2πg (ω)
〈r†f (0)rf (τ )〉+ 2κ

[
lim
t→∞〈a†(t)a(t + τ )〉]

+ 2κn̄ (ωm,T )
[

lim
t→∞〈[a†(t),a(t + τ )]〉]}, (19)

with

N = 1

2πg (ω)
〈r†f rf 〉 + 2κ[〈a†a〉ss − n̄(ωm,T )]. (20)

Here, rf denotes the annihilation operator of a reservoir
photon and g(ω) denotes the density of states in the reservoir.
Equations for the correlation functions in Eq. (19) can be
obtained via the quantum regression theorem. The resulting
system of coupled equations is Laplace transformed to give the
contributions to the spectrum that arise from the reservoir, the
cavity and cavity-reservoir interference. The initial conditions
necessary for the Laplace transform are the steady-state values
obtained either numerically for the coherently pumped cavity
or analytically (see Sec. V).
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FIG. 3. The steady-state field and photon number in the cavity for different frequencies of the pump. The size of the ensemble was chosen
to be N = 105 and we set κ = 7 × 103, η = 5 × 105, γa = 0.3, and g = 40. Panel (a) shows the steady-state number of photons, whereas (b)
and (c) show the real and imaginary parts of the steady-state field in the cavity for T = 0.1 K, which corresponds to n̄ = 0.04. The remaining
figures show the same quantities for T = 0.7 K, corresponding to n̄ = 1.67. The results show that for a sufficiently large number of atoms
strong coupling remains observable despite of the presence of thermal photons.

We show the spectrum of the cavity without any pump,
coherent or incoherent, but with T = 0.1 K in Fig. 5. The
spectrum shows absorption dips at the frequencies of the
coupled ensemble-cavity system. Some thermal photons that
leak into the cavity are absorbed and lost into modes other than
the cavity mode. In this form the thermal field is a broadband
probe of resonant system absorption.

FIG. 4. To simplify matters, we depict the cavity as a Fabry-Perot
cavity which can be pumped through a mirror with high reflectivity.
The observation of the dynamics is carried out using the second
mirror, which has a lower reflectivity. Additionally, we can pump the
ensemble incoherently from the side.

D. Cooling the field mode with the atomic ensemble

The spectra depicted in Fig. 5 show a weak loss of
thermal photons from the coupled ensemble-cavity system.
Cavity photons are absorbed and sometimes scattered into a
mode other than the cavity mode. As the ensemble can be
nearly perfectly optically pumped into a particular state, its
effective temperature is close to zero and hence well below
the mode temperature. A relative purity of the ensemble of
10−5 corresponds to T ∼ 28 mK, where we used h̄ωa/kbT =
ln(10−5) with ωa/2π = 6.83 GHz. This leads to the question
as to what extent the thermal occupation of the mode can be
reduced by thermal contact between the two systems via such
energy transfer and loss. In Fig. 6(a) we show the dynamics
of the photon number in the mode at different temperatures
after putting the systems into contact. In Fig. 6(b) we consider
different loss or decay rates γa of the excited atoms. In practice
one could think of coupling to an magnetically untrapped
atomic state or adding some repumping mechanism to increase
this intrinsically very low rate. The dynamics is found
numerically by integrating Eqs. (15)–(18). To see the effect for
increasing temperature in Fig. 6(a), we initialize the ensemble
with all atoms in the ground state, whereas the mode contains
n̄(ωm,T ) photons. The decay rate of the atoms is chosen to be
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FIG. 5. (Color online) Overview of the transmitted spectrum S for different sizes of the ensemble (a). The temperature of the cavity is set to
T = 0.1 K (n̄ = 0.04). The remaining parameters were chosen to be κ = 7 × 103, γa = 0.3, g = 40, ωa = ωm = 2π × 6.83 GHz. The dips in
the spectrum indicate that thermal photons are absorbed by the ensemble and re-emitted into modes other than the cavity mode. The increasing
distance between the absorption dips reflects the increasing number of atoms. In panels (b)–(d) we depict the spectra at N1 = 3.2 × 106,
N2 = 1 × 106, and N3 = 3.4 × 105, indicated in (a) by the dashed horizontal lines.

