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Fundamental solitons pinned to the interface between two discrete lattices coupled at a single site are
investigated. Serially and parallel-coupled identical chains (system 1 and system 2), with self-attractive on-site
cubic nonlinearity, are considered in one dimension. In these two systems, which can be readily implemented as
arrays of nonlinear optical waveguides, symmetric, antisymmetric, and asymmetric solitons are investigated by
means of the variational approximation (VA) and numerical methods. The VA demonstrates that the antisymmetric
solitons exist in the entire parameter space, while the symmetric and asymmetric modes can be found below
some critical value of the coupling parameter. Numerical results confirm these predictions for the symmetric
and asymmetric fundamental modes. The existence region of numerically found antisymmetric solitons is also
limited by a certain value of the coupling parameter. The symmetric solitons are destabilized via a supercritical
symmetry-breaking pitchfork bifurcation, which gives rise to stable asymmetric solitons, in both systems. The
antisymmetric fundamental solitons, which may be stable or not, do not undergo any bifurcation. In bistability
regions, stable antisymmetric solitons coexist with either symmetric or asymmetric solitons.
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I. INTRODUCTION

The study of surface modes in multilayered optical media
began long ago [1]. Recently, studies of solitons pinned to
interfaces between different nonlinear optical media, at least
one of which carries a lattice structure, have attracted a great
deal of attention. Such surface solitons were predicted theoret-
ically in diverse settings [2] and soon after that were created in
experiments [3]. Surface solitons were also considered in the
general context of junctions between different discrete lattices
[4]. In these studies, it was concluded that the self-trapped
surface modes acquire novel properties, different from those
of the solitons known in uniform lattices. In particular, discrete
surface states can only exist above a certain threshold value
of the total power (the soliton’s norm), and a bistability is
possible, with different surface modes coexisting at a common
value of the power.

Generally speaking, these nonlinear modes may be consid-
ered as a variety of optical solitons pinned by defects, which
were also studied theoretically [5,6] and experimentally [7,8]
in many systems, continual and discrete (a comprehensive
review of the topic of discrete and lattice solitons in optics,
including the interaction with defects, has been given in
recent articles [9]; for a general review of discrete solitons,
see Ref. [10]). These studies have demonstrated that discrete
nonlinear photonic systems may support spatially localized
states with different symmetries, which can be controlled by
the insertion of suitable defects into the lattice [6]. Localized
modes supported by defects of optical lattices (OLs) were also
studied in models of Bose-Einstein condensates (BECs) [11].

Another topic which is relevant to the present work is the
possibility of the spontaneous symmetry breaking (SSB) in
two-mode symmetric settings with a linear coupling between
two subsystems. An alternative realization of settings which
give rise to SSB is represented by double-well potentials
(in that case, the two coupled modes correspond to states

trapped in the two symmetric wells). A specific version of
SSB corresponds to the double-well pseudopotential, induced
by a symmetric spatial modulation of the local nonlinearity
coefficient [12].

SSB bifurcations, which destabilize symmetric states and
give rise to asymmetric ones, were originally predicted in terms
of the self-trapping in discrete systems [13]. In the physically
important model of dual-core nonlinear fibers, SSB instability
was discovered in Ref. [14], and the respective bifurcations for
continuous-wave states were studied in detail in Ref. [15], for
various types of the intracore nonlinearities. It is also relevant
to mention early work [16] which put forward the SSB concept
in the framework of the nonlinear Schrödinger (NLS) equation.
Further, SSB was studied in detail for solitons in the model of
the dual-core fiber with the cubic (Kerr) nonlinearity [17,18].
Similar analysis was later performed for gap solitons in models
of dual-core [19] and tri-core [20] fiber Bragg gratings and
for matter-wave solitons in the BEC loaded into a dual-core
potential trap combined with a longitudinal OL. The latter
analysis was performed in the models with both one [21] and
two [22] longitudinal dimensions (1D and 2D, respectively).

The limit case of a very strong OL corresponds to a discrete
lattice [23]. In that case, the SSB of 1D and 2D discrete solitons
in the system of two linearly coupled discrete NLS equations
(DNLSEs) was investigated in Ref. [24].

