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Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear
dispersive media
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The total internal reflection of a weak signal pulse from a powerful reference pulse at another frequency in a
dispersive nonlinear medium is demonstrated. As a result of the two-wave collision, the signal pulse changes its
frequency and group velocity, and time delay occurs. We develop both a wave and a pulse-tracing theory of the
total reflection from the moving inhomogeneity induced by the optical pulse. An analytical expression for the
critical value of group-velocity mismatch as a function of pump intensity and the group-velocity dispersion are
obtained. The possibility of signal pulse reflection from a bright soliton in a cubic medium is considered.
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Control of light by light in a nonlinear media is of particular
interest in nonlinear optics and photonics [1–3]. In this paper
we investigate the effect of optical pulse time delay and
frequency tuning as a result of a two-frequency interaction
in a cubic medium. This phenomenon is the temporal analog
to nonlinear total reflection of a wave beam intercrossing the
reference beam at small angle less than the critical value [4–9].

The phenomenon of pulse reflection is as follows: A signal
pulse propagating in a nonlinear crystal meets with a high-
power pump pulse at a different frequency. Due to the nonlinear
cross-phase modulation the pump pulse creates an effective
inhomogeneity of the refractive index and the signal pulse can
be totally reflected from such induced inhomogeneity and can
propagate with another velocity. The elaborated theory predicts
that such an effect of total internal reflection of the signal pulse
from the moving reference pulse occurs if the group-velocity
dispersion (GVD) is anomalous at the signal frequency and the
nonlinearity is defocusing (or normal dispersion and focusing
nonlinearity) and if the initial group-velocity mismatch is less
than the critical value defined by the pump peak intensity.

As a result the signal frequency changes and group-velocity
mismatch reverses its sign. Due to the frequency tuning the
signal velocity decreases: It cannot overtake the main pulse
and is delayed compared with the linear medium. Interestingly,
beam reflection takes place in a medium with a defocusing
nonlinearity only. The described effect of the signal frequency
tuning is very similar to the well-known phenomenon of the
frequency change as a result of the reflection from a moving in-
homogeneity (e.g., rapidly moving electron clouds and ionized
and plasma regions [10–15]) or inhomogeneities, induced in
the quick-response nonlinear media either by itself [16] or by
a co- or counterpropagating high-power pump pulse [17,18].

The remarkable fact is that the total reflection of pulses
considered here occurs not in two- or three-dimensional
space but in (1+1)-dimensional space-time domain. Note that
the effective repulsion can be realized if the group-velocity
mismatch (GVM) is small enough. However, in the opposite
case of a large GVM when the pulse reflection does not
occur a weak interaction also allows time delay control, which
was shown previously [19–21]. As suitable media for the
observation of such an effect of the total reflection, nonlinear
optical fibers or photonic crystals can be considered.

Consider the dynamics of a nonlinear interaction of a
high-power pump pulse at a frequency ω1 with a weak

signal pulse at a frequency ω2, which overtakes the reference
pulse. The pulse electric field is represented as Ej (z,t) =
1/2{Aj (z,t) exp[i(ωj t − kj z)] + c.c.}. For analysis the fol-
lowing set of equations for slowly varying envelopes is used:

∂A1

∂z
+ iD1

∂2A1

∂τ 2
= F (A1),

(1)
∂A2

∂z
+ ν2

∂A2

∂τ
+ iD2

∂2A2

∂τ 2
= ik2nnl(A1)A2.

Here ν2 = 1/u2 − 1/u1 is the group-velocity mismatch, uj =
(∂kj/∂ω)−1 is the group velocity (j = 1,2), τ = t − z/u1

is the retarded time, Dj = − 1
2

∂2kj

∂ω2 is the group-velocity
dispersion coefficient, F (A1) is a nonlinear term describing
self-action of the reference pulse, kj = nj0ωj/c is the wave
number, n20 is the linear refractive index at the frequency ω2,
and nnl = −�n2/n20 is the inhomogeneity of the refractive
index induced by the reference pulse at the signal frequency.

If the signal intensity is smaller than the pump intensity,
the nonlinear terms in Eq. (1) describing the signal self-action
and cross-action of the signal pulse on the reference pulse
can be neglected. In a cubic medium one has F (A1) =
−ik10n2|A1|2A1, where n2 is the nonlinearity coefficient (posi-
tive for a focusing nonlinearity and negative for the defocusing
case), and the nonlinear term is nnl(A1) = −2n2|A1|2/n20.