γa = 5 × 104. With increasing temperature the initial number
of photons also increases. Due to coherent transfer and decay
via the atoms, a constant fraction of the photons is removed
from the cavity mode. In Fig. 6(b) we show the same effect
except that we now keep the temperature fixed to T = 4 K and
vary the decay of the atoms γa = 1 × 103 · · · 2 × 105. The
steady state of the photon number strongly depends on γa . The
red curve (with diamond markers) is the expected number of
photons remaining in the cavity

〈a†a〉ss = n̄ (ωm,T ) − 1

2κ
Nγa

(
1 + 〈

σ z
1

〉
ss

2

)
, (21)

which coincides with the numerical results. The inversion
〈σ z

1 〉ss can be calculated analytically from Eqs. (15)–(18). The
loss of thermal photons is proportional to the loss rate γa and
the number of atoms in the excited state N ( 1+〈σ z

1 〉ss

2 ). The latter
becomes very small if γa becomes large. Hence there is an
optimal loss rate for each set of parameters.

The removal of thermal photons becomes more effective if
the number of atoms is increased. Meanwhile, the inversion
of the ensemble also drops since the fraction of excited atoms
is decreased. Overall, the effect is clearly visible (see Fig. 7),
but it seems that for the actual parameters here its practical
value remains limited. However, with a larger atom number
and more tailored decay rates the method could be employed
to reset a particular mode shortly before starting any quantum
gate operation. Note that this treatment of the cooling process

is limited to short time scales since the permanent loss of
excitations via γa involves the loss of atoms from the ensemble.
The number of lost atoms after the time t , approximated by
the number of thermal photons that entered the cavity tκn̄, has
to be much smaller than the ensemble size N , which restricts
the time t .

In the situation where the mode is at T ≈ 0 K and the
atoms are subject to incoherent pumping we find increased
transmission for the resonance frequencies (see Fig. 8). We
again recover the

√
N dependence of the splitting of the peaks.

E. Coherently driven cavity mode

An experimentally readily accessible quantity is the cavity
field amplitude, which can be deduced by phase-sensitive
(homodyne) detection of the output. This quantity is much
less obscured by random thermal field fluctuations than the
spectral intensity in total. As a phase reference, we therefore
now introduce a coherent phase stable pump of the cavity,
which is again represented in the Hamiltonian by the additional
term Hp = ih̄(ηa† − η∗a).

As mentioned previously, a coherent pump strongly in-
creases the number of nonvanishing cumulants and at our level
of truncation leads to a set of 13 coupled equations, which can
be found in Appendix A. Based on this set, we can calculate
the stationary real- and imaginary part of the field in the cavity
after transient dynamics. The amplitude of the field inside the
cavity becomes maximal if the frequency ωl of the driving
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FIG. 6. (Color online) Loss of photons from the cavity mode.
(a) Dynamics of the occupation of the mode for different temperatures
and γa = 5 × 104. A constant fraction of the photons is removed from
the cavity mode. (b) For fixed T = 4 K (n̄ = 11.7), the loss rate of the
atoms is varied between γa = 1 × 103 and γa = 2 × 105. The steady-
state number of photons shows that there is an optimal loss rate.
The red curve (with diamond markers) corresponds to the expected
number of photons according to Eq. (21). The remaining parameters
were chosen to be κ = 7 × 103, g = 40, ωa = ωm = 2π × 6.83 GHz,
N = 105.

laser hits one of the resonances of the coupled system. As we
give a phase reference now the effect of a higher temperature
on the field in the cavity is barely visible, in particular if we
chose a large ensemble of N = 105 atoms (see Fig. 9).

Note that although not giving the vacuum Rabi splitting,
the average atom-field coupling can be still deduced from
these resonances as g enters in their frequency. If we go back
to a rather small ensemble of N = 102 atoms, the influence
of the temperature becomes visible. To ensure that we still
can observe well split levels, which are not covered by the
linewidth of the cavity, we increase the coupling constant g

in our simulation. The results in Fig. 10 show that thermal
effects become visible in the field only if the number of thermal
photons is not negligible compared to N .

F. Spectrum of the coherently driven cavity

The spectral intensity distribution of the coherently pumped
cavity is calculated in a way similar to that described in
Sec. III C. In contrast to the incoherent pump process that
excites atoms in a noncollective way, as can be seen from
the Liouvillian, the interaction with the coherently pumped
mode is a collective interaction. To demonstrate this behavior,
we calculate the spectral distribution of the mode intensity,

N

N
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〉 ss

〈 a
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〉 ss 10
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FIG. 7. Steady state of the photon number (a) and the inversion (b)
for a loss rate γa = κ = 7 × 103. Increasing the number of atoms N

leads to a more effective removal of thermal photons. The remaining
parameters are chosen to be g = 40, ωa = ωm = 2π × 6.83 GHz,
T = 4 K (n̄ = 11.7).

without caring about the reservoir it radiates into, and the
spectrum of the fluorescence of the atoms.