In addition to the studies of the SSB in diverse two-core
systems with the cubic nonlinear terms, this effect was also
analyzed in models describing optical media with quadratic
[25] and cubic-quintic [26] nonlinearities. In the latter case, the
SSB diagrams feature loops, with asymmetric solitons existing
at intermediate values of the total power, while only symmetric
modes can be found at low and high powers.

General conclusions about the character of SSB in solitons
can be drawn from the previously mentioned works. The self-
focusing nonlinearity induces the SSB of symmetric modes,
with a trend to make the respective bifurcation subcritical,
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whose characteristic feature is a bistability region in which
stable symmetric and asymmetric solitons coexist. The self-
focusing nonlinearity does not induce any bifurcation of
antisymmetric solitons. In the absence of the periodic potential
induced by the OL, the entire family of antisymmetric solitons
is unstable.

However, if the self-attractive nonlinearity acts in com-
bination with a sufficiently strong OL, the antisymmetric
solitons may be stable. In the same case, the SSB bifurcation
is transformed from subcritical to supercritical, which does
not admit the coexistence of stable symmetric and asymmetric
solitons. Nevertheless, a global bistability of a different type
takes place in this situation, as stable antisymmetric solitons
coexist with their symmetric and asymmetric counterparts,
below and above the bifurcation point, respectively (in the
2D setting, both families of asymmetric and antisymmetric
solitons attain a termination point at high values of the
total power, due to the onset of the collapse driven by the
self-attraction).

On the other hand, in the models combining the self-
defocusing nonlinearity and OL potentials, symmetric solitons
do not suffer any SSB, while antisymmetric solitons are desta-
bilized by the anti-symmetry-breaking pitchfork bifurcation,
which is always of the supercritical type.

In this work we aim to study localized modes at the
interface of two 1D uniform discrete lattices (chains) with
cubic on-site nonlinearity, which are linearly coupled either in
series (system 1, see Fig. 1) or in parallel (system 2, see Fig. 4).
In fact, the former configuration may be realized as a single
discrete lattice with a spring defect, in the form of a locally
modified intersite coupling constant (such a system has been
actually created in optics, as an array of nonlinear waveguides
with a modified separation between two of them [8]). System 2
differs from that introduced in Ref. [24] by the fact that the two
uniform identical chains placed in parallel planes are linearly
coupled in the transverse direction at a single site, rather than
featuring the uniform linear coupling. Analyzing localized
defect or surface modes in these two systems, we focus on
their symmetry properties, in particular, with the intention to
investigate SSB transitions in them.

The article is organized as follows. Systems 1 and 2 are
introduced in Sec. II, where we consider the existence and
stability of various localized modes, applying the variational
approximation (VA) and the Vakhitov-Kolokolov (VK) stabil-
ity criterion. Dynamical properties of the discrete solitons with
different symmetries are investigated by means of numerical
methods, including the computation of the linear-stability
eigenvalues and direct simulations in Sec. III. The article is
concluded by Sec. IV.

II. FUNDAMENTAL SURFACE SOLITONS IN THE
SYSTEM OF TWO COUPLED LATTICES

A. System 1: The serial coupling

The system formed by two linked identical semi-infinite
chains is displayed in Fig. 1, with intersite coupling constant
C inside the chains and constant ε accounting for the linkage
between them. We consider only the case when C and ε have
the same sign, as opposite signs of the intersite couplings are

FIG. 1. A schematic of system 1, which consists of two semi-
infinite identical chains linked by the modified linear coupling ε

between sites n = 0 and n = 1.

difficult to realize in optical and BEC systems. The on-site
nonlinearity is cubic, with the respective coefficient, γ , being
constant throughout the system. Thus, this model is described
by the following DNLSE system,

i
dφn

dz
+ φn+1 + φn−1 + |φn|2φn = 0, n �= 0,1,

i
dφ0

dz
+ εφ1 + φ−1 + |φ0|2φ0 = 0, (1)

i
dφ1

dz
+ εφ0 + φ2 + |φ1|2φ1 = 0,

where z is the propagation distance (assuming that the chains
correspond to two semi-infinite arrays of parallel optical
waveguides), and an obvious rescaling is used to fix C = γ = 1
[that is, ε which figures in Eqs. (1) is ε/C, in terms of Fig. 1].