Let the high-power reference pulse propagates along the z

axis, A1(z = 0) = E1 exp(−τ 2/T 2
1 ), and let the weak signal

pulse with amplitude E2 � E1 has a time delay θ at the
entrance of the medium, A2(z = 0) = E2 exp[−(τ − θ )2/T 2

2 ].
In order to observe pulses interaction it is necessary that
u2 > u1, i.e., ν2 < 0, and −θ/ν2 < L, where L is the medium
length. One more condition can be imposed: The reference
pulse should not spread significantly at the distance necessary
for the signal pulse to overtake the reference one, i.e., θ/|ν2| <

T 2
1 /2|D1|. By using a temporal analog of the ray optics

approximation the signal pulse envelope can be represented
as A2 = B2 exp(iS2) and substituting this expression into the
second equation of the set (1) we obtain the eikonal equation

∂S2

∂z
+ ν2

∂S2

∂τ
− D2

(
∂S2

∂τ

)2

= k2nnl(τ ). (2)

The solution of Eq. (2) can be written as

S2 = qz + S0(τ ). (3)
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Then substituting (3) into (2) we obtain the following algebraic
equation for the variable ∂S0/∂τ :

D2

(
∂S0

∂τ

)2

− ν2
∂S0

∂τ
+ [k2nnl(τ ) − q] = 0,

which has the solution

∂S0

∂τ
= ν2

2D2
±

√(
ν2

2D2

)2

− [k2nnl(τ ) − q]

D2
. (4)

Using (4) in (3), we can find the general solution of the eikonal
Eq. (2) in the form

S2 = qz − ν2

2D2
τ ±

∫ √(
ν2

2D2

)2

− [k2nnl(τ ) − q]

D2
dτ . (5)

Differentiating expression (5) by the parameter q, we obtain
the equation for the signal pulse trajectory in the space-time
domain:

z = ∓ 1

2D2

∫
dτp√

(ν2/2D2)2 − [k2nnl(τp) − q]/D2

,

or in differential form:

dτp

dz
= ±

√(
ν2

2 + 4qD2
) − 4D2k2nnl(τp).

The subscript p in variable τp is used to discriminate between
the retarded time τ and the trajectory coordinate τp. The
parameter q can be defined from the boundary condition

∂S2

∂τ

∣∣∣∣
z=0

= 0.

Then we get D2( ∂S2
∂τ

)2|z=0 − ν2( ∂S2
∂τ

)|z=0 + k2nnl(θ ) = q and,
consequently, q = k2nnl(θ ). So the final form of the trajectory
equation is the following:

dτp

dz
= ±

√
ν2

2 − 4D2k2[nnl(τp) − nnl(θ )]. (6)

The last expression can be interpreted as an analog of Snell’s
law for pulses. It is obvious from the analysis of the radicand
in the Eq. (6) that total reflection occurs if the following
conditions are met:

4D2k2[nnl(τp) − nnl(θ )] > 0,
(7)

ν2
2 � max{4D2k2[nnl(τp) − nnl(θ )]}.

The first of the conditions (7) gives the correspondence
between the signs of dispersion and nonlinearity necessary
for the realization of the pulse reflection. For a cubic media
one gets −D2n2(|A1|2 − |A1(θ )|2) > 0; thus, if the initial time
separation of the pulses is so large that A1(θ ) ≈ 0, it can be
simplified and can be written as n2D2 < 0. So, if D2 > 0 (i.e.,
the GVD is anomalous at the frequency ω2), the nonlinearity
must be defocusing; if D2 < 0, nonlinearity must be focusing.
Note that beam reflection takes place in the case of defocusing
nonlinearity only.

As in the case of optical beam parametric reflection [4,7]
one can use a cascaded quadratic nonlinearity, the sign of
which can be controlled by the sign of the respective wave
vector mismatch.
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FIG. 1. Intensity distribution on the plane (τ , z) for the two-pulse
interaction (numerical simulation of wave equations): (a) signal pulse
delay as a result of the collision with the reference pump when the
GVM exceeds the critical value, |ν2| > νcr; (b) the total reflection
of the signal pulse from the reference pulse when GVM is small,
|ν2| < νcr. All quantities are plotted in arbitrary dimensionless units.