The cavity mode and the atomic transition are assumed to be
on resonance with ωa = ωm = 2π × 6.83 GHz, which is also
the frequency of the pump laser. To calculate the incoherent
part of the spectra we need the Fourier transform of the
two-time correlation functions

lim
t→∞〈a†(t)a(t + τ )〉c

= lim
t→∞[〈a†(t)a(t + τ )〉 − 〈a†(t)〉〈a(t + τ )〉] (22)

and

lim
t→∞〈σ+

i (t)σ−
j (t + τ )〉c

= lim
t→∞[〈σ+

i (t)σ−
j (t + τ )〉 − 〈σ+

i (t)〉〈σ−
j (t + τ )〉]. (23)

The quantum regression theorem and Eqs. (A1) to (A5) give

d

dτ
〈a†(0)a(τ )〉c

= −(κ + i
m)〈a†(0)a(τ )〉c − igN〈a†(0)σ−
i (τ )〉c (24)

and

d

dτ
〈σ+

i (0)σ−
j (τ )〉c = −

(
γa

2
+ i
a

)
〈σ+

i (0)σ−
j (τ )〉c

+ ig
[〈a(τ )〉〈σ+

i (0)σ z
j (τ )

〉
c

+ 〈
σ z

i (τ )
〉〈σ+

i (0)a(τ )〉c
]
, (25)
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FIG. 8. (Color online) The temperature of the cavity is now set to T = 0.001 K (n̄ = 0) and an incoherent pump of the atoms with w = 0.05
is switched on. The spectrum now shows increased emission at the frequencies of the coupled system. Again figures (b)–(d) depict the spectra
at N1 = 3.2 × 106, N2 = 1 × 106, and N3 = 3.4 × 105, indicated in (a) by the dashed horizontal lines.
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FIG. 9. Steady-state field in the driven cavity, real part (a) and
imaginary part (b). The size of the ensemble is chosen to be
N = 105. The lines for T = 0.01 K (n̄ = 0) and T = 10 K (n̄ = 30)
coincide.
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FIG. 10. Steady-state field in the driven cavity, real part (a) and
imaginary part (b), for T = 0.01 K (n̄ = 0) (solid lines) and T = 10 K
(n̄ = 30) (dashed lines). For the small ensemble with N = 102 atoms
we recover the effects of the thermal photons. To compensate for
the lower number of atoms, the coupling is chosen to g = 1200.
Otherwise, the splitting would be covered by the cavity linewidth.
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FIG. 11. (Color online) Incoherent spectrum of the mode (a) and of the fluorescence of the ensemble (b) for T = 0.025 K, κ = 7 × 103,
γ = 0.3, N = 105, η = 9 × 105 in red (gray), and η = 106 in black. The pump driving the system is on resonance with the cavity and the
ensemble. Insets (c) and (d) show a magnification of the central peak of each spectrum. The lower red (gray) line represents the result for
η = 9 × 105.

where we use limt→∞〈a†(t)a(t + τ )〉c ≡ 〈a†(0)a(τ )〉c and
limt→∞〈σ+

i (t)σ−
j (t + τ )〉c ≡ 〈σ+

i (0)σ−
j (τ )〉c. Equations (24)

and (25) couple to four other two-time correlation
functions that have to be calculated. To solve for the de-
sired quantities, we Laplace transform both sets of equa-
tions and use Cramer’s rule to obtain ˜〈a†(0)a(τ )〉c(s) and˜〈σ+

i (0)σ−
j (τ )〉c(s). The necessary steady-state values are

obtained numerically.
The incoherent spectra of the mode and of the atoms both

show a narrow peak at ωa = ωm which has a width of ≈2γa (see
Fig. 11). The double-peaked structure is a remainder of thermal
excitations acting as a broad band probe for the ensemble-
cavity system. With increasing strength of the coherent pump
the narrow central peak becomes dominant. The appearance
of the central peak is probably related to weak contributions
from almost-dark states (very weakly coupled to the mode).
Let us mention in this context that the atomic ensemble is
not restricted to a manifold of the Dicke states with fixed
J since we include spontaneous emission in our model. It
is hence possible that the ensemble ends up in a dark state,
where it does not couple to the cavity mode. The time-constant
that determines the decay into and the decay of such a dark
state is of the order 1/γa . This allows for the buildup of long
time coherences, and the times the ensemble is in a dark state
significantly change the statistics of the photon emission. The
result is then a narrow peak in the incoherent spectrum [19,20],
where the width of the peak is determined by the characteristic
time the ensemble resides in a bright or dark state, in our
case γa .