This system may be considered as the usual DNLSE
containing a local “spring defect.” As mentioned above, such a
system has been created in optics, in the form of a regular array
of parallel waveguiding cores, with a change of the distance
between two of them [8]. The interaction of lattice solitons
with this array defect was studied experimentally in Ref. [8].

Stationary solutions for solitons formed at the interface
between the chains are looked for as usual, φn = un exp(iµz),
where un and µ are the real lattice field and the propagation
constant, respectively. The corresponding stationary equations
following from Eqs. (1) are

−µun + un+1 + un−1 + u3
n = 0, n �= 0,1,

−µu0 + εu1 + u−1 + u3
0 = 0, (2)

−µu1 + εu0 + u2 + u3
1 = 0.

1. The variational approximation

Equations (2) can be derived from the Lagrangian,

L = L− + L+ + 2εu0u1,

L− ≡
−1∑

n=−∞

(
−µu2

n + 1

2
u4

n + 2unun+1

)
+

(
−µu2

0 + 1

2
u4

0

)
,

(3)

L+ ≡
∞∑

n=1

(
−µu2

n + 1

2
u4

n + 2unun+1

)
,

where L± are the intrinsic Lagrangians of the two semi-infinite
chains, and the last term in Eq. (3) accounts for the coupling
between them. To apply the variational approximation (VA),
we follow Ref. [24] and adopt an ansatz consisting of two
parts:

un = A exp(an), for n � 0,
(4)

un = B exp[−a(n − 1)], for n � 1.
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FIG. 2. (Color online) Amplitudes A and B of asymmetric, symmetric, and antisymmetric solitons (black, red, and blue colors, respectively),
as predicted by the VA (lines) and obtained in the numerical form (AS, circles; SyS, triangles; AnS, squares), versus ε, for system 1, at fixed
values of the propagation constant: µ = 3 (a) and µ = 5 (b). The dotted green vertical lines denote the critical values of ε limiting the existence
regions of the asymmetric (εc) and symmetric (εe) solitons. For µ = 3, antisymmetric solitons were not found in the numerical form. Open and
solid symbols pertain to unstable and stable solitons, respectively, as concluded from the numerical investigation.

This ansatz admits different amplitudes, A �= B, of the
solution in the linked chains, but postulates a common
width of the ansatz in both of them, a−1. Actually, SSB is
represented by the appearance of asymmetric solutions, with
A2 �= B2.

Amplitudes A and B are treated in the following as
variational parameters. As concerns inverse width a, it is
fixed through a solution of the linearization of Eqs. (2) at
|n| → ∞,

a = ln (µ/2 +
√

µ2/4 − 1), (5)

which implies that the propagation constant takes values µ >

2. Relation (5) may also be represented in the following forms,
which will be used in the following:

s ≡ e−a = µ

2
−

√
µ2

4
− 1, µ = s + s−1. (6)

The substitution of ansatz (4) into Eq. (3) yields the
corresponding effective Lagrangian, where Eq. (5) is used to
eliminate µ in favor of s:

Leff = (L−)eff + (L+)eff + 2εAB, (7)

(L−)eff = −s−1A2 + 1

2(1 − s4)
A4,

(8)

(L+)eff = −s−1B2 + 1

2(1 − s4)
B4.

This Lagrangian gives rise to the Euler-Lagrange equations
for amplitudes A and B: (∂/∂A) (L−)eff + 2εB = 0 and
(∂/∂B)(L+)eff + 2εA = 0 or, in the explicit form,

−s−1A + 1

1 − s4
A3 + εB = 0,

(9)

−s−1B + 1

1 − s4
B3 + εA = 0.

These equations allow us to predict the existence of three
different species of the localized modes: symmetric ones, with
A = B, antisymmetric with A = −B, and asymmetric with
A2 �= B2.

The results of the VA are reported below, along with the
respective numerical results. It will be seen that the VA predicts
characteristics of the symmetric and asymmetric modes very
accurately, while the approximation is essentially less accurate
for the antisymmetric solitons.