The second condition of (7) is imposed on the value
of group-velocity mismatch, |ν2| < νcr. The critical value
of the mismatch plays the same role as the critical
angle of total internal reflection of the beams: If the group-
velocity mismatch exceeds the critical value, the signal
pulse overtakes the reference pulse without reflection. Total
reflection takes place at values of the GVM less than the critical
one, which depends on the reference pulse peak intensity, the
nonlinearity coefficient, and the GVD value:

|νcr| = (8k2|A1 max|2|n2D2|/n20)1/2. (8)

The theoretical results presented here are confirmed by the data
from the numerical simulation of Eq. (1) for slowly varying
envelopes (see Fig. 1). We emphasize that in the case of a large
group-velocity mismatch total reflection does not occur but the
pulse trajectory is also modified in the interaction region, and
that results in the appearance of a time delay of the signal
pulse. A similar approach was used for group velocity control
in a quadratic medium [19–21].

As a result of the reflection (nonlinear interaction of pulses)
the signal pulse instantaneous frequency �(z) = ∂S0

∂τ
changes

according to Eq. (4) as

�(z) = ν2

2D2
±

√(
ν2

2D2

)2

+ k2[nnl(τp) − nnl(θ )]

D2
. (9)

If the initial time separation of the two pulses is rather
large and nnl(θ ) ≈ 0 one can obtain a simple expression for
the frequency shift from the expression (9):

�� = ν2/D2. (10)
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FIG. 2. The trajectories of the signal pulse colliding with the bright soliton in the Kerr medium for (a) large GVM, |ν2| > νcr, and (b) small
GVM, |ν2| < νcr. All quantities are plotted in arbitrary dimensionless units.

Using Eqs. (8) and (10) one can estimate the maximum value
of the frequency shift at a given pump intensity:

|�max| = |νcr|/D2 = (8k2|A1 max|2|n2/n20D2|)1/2. (11)

According to Eq. (11), the maximal frequency shift value
is proportional to the pump peak amplitude or proportional to
the square root of the induced inhomogeneity value, |�max| ∼√−�n2 max. Similar results can be obtained also for a cascaded
quadratic nonlinearity [22].

Based on the obtained conditions (7) one can use several
approaches for observing the pulse reflection effect. In
the first method a reference frequency must be chosen in
such a way that the GVD and consequently the dispersive
spreading of the pulse are minimal. The signal frequency
is selected according to the nonlinearity sign as follows
from the first condition (7). The second approach is based
on pulse reflection from a bright temporal soliton that
retains its amplitude profile in a dispersive medium. Use
of the soliton pulse as a reference wave deserves separate
consideration.

Let nonlinearity be defocusing and let interacting pulses
have sufficient frequency separation that the reference pulse
spectrum corresponds to the region of normal dispersion and
the signal pulse spectrum to the anomalous dispersion region,
correspondingly. Thus one can generate a bright soliton at
the reference frequency and realize pulse reflection from
the soliton. Another variant is possible when nonlinearity is
focusing, the reference GVD is anomalous, and the signal
GVD is normal.

Pulse reflection occurs if the soliton amplitude is higher
than the critical value defined by the value of the group-velocity

mismatch:

Asol > |ν|
√

n20/8k2 |n2D2|. (12)

Also, the signal pulse amplitude should be significantly smaller
than the soliton amplitude.

Note that in the case of a pulse collision with an op-
tical soliton in a Kerr medium when A1 = A10 sech(τ/T )
and nnl = nnl0 sech2(τ/T ) Eq. (6) for the signal pulse
trajectory has an exact analytical solution. One gets

sinh(τ/T ) = M sinh(ν2z/T ), M =
√

1 − ν2
cr/ν

2
2 for |ν2| >

νcr and sinh(τ/T ) = N cosh(ν2z/T ), N =
√

ν2
cr/ν

2
2 − 1 for

|ν2| < νcr. In linear media with nnl = 0, νcr = 0, and M = 1,

the pulse trajectory is the straight line: τ = ν2z. The signal
pulse trajectories for different parameters are shown in Fig. 2.

In summary, the effect of total reflection of a weak
signal pulse from a high-power reference pulse with another
frequency is demonstrated in a dispersive Kerr medium. It
is shown that as a result of such a binary collision, a signal
pulse frequency shift occurs, the propagation velocity changes,
and a time delay takes place. The conditions for signal
pulse reflection from a moving inhomogeneity induced by a
pump pulse in a nonlinear medium are found. The analytical
expression for the reflected wave frequency shift is obtained.
The possibility of pulse reflection from bright solitons is
considered. We believe that the described phenomenon allows
realizing ultrafast all-optical switching and efficient control of
light pulse frequency and velocity.
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