In the case of an incoherently pumped ensemble, the narrow
peak does not arise. A reason for this can be the nature of the

incoherent pump which is noncollective and hence able to
pump the ensemble out of a dark state in a shorter time. This
is not possible in the case of the coherently pumped cavity:

 

 

 

 

 

 

 

 

(a) (b)

(c) (d)

Re 〈σz1〉
Im 〈σz1〉

Re
〈
aσ+

1

〉

Im
〈
aσ+

1

〉

Re
〈
a†a

〉

Im
〈
a†a

〉 Re
〈
σ+
1σ

−
2

〉

Im
〈
σ+
1σ

−
2

〉

t(s)t(s)

t(s)t(s)

−100

−50

50

1

1

1

1

1

1
−1

−0.5

0
0

0
0

0

0

0

0

2

2

2

22

3× 10−33× 10−3

3× 10−33× 10−3

3

4

0.1

0.2

0.4

0.5

0.3

FIG. 12. (Color online) Dynamics of superradiant emission:
numerical solutions of the dynamical equations for an ensemble of
N = 105 atoms. The rapid drop of the inversion 〈σ z

1 〉 during the emis-
sion can be seen in (a). The exchange of excitations between the
ensemble and the cavity is characterized by 〈aσ+

1 〉 in (b). Negative
imaginary part of 〈aσ+

1 〉 indicates emission from the ensemble into
the cavity, where a positive imaginary part indicates absorption of
cavity photons by the ensemble. In (c) the number of photons in
the cavity is depicted. Panel (d) shows the spin-spin correlation
〈σ+

1 σ−
2 〉. In this example the temperature of the mode was chosen to

be T = 4 K.
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FIG. 13. Dynamics of the photon number in the cavity with
increasing temperature. The onset of the superradiant emission is
shifted to earlier times since the initially present thermal photons
contribute to the fluctuations that trigger the emission process.

Spontaneous emission brings the ensemble to a dark state,
but the collective interaction with the mode cannot reach it
there.

IV. SUPERRADIANCE

A great advantage of the considered setup is that one has
full control of the atomic state. Hence, instead of starting at a

zero-temperature ground state we can prepare an almost fully
inverted ensemble, which can feed energy into the system
and corresponds to an effective negative temperature [21].
Since we have no initial phase bias in the system, Eqs. (15)–
(18) are suitable for describing the dynamics. The resulting
superradiant dynamics for an initially fully inverted ensemble
is depicted in Fig. 12. In free space the emission occurs in
a characteristic burst of duration ≈ 1

γaN
[22]. The presence of

the cavity causes a partial reabsorption of the emitted photons,
which can be seen in Fig. 12(c). Due to the large number of
emitted photons it should be clearly detectable even on a fairly
high thermal background. Following the pulse shape, one also
can extract the effective coupling parameters to characterize
the system.

The process of superradiance can create a transient
entangled state of the ensemble [23]. This entanglement
can be revealed by entanglement witnesses which can be
inferred from the calculated observables. We have seen
some indication of such entanglement appearing. However,
the persistence of the entanglement under the influence of
noise and with the presence of the cavity will be part of
future work.

The onset of superradiant emission is determined by spon-
taneously emitted photons that trigger the forthcoming burst
of radiation. The presence of thermal photons is expected to
reduce the time until the onset of the burst. This behavior is re-
covered by our equations as shown in Fig. 13, where we depict
the dynamics of the photon number in the cavity for different
temperatures.
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FIG. 14. (Color online) Steady-state inversion of the ensemble (a) and occupation of the cavity mode (b) for varying ensemble size N and
pump strength w. The temperature was chosen to be T1 = 0.001 K, which corresponds to an empty cavity (n̄ = 0). Vertical red dashed lines
mark the masing threshold w = γa = 0.3. The horizontal red dashed lines at N = 105 indicate the position of the curves shown in (c) and (d).
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number in the mode.
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FIG. 15. (Color online) (a) Linewidth of the spectrum S(ω). For
each set of parameters we numerically determine the linewidth of the
spectrum. The parameters were chosen to be κ = 7 × 105, γa = 0.3,
g = 40, ωm = ωa = 2π × 6.83 × 109, T = 0.001. (b) Exemplary
spectrum for N = 105 and w = 0.55, marked in (a) by the white
cross.