2. Existence regions for the interface solitons

The solution for the symmetric solitons (SyS) is easily
obtained from Eqs. (9),

A2 = (1 − s4) (s−1 − ε). (10)

The dependence of this amplitude on ε for fixed s = (5 −√
21)/2 ≈ 0.21, which corresponds to µ = 5, is plotted in

Fig. 2. As follows from Eq. (10), in system 1 the existence
domain of the SyS solutions at a given value of the propagation
constant, µ, is limited to ε < ε(1)

e ≡ s−1. The upper existence
limit for the SyS is seen in Fig. 2, and also in Fig. 3(a),
which shows the existence regions predicted by the VA for
all the types of solitons in the plane of (ε,µ), along with the
numerically found counterparts of these regions (the procedure
for obtaining numerical results is described later).

The existence range of the asymmetric solution (AS), with
A2 �= B2, can be estimated by taking the difference of two
equations (9) and canceling a common factor (A − B):

(s−1 + ε) = A2 + B2 + AB. (11)

In the limit of A − B → 0, Eq. (11) yields the following
relation:

A2 = (1/3) (1 − s4) (s−1 − ε). (12)

Equating expressions (10) and (12), one can predict the value
of the linkage constant at which the SSB bifurcation gives birth
to the pair of ASs in system 1,

ε(1)
c = (2s)−1. (13)

For broad solitons, with a → ∞, that is, s → 1 [see Eq. (4)],
ε(1)

c given by Eq. (13) approaches a limit value, ε(1)
c = 1/2,

while for strongly localized solitons, with µ → ∞ and s � 1,
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FIG. 3. (Color online) (a) The existence and stability diagrams for the fundamental symmetric (SyS) and asymmetric (AS) solitons in
system 1, generated by means of the VA (curves) and numerical computations (symbols), in the plane of (ε,µ). Black squares, which mark
the boundary of the SyS existence region, are located very close to the respective line ε(1)

e (µ) predicted by the VA (see Fig. 2). Red circles,
which denote the numerically found boundary of the AS existence region, are also close to the VA-predicted curve ε(1)

c (µ), along which the
symmetry-breaking bifurcation takes place, destabilizing the SyS and giving birth to two mutually symmetric branches of the AS modes.
(b) The existence and stability borders for the antisymmetric mode (AnS) in the same parameter plane, found in the numerical form only (the
variational approximation does not predict existence limits for the AnS). Inside the instability areas in (b), the type of the respective unstable
eigenvalues (EVs) of small perturbations is indicated.

relation (6) demonstrates that Eq. (13) yields ε(1)
c ≈ µ/2, cf.

Figs. 2 and 3).
The general solution for the AS can be found after some

algebraic manipulations with Eqs. (9) (replacing the equations
by their sum and difference and solving the latter equations
for A2 + B2 and AB, cf. similar exact solutions obtained for
the SSB in the double-well pseudopotential in Ref. [12]):

A = ε
√

2s(1 − s4)√
1 + √

1 − 4s2ε2
,

(14)

B =
√

1 − s4

2s

√
1 +

√
1 − 4s2ε2.

This solution exists at ε < εc, where εc is precisely the
bifurcation value given by Eq. (13). The conclusion that the
asymmetric modes exist when the coupling constant (ε) is
not too large is very natural [17–22,24]. Indeed, the extreme
case of the asymmetric solution, with A �= 0 and B = 0, is
obviously possible in the limit of ε = 0. Equally natural is the
conclusion that the symmetric mode is stable at ε > εc and
unstable at ε < εc, while the asymmetric mode is stable in
the entire region of its existence, as seen in Fig. 2. Finally,
we notice that the SSB bifurcations observed in Fig. 2 (and
in Fig. 5 below, which pertains to system 2) are clearly the
pitchfork bifurcations of the supercritical type, on the contrary
to the subcritical bifurcation reported in Ref. [24] for the model
based on two uniformly coupled parallel chains.

For antisymmetric solitons (AnS) the amplitude is obtained
from Eq. (9) by substituting A = −B, which yields

A2 = (1 − s4) (s−1 + ε). (15)

Relation (15) is plotted versus ε for fixed µ = 5 by blue lines
in Fig. 2. As follows from this relation, the VA predicts the
existence of the AnS in the entire parameter space, on the
contrary to the limited existence regions predicted for the SyS
and AS modes. However, numerical results reported below

demonstrate that the AnS also have their existence limits [see
Fig. 3(b)].

3. Stability

The stability of the discrete solitons predicted by the VA
can be first estimated by dint of the VK criterion, dP/dµ > 0,
where P ≡ ∑n=+∞

n=−∞ u2
n is the total power (norm) of the

soliton [27]. Being necessary, but not sufficient, this condition
should be combined with the spectral criterion, which requires
all the eigenvalues of small perturbations around the solitons
to be stable.

The power corresponding to ansatz (4) is

P = (1 − s2)−1(A2 + B2). (16)

For the SyS solution with A = B, Eqs. (16) and (10) yield
P = 2(1 + s2) (s−1 − ε). This expression satisfies condition
∂P/∂s < 0, which is tantamount to the VK criterion, at all
values of ε. Nevertheless, it is obvious that the branch of
the symmetric solitons is destabilized by the SSB bifurcation;
hence it is unstable at ε < εc, as shown in Fig. 2 (it is well
known that the respective instability is not detected by the VK
criterion [17–22,24]).

For the AS solutions, the substitution of Eq. (14) into
Eq. (16) produces a simple expression for the total power,
which does not depend on ε:

P = (1 + s2)/s. (17)

It also satisfies the VK criterion in the entire region of the
existence of the asymmetric interface modes.

Finally, for the antisymmetric modes in system 1, with
A = −B, the use of Eq. (15) gives P = 2(1 + s2) (s−1 + ε).
In this case, condition dP/ds < 0 is satisfied only at

ε > ε(1)
s = (1 − s2)s−3, (18)
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while the antisymmetric modes are VK unstable in the other
part of their existence region, at ε < εs . This is in contrast with
the previous conclusions that the symmetric and asymmetric
solitons comply with the VK criterion in their entire existence
domains.

4. Comparison to the uniform chain

It is instructive to compare the results predicted for system 1
by the VA to the well-known properties of the uniform infinite
chain described by the usual DNLSE, which corresponds to
Eqs. (1) with ε = 1 [10]. To this end, one may consider cuts
of Figs. 2(a) and 2(b) through ε = 1. Along these cuts, one
finds an unstable SyS, a stable AS, and a stable AnS. In
terms of the infinite uniform chain, the SyS corresponds to
an intersite-centered (alias off-site) discrete soliton, which is,
indeed, always unstable in the usual DNLSE [10]. The fact that
the spring defect with ε > 1 makes the off-site soliton stable
beyond the bifurcation point, that is, at ε < εc, is remarkable
by itself.

Further, what we define as the AS corresponds to the usual
on-site-centered soliton in the ordinary DNLSE, which is
always stable, as is well known. And finally, the AnS soliton
is tantamount to the localized twisted mode in the DNLSE
setting [28], which is stable with small amplitudes and unstable
if its amplitude is larger, as in the case corresponding to
Fig. 2(b) at ε = 1.

B. System 2: The parallel coupling

The system formed by two identical infinite uniform
chains, coupled by the transverse link at the single site, is
shown in Fig. 4.

The corresponding DNLSE system is (where, as well as in
Eqs. (1), we set C = γ = 1, by means of rescaling):

i
dφn

dz
+ φn+1 + φn−1γ |φn|2φn = 0, n �= 0;

i
dφ0

dz
+ φ1 + φ−1 + εψ0 + |φ0|2φ0 = 0;

(19)

i
dψn

dz
+ ψn+1 + ψn−1 + |ψn|2ψn = 0, n �= 0;

i
dψ0

dz
+ ψ1 + ψ−1 + εφ0 + γ |ψ0|2ψ0 = 0.

CC

C

C

-1
0

1

C
C

C

C

-10

1

ε

n

n2

2

-2

-2

FIG. 4. The schematic of system 2, which is built of two uniform
identical chains placed in parallel planes, which are linearly coupled
in the transverse direction at site n = 0. The longitudinal and
transverse coupling constants are C and ε, respectively.

The stationary solutions are looked for in the form of
φn = un exp(iµz) and ψn = vn exp(iµz), with a common
propagation constant, µ, and real functions un and vn satisfying
the following equations:

−µun + un+1 + un−1 + |un|2un = 0, n �= 0;

−µvn + vn+1 + vn−1 + |vn|2vn = 0, n �= 0;
(20)

−µu0 + u1 + u−1 + εv0 + |u0|2u0 = 0;

−µv0 + v1 + v−1 + εu0 + |v0|2v0 = 0.