V. NARROWBANDWIDTH HYPERFINE MICROMASER

The collectively coupled ensemble can be used to construct
a stripline micromaser with a very low linewidth. To this
aim the inversion of the ensemble is sustained by an external
incoherent pump of the atoms. In contrast to the calculations
in Sec. III C, we ignore the fact that the cavity radiates
into a thermally occupied reservoir. After passing the masing
threshold, the thermal occupation outside becomes negligible.
To determine the linewidth of the emitted light we calculate
the Laplace transform of the two-time correlation function
〈a†(t)a(0)〉. Using the quantum regression theorem we find

d

dt

(
〈a†(t)a(0)〉
〈σ+

1 (t)a(0)〉

)

=
( −κ igN

−ig
〈
σ z

1

〉
ss −w+γa

2

) (
〈a†(t)a(0)〉
〈σ+

1 (t)a(0)〉

)
. (26)
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FIG. 16. (Color online) Finite temperature effects in the spec-
trum. Panel (a) again shows the linewidth of the spectrum. Below
the critical pump strength we recover the linewidth of the cavity.
The parameters were chosen to be κ = 7 × 105, γa = 0.3, g = 40,
ωg = ωa = 2π × 6.83 × 109, T = 0.1. (b) Exemplary spectrum for
N = 105 and w = 0.55, marked in (a) by the white cross.

Laplace Transform of Eq. (26) gives(
κ + s −igN

ig
〈
σ z

1

〉
ss

w+γa

2 + s

)( ˜〈a†(t)a(0)〉˜〈σ+
1 (t)a(0)〉

)
=

(
〈a†a〉ss

〈σ+
1 a〉ss

)
, (27)

where 〈·〉ss denotes steady state values and ·̃ denotes Laplace
transformed quantities.

The steady-state values on the right-hand side of Eq. (27)
can be obtained analytically. Setting the time derivatives of
the dynamical equations to zero, a quadratic equation for
〈σ z

1 〉ss is attained. One of the solutions yields a physically
meaningful result for calculating the remaining steady-state
values and hence 〈a†a〉ss and 〈σ+

1 a〉ss. To illustrate the effect
of the increasing pump strength, we show the steady-state
inversion of the ensemble and the occupation of the cavity in
Figs. 14 and 17. Once the critical pump strength is reached,
the systems behave identically for different temperatures. The
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FIG. 17. (Color online) Same as Fig. 14 with T2 = 0.1, which corresponds to n̄ = 0.04. In (d) the thermal excitations in the mode appear
as a constant background from which the increase due to the pump stands out.

number of atoms in the ensemble is varied between 103 and
106, whereas the pump parameter w ranges from 10−3 to 104.
In both figures we mark the pump strength w = γa = 0.3, for
which we find the inversion becomes positive, with a vertical
red dashed line. At this point we also find a rapid increase of
the number of photons in the cavity. The horizontal lines mark
the cross sections for N = 105 shown in what follows.

To solve for ˜〈a†(t)a(0)〉, we use Cramers rule on Eq. (27),
which yields

˜〈a†(t)a(0)〉(s) = 〈a†a〉ss
(

w+γa

2 + s
) − igN〈σ+

1 a〉ss

(κ + s)
(

w+γa

2 + s
) − g2N

〈
σ z

1

〉
ss

, (28)

so that with s = −iω the spectrum is given by

S (ω) = 1

2π
( ˜〈a†(t)a(0)〉(ω) + ˜〈a†(t)a(0)〉∗(ω)). (29)

For each set of parameters we calculate the spectrum and
determine the linewidth numerically. The linewidth of the
maser for two different temperatures T1 = 0.001 K and T2 =
0.1 K is shown in Figs. 15(a) and 16(a). For w = γa = 0.3 we
see a rapid drop in the linewidth for both temperatures and a
resulting minimal linewidth of δ = 1

2π
4.7 × 10−3 Hz. Above

the critical pump strength the pump noise destroys the coher-
ence between the individual atoms [9]. In in Figs. 15(b) and
16(b) we plot exemplary spectra for N = 105 and w = 0.55,
marked by the white cross.