1. The variational approximation

The stationary equations can be derived from the La-
grangian, L = L1 + L2 + 2εu0v0, where L1 and L2 are the
intrinsic Lagrangians of the two uniform chains. Similar to
system 1, the VA is based on the exponentially localized ansatz
with possibly different amplitudes A and B but a common
width, a−1, cf. Eqs. (4):

un = A exp(−a|n|), vn = B exp(−a|n|). (21)

By substituting this ansatz into the Lagrangian, and using, as
above, Eq. (6) to eliminate µ, we obtain

Leff = −1 − s2

s
(A2 + B2) + 1

2

1 + s4

1 − s4
(A4 + B4) + 2εAB,

(22)

cf. Eqs. (7) and (8). Finally, the Euler-Lagrange equations,
∂Leff/∂A = ∂Leff/∂B = 0, applied to Lagrangian (22), take
the following form:

−1 − s2

s
A + 1 + s4

1 − s4
A3 + εB = 0,

(23)

−1 − s2

s
B + 1 + s4

1 − s4
B3 + εA = 0.

2. Existence regions for soliton solutions

The solution for the SyS, with A = B, is immediately
obtained from Eq. (23):

A2 = 1 − s4

1 + s4

(
1 − s2

s
− ε

)
. (24)

This relation is plotted in Fig. 5 for µ = 5. Similar to the case
of system 1, it follows from Eq. (24) that in system 2 the SyS
exists at ε < ε(2)

e = (1 − s2)/s, as shown in Figs. 5 and 6. In
the latter figure, the critical value ε(2)

e is plotted by the black
line.

The existence range of the AS solutions can be determined
by means of the same procedure which was used above in the
case of system 1. The result is that, in the present case, the
asymmetric modes exist at

ε < ε(2)
c = (1 − s2)/(2s), (25)

cf. Eq. (13). For the broad asymmetric solitons (s → 1),
ε(2)
c approaches the limiting value ε(2)

c = 0, while for the
strongly localized solitons (s � 1) we obtain εc ≈ µ/2. The
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FIG. 5. (Color online) The same as in Fig. 2(b) (i.e., with µ = 5),
but for system 2.

full solution for the AS mode can be found too [cf. Eq. (14)]
for system 1:

A =
√

1 − s4

2s(1 + s4)

√
(1 − s2) +

√
(1 − s2)2 − 4s2ε2,

(26)

B = ε

√
2s(1 − s4)

1 + s4

1√
1 − s2 +

√
(1 − s2)2 − 4s2ε2

.

Note that the AS solution exists at ε < (1 − s2)/(2s), which is
exactly equivalent to Eq. (25), obtained above by means of a
different algebra. The amplitudes of AS at the interface sites
are plotted in Fig. 5.

The solution for the antisymmetric (A = −B) solitons
(AnS) produced by Eqs. (23) is

A2 = 1 − s4

1 + s4

(
1 − s2

s
+ ε

)
. (27)

As seen from here, the AnS are predicted by the VA to exist in
the entire parameter space.

3. Stability

The VK criterion may also be applied to the soliton
solutions predicted in system 2. The total power of the
solutions based on ansatz (21) is

P = 1 + s2

1 − s2
(A2 + B2). (28)

For the SyS solution (24) with A = B, Eq. (28) yields

P = 2(1 + s2)2

1 + s4

(
1 − s2

s
− ε

)
, (29)

which satisfies the VK condition, ∂P/∂s < 0 (tantamount to
∂P/∂µ > 0) in the entire existence region. For the AS solution
given by Eq. (26), the calculation of norm (28) yields a result
which does not depend on ε [cf. Eq. (17) for the AS solution
in system 1],

P = (1 + s2) (1 − s4)

s(1 + s4)
, (30)

whose VK slope, ∂P/∂µ, is again positive in the entire region
where this solution exists.

Lastly, for the AnS solution, with A = −B, the power (29)
is

P = 2(1 + s2)2

1 + s4

(
1 − s2

s
+ ε

)
, (31)

whose slope may change its sign. The eventual conclusion is
that the AnS solution satisfies the VK criterion only in a part
of its existence region, viz., at

ε > ε(2)
s = 1 + s2

4s3(1 − s2)
− 1 − s2

s
, (32)

cf. similar result (18) obtained above for the AnS solutions in
system 1.

III. NUMERICAL RESULTS

To verify the predictions of the VA, we numerically solved
stationary equations, Eqs. (2) and (20), for both models,
applying the relaxation method and an algorithm based on
the modified Powell minimization method [29]. The initial
guess used to construct fundamental solitons centered at the
interface of the linked semi-infinite chains which constitute

FIG. 6. (Color online) The same as in Fig. 3, but for system 2.
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FIG. 7. (Color online) Profiles of the fundamental solitons (interface modes) in system 1: (a) symmetric (SyS), (b) asymmetric (AS), and
(c) antisymmetric (AnS). The interchain linkage strength is ε = 0.65. The total powers corresponding to each mode are indicated in the panels.
Black solid lines with squares denote numerically generated solitons, while red dashed lines with circles denote variationally obtained solitons.

system 1 (Fig. 1) was taken as U0 = U1 = A > 0 for SyS
solutions, U0 = A > 0 and U1 = B > 0 for AS solutions, and
U0 = A > 0 and U1 = −A for ones of the AnS type, with the
VA-predicted values of A and B, while initial values of the
lattice field are set to be zero at all other sites.

The initial ansatz for the parallel-coupled lattices which
constitute system 2 (Fig. 4) was U0 = V0 = A > 0 for SyS
modes, U0 = A > 0 and V0 = B > 0 for AS modes, U0 = A >

0 and V0 = −A for modes of the AnS type, and Un = Vn = 0
at all other sites. The results presented here are obtained for
identical coupled chains with N1 = N2 = 50 or N1 = N2 =
51 sites, for systems 1 and 2, respectively. In other words, the
total number of sites is N = 100 in system 1 and N = 102 in
system 2, which features the parallel chains. The link between
the chains in system 1 was set between the sites with indexes
n = 0 and n = 1, and in system 2 the transverse coupling
between the parallel lattices was introduced at n = 0.

The stability of the stationary modes was first checked by
dint of the linear-stability analysis, that is, the calculation of
eigenvalues (EVs) for modes of small perturbations, following
along the lines of Refs. [29]. The respective calculations
were performed in parameter space (ε, µ). Then, the results
were verified in direct numerical simulations of full equations,

Eqs. (1) and (19). The simulations were based on a numerical
code which used the sixth-order Runge-Kutta algorithm, as
in Ref. [29]. The simulations were initialized by taking the
stationary soliton profiles, to which random perturbations were
added.

Typical shapes of symmetric, asymmetric, and antisymmet-
ric solitons found in the numerical form are displayed in Fig. 7
for system 1 and in Fig. 8 for system 2. In the same figures,
the numerical shapes are compared with those obtained by
means of the VA. The respective dependencies of the solitons’
amplitudes A and B on parameter ε, which accounts for the
linkage between the two chains, are displayed for all the soliton
species, alongside their VA-predicted counterparts, in Figs. 2
and 3. Further, the numerical results demonstrate that all the
species of the solitons, including the AnS, exist in bounded
regions of the parameter space, as shown in Figs. 3 and 6, for
systems 1 and 2, respectively.

The comparison with the numerical results demonstrates
that the predictions of the VA for the symmetric and asymmet-
ric discrete solitons are very accurate. However, the VA fails to
predict the existence borders for the antisymmetric modes. A
reason for the latter problem may be that the strong interaction
force at the interface, in the case of the opposite signs of the

FIG. 8. (Color online) Profiles of fundamental solitons in system 2 (two parallel lattices, L1 and L2, coupled by the transverse link with
strength ε), obtained for µ = 6. The values of ε and the total powers are indicated in the panels. Black solid and red dashed lines show the
profiles in lattices L1 and L2 obtained numerically. The corresponding soliton profiles predicted by the VA are denoted by open squares (green
for L1 and blue for L2). (a) A symmetric (SyS) soliton, (b) an asymmetric (AS) soliton, and (c) an antisymmetric (AnS) soliton.
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FIG. 9. Typical examples of the evolution of perturbed unstable solitons in system 1. (a) A symmetric soliton, with ε = 0.65, and µ = 6.425.
Other panels display antisymmetric solitons, with µ = 6: (b) ε = 9.1 (real unstable EVs, see Fig. 5) and (c) ε = 1.15 (complex EVs). The
unstable symmetric soliton, after shedding off a part of its power, evolves into an asymmetric breather. The unstable antisymmetric solitons
transform into breathers too (see the text).

lattice fields at adjacent sites [see Figs. 7(c) and 8(c)], makes
the simple form of the VA adopted previously inaccurate.