For T2 = 0.1 K the cavity contains on average n̄ = 0.04
photons that can be recovered from the constant background
in Figs. 17(b) and 17(d). Since the number of thermal photons
is small compared to the considered ensembles, the inversion
is nonsensitive to the increased temperature.

In Fig. 16 we recover the linewidth of the cavity κ = 7 ×
105 if the pump is below threshold and again if the pump
exceeds a critical strength wmax. Above wmax the coherence
between different spins is destroyed by the pump noise [9].
The behavior between the threshold and wmax resembles the
behavior for T = 0.001 K shown in Fig. 15.

VI. CONCLUSIONS

Our studies show that a hybrid cavity QED system
consisting of a stripline microwave resonator at finite T

and an ensemble of ultracold atoms is a rich and versatile
setup for observing and testing prominent quantum physics
phenomena. The effectively very cold temperature and good
localization of the atomic cloud allow symmetric collective
strong coupling to the microwave mode. While the weak
magnetic dipole coupling requires large atom numbers and
an extremely well localized microwave mode to obtain
significant coupling, it also makes the system quite immune
to external noise. In addition to the long lifetime of the atomic
states, this renders the system an ideal quantum memory or
allows for very narrow spectral response or gain. As all the
atoms are identical and well trapped, the system exhibits
only a very narrow inhomogeneous broadening. Operated in
an active way, one thus can envisage a truly microscopic
maser with an very narrow linewidth directly locked to
an atomic clock transition. The uniform coupling and the
possibility of efficient optical pumping enables the study of
superradiant decay into the stripline mode, where a precise
phase and intensity analysis of the emitted radiation can be
performed.
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While many of our considerations are guided by parameters
expected from an ultracold atom ensemble, it is easy to
generalize to alternative setups using NV-centers or other
solid-state ensembles. There larger ensembles can be easily
envisaged but one also gets much more varying coupling
constants and larger inhomogeneous widths. It is not obvious
whether the technically more simple setup and larger numbers
in this case can compensate for these imperfections.

This could be particularly important for a next step: possible
optical readout of the ensemble. For the atomic case, the
uniformity of the coupling over many optical wavelengths
should allow a nice directional readout of the ensemble state,
once a laser could coupled in.

ACKNOWLEDGMENTS

This work was supported by the Austrian Academy of
Sciences and the European Union project MIDAS.

APPENDIX A: COUPLED EQUATIONS

Transformation to a rotating frame with respect to the
frequency of the pump ωl results in 
m = ωm − ωl for the
detuning of the cavity and 
a = ωa − ωl for the detuning of
the atoms. The coupled equations are given by:

d

dt
〈a〉 = −(κ + i
m) 〈a〉 − igN〈σ−

1 〉 + η, (A1)

d

dt
〈a†〉 = − (κ − i
m) 〈a†〉 + igN〈σ+

1 〉 + η∗, (A2)

d

dt

〈
σ z

1

〉 = −2ig[(〈σ+
1 a〉c + 〈σ+

1 〉〈a〉) − (〈σ−
1 a†〉c + 〈σ−

1 〉〈a†〉)]
− γa

(
1 + 〈

σ z
1

〉)
, (A3)

d

dt
〈σ−

1 〉 = −
(

γa

2
+ i
a

)
〈σ−

1 〉 + ig
(〈
σ z

1 a
〉
c
+ 〈

σ z
1

〉〈a〉),
(A4)

d

dt
〈σ+

1 〉 = −
(

γa

2
− i
a

)
〈σ+

1 〉 − ig
(〈
σ z

1 a†〉
c
+ 〈

σ z
1

〉〈a†〉),
(A5)

d

dt
(〈aσ+

1 〉c + 〈a〉〈σ+
1 〉)

= −
(

κ + γa

2
+ i(
m − 
a)

)
(〈aσ+

1 〉c + 〈a〉〈σ+
1 〉)

− ig

(〈
σ z

1

〉 + 1

2
+ (N − 1) (σ+

1 σ−
2 〉c + 〈σ+

1 〉〈σ−
2 〉)

)
− ig〈σ z

1 a†a〉 + η〈σ+
1 〉, (A6)

d

dt

(〈
aσ z

1

〉
c
+ 〈

σ z
1

〉〈a〉)
= −(κ + i
m)

(〈
aσ z

1

〉
c
+ 〈

σ z
1

〉 〈
a
〉) + η

〈
σ z

1

〉
− 2γa(〈aσ+

1 〉c〈σ−
1 〉 + 〈aσ−

1 〉c〈σ+
1 〉 + 〈a〉〈σ+

1 σ−
1 〉)

− ig
[
2(2〈σ+

1 a〉c〈a〉 + 〈aa〉c〈σ+
1 〉 + 〈a〉〈a〉〈σ+

1 〉)

− (1 + 2〈a†a〉c)〈σ−
1 〉 − 2〈aσ−

1 〉c〈a†〉
− 2〈a†σ−

1 〉c 〈a〉 − 2〈a†〉〈a〉〈σ−
1 〉

+ (N − 1)
(〈
σ z

1 σ−
2

〉
c
+ 〈

σ z
1

〉〈σ−
2 〉)], (A7)

d

dt
(〈σ+

1 σ−
2 〉c + 〈σ+

1 〉〈σ+
2 〉)

= −ig
[ 〈

σ z
1 σ−

2

〉
c
〈a†〉 + 〈

σ z
1 a†〉

c
〈σ−

1 〉 + 〈σ−
1 a†〉c

〈
σ z

1

〉
+〈σ−

1 〉 〈
σ z

1

〉 〈a†〉 − ( 〈
σ z

1 σ+
2

〉
c
〈a〉 + 〈

σ z
1 a

〉
c
〈σ+

1 〉
+ 〈σ+

1 a〉c
〈
σ z

1

〉 + 〈σ+
1 〉 〈

σ z
1

〉 〈a〉)]
− γa(〈σ+

1 σ−
2 〉c + 〈σ+

1 〉〈σ−
2 〉), (A8)

d

dt
(〈a†a〉c + 〈a†〉〈a〉)
= −igN [(〈a†σ−

1 〉c + 〈a†〉〈σ−
1 〉) − (〈aσ+

1 〉c + 〈a〉〈σ+
1 〉)]

− 2κ(〈a†a〉c + 〈a†〉〈a〉) + 2κn̄ + η∗〈a〉 + η〈a†〉, (A9)

d

dt
(〈aσ−

1 〉c + 〈a〉〈σ−
1 〉)

= −
(

i(
m + 
a) + κ + γa

2

)
(〈aσ−

1 〉c + 〈a〉〈σ−
1 〉)

− ig(N − 1) (〈σ−
1 σ−

2 〉c + 〈σ−
1 〉〈σ−

1 〉) + η〈σ−
1 〉

+ ig
(
2
〈
σ z

1 a
〉
c
〈a〉 + 〈aa〉c

〈
σ z

1

〉 + 〈a〉〈a〉〈σ z
1

〉)
, (A10)

d

dt
(〈a†a†〉c − 〈a†〉〈a†〉)
= −(2κ − i2
m) (〈a†a†〉c + 〈a†〉〈a†〉)

+ 2igN (〈σ+
1 a†〉c + 〈a†〉〈σ+

1 〉) + 2η∗〈a†〉, (A11)

d

dt
(〈σ−

1 σ−
2 〉c + 〈σ−

1 〉〈σ−
1 〉)

= −2

(
γa

2
+ i
a

)
(〈σ−

1 σ−
2 〉c + 〈σ−

1 〉〈σ−
2 〉) + i2g

(〈
σ z

1 σ−
2

〉
c
〈a〉

+ 〈
σ z

1 a
〉
c
〈σ−

1 〉 + 〈σ−
1 a〉c

〈
σ z

1

〉 + 〈
σ z

1

〉〈σ−
1 〉〈a〉), (A12)

d

dt

(〈
σ z

1 σ+
2

〉
c
+ 〈

σ z
1

〉〈σ+
1 〉)

=
(

− γa

2
+ i
a

)(〈
σ z

1 σ+
2

〉
c
+ 〈

σ z
1

〉〈σ+
2 〉)

− 2γa(〈σ+
1 σ−

1 〉〈σ+
1 〉 + 〈σ+

1 σ+
2 〉c〈σ−

1 〉 + 〈σ−
1 σ+

2 〉c〈σ+
1 〉)

− ig
[
2(〈σ+

1 σ+
2 〉c〈a〉 + 2〈σ+

1 a〉c〈σ+
1 〉

+ 〈σ+
1 〉〈σ+

1 〉〈a〉 − 〈σ−
1 σ+

2 〉c〈a†〉
− 〈σ−

1 a†〉c〈σ+
1 〉 − 〈σ+

1 a†〉c〈σ−
1 〉 − 〈σ+

1 〉〈σ−
1 〉〈a†〉)

+ 〈
σ z

1 σ z
2

〉
c
〈a†〉 + 2

〈
σ z

1 a†〉
c

〈
σ z

1

〉 + 〈
σ z

1

〉 〈
σ z

1

〉〈a†〉], (A13)

d

dt

(〈
σ z

1 σ z
2

〉
c
+ 〈

σ z
1

〉 〈
σ z

1

〉)
= −4ig

(〈
σ z

1 σ+
2

〉
c
〈a〉 + 〈

σ z
1 a

〉
c
〈σ+

1 〉 + 〈σ+
1 a〉c

〈
σ z

1

〉
+〈a〉〈σ z

1

〉〈σ+
1 〉 − 〈

σ−
1 σ z

2

〉
c
〈a†〉 − 〈

σ z
1 a†〉

c
〈σ−

1 〉
− 〈σ−

1 a†〉c
〈
σ z

1

〉 − 〈a†〉〈σ−
1 〉〈σ z

1

〉) − 4γa

(〈σ+
1 σ−

1 〉〈σ z
1

〉
+ 〈

σ+
1 σ z

2

〉
c
〈σ−

1 〉 + 〈
σ−

1 σ z
2

〉
c
〈σ+

1 〉). (A14)
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APPENDIX B: VALIDITY OF THE
CUMULANT EXPANSION

The validity of the truncation of the expansion performed
previously relies on the assumption that higher-order cumu-
lants are negligible. This can be checked in principle by
truncating at higher orders and comparing the results. In
general, it turns out that there is one cumulant which requires
more care: the correlation between the inversion and the
photon number 〈a†aσ z

1 〉. In the regime where geff

κ
> 1 and

geff

γa
> 1 holds, the number of photons necessary to saturate the

ensemble is low. Therefore small fluctuations of the photon
number can cause significant changes in the inversion [24].
The correlation between the photon number and the inversion
〈a†aσ z

1 〉c is therefore kept in our calculations. Hence, an
expansion like in Eq. (14) would not be advantageous because
none of the terms could be dropped. We therefore calculate the
dynamical equation for 〈a†aσ z

1 〉 which gives

d

dt

〈
a†aσ z

1

〉
= (−2κ − γa)

〈
a†aσ z

1

〉 − γa〈a†a〉 + 2κn̄
〈
σ z

1

〉
− ig[〈aσ+

1 〉 − 〈a†σ−
1 〉 + 2(〈a†aaσ+

1 〉 − 〈a†a†aσ−
1 〉)]

− ig(N − 1)
(〈
a†σ z

1 σ−
2

〉 − 〈
aσ z

1 σ+
2

〉)
+ η

〈
a†σ z

1

〉 + η∗〈aσ z
1

〉
. (B1)

The expectation values of products of three operators are
expanded as in Eq. (14), except for 〈a†aσ z

1 〉. The expansion
of expectation values with four operators is more involved
and produces also expectation values of products of three
operators which are again expanded. Cumulants of order three
and four are neglected. The resulting equation for 〈a†aσ z

1 〉
can be integrated numerically along with the equations for the
other quantities mentioned previously.

To estimate the influence of the correlation between the
photon number and the inversion 〈a†aσ z

1 〉c on the dynamics,
we plot the photon number in the cavity during the decay of
a fully inverted ensemble. We therefore integrate a set of 12
equations that is obtained if 〈a†aσ z

1 〉 is expanded and 〈a†aσ z
1 〉c

is neglected. For comparison, we also show the dynamics
obtained from the full set of 13 equations in which 〈a†aσ z

1 〉c
is kept [see Fig. 18(a)].
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FIG. 18. (a) Dynamics of the photon number in the cavity mode
for an initially fully inverted ensemble. The solid line shows the
dynamics produced by the set of equations where 〈a†aσ z

1 〉c was
neglected. The dashed curve is the result of the full set of 13 equations
in which 〈a†aσ z

1 〉c is kept. (b) Numerically obtained cumulant
〈a†aσ z

1 〉c in the steady state. With increasing loss rate of the cavity κ

the correlation between photon number and inversion decreases.

The steady state of both solutions differs only slightly. The
correlation 〈a†aσ z

1 〉c is shown in Fig. 18(b). With increasing
cavity decay rate κ the correlation between photon number
and inversion decreases.
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