In the instability region, the SyS solutions are characterized
by the EV spectrum consisting of real pairs. Under small
asymmetric perturbations, an unstable SyS sheds off a part
of its total power and relaxes into an asymmetric breather
with a smaller power, as shown for system 1 in Fig. 9(a).
As in other conservative systems, [17–22,24], the asymmetric
breathers cannot readily self-trap into stationary solitons. In
system 2, the behavior of the unstable symmetric solitons is
quite similar.

In both systems 1 and 2, the EV spectra for the stationary
asymmetric modes are stable in the entire existence region.
This is also confirmed by direct simulations, which show that
perturbed AS develop small-amplitude persistent oscillations
without any trend to destruction.

The antisymmetric solitons change their stability twice, in
both configurations considered, systems 1 and 2. With the
decrease of ε at fixed µ, the unstable AnS branch, which is
characterized by a pair of real EVs [in the area between the
green dotted and black solid lines in Figs. 3(b) and 6(b)],
changes into the stable one. With the further decrease of ε,

the AnS loses its stability through the appearance of two pairs
(a quartet) of complex EVs with significant real parts [in the
area below the red dashed line in Figs. 3(b) and 6(b)]. For
example, the antisymmetric modes corresponding to µ = 5
acquire the oscillatory instability, with the decrease of ε, at ε ≈
1.5 and 2 in systems 1 and 2, respectively, which is indicated
by the appearance of a quartet of complex EVs in their spectra
(in the areas below the red line in Figs. 3 and 6). Note that
the VA has also shown that the AnS change their stability
according to the VK criterion, see Eqs. (18) and (32). However,
the corresponding VA-predicted critical curves, ε(1,2)

c (µ), are
found to be situated beyond the numerically obtained existence
regions of the AnS solutions.

The predictions concerning the stability of the AnS were
checked by direct simulations. In Figs. 9(b) and 9(c), the
evolution of typical unstable antisymmetric modes in system 1
is displayed. Panels (b) and (c) in this figure illustrate the
evolution of the unstable AnS whose EV spectrum contains

a pair of real EVs or a complex EV quartet, respectively.
The unstable antisymmetric modes radiate away a part of
their power, relaxing to antisymmetric (b) or asymmetric
(c) interface modes, which exhibit small-amplitude persistent
oscillations. In system 2, the same happens with the unstable
AnS belonging to the instability area below the red (dashed)
line in Fig. 6. However, in contrast to that, the AnS in
system 2 which is characterized by the EV spectrum with
a pair of real EVs turn out to be robust under the action of
small perturbations. They do not emit radiation waves, staying
localized and strongly pinned to the link connecting the two
infinite chains.

Returning to the global existence diagrams, it is worth
noting that two bistability areas can be identified in both
systems 1 and 2: the domain of the coexistence of stable
symmetric and antisymmetric solitons, or the one featuring
the simultaneous stability of asymmetric and antisymmetric
modes, on the opposite sides on the SSB bifurcation. This
result is in accordance with similar findings reported in
other linearly coupled two-component systems featuring the
self-focusing nonlinearity [21,22].

IV. CONCLUSION

In this article, we have investigated several species of
fundamental localized modes formed at the interface between
two linearly coupled lattices (chains) with the cubic on-site
nonlinearity. Two configurations were considered: the one with
the linkage between two semi-infinite chains (in other words,
the usual discrete NLS model with a spring defect), and two
infinite chains placed in parallel planes which are coupled by
the transverse link at one site. These systems can be readily
implemented as arrays of optical waveguides.

In both models, the VA was used to predict the existence
regions, in the parameter space of (µ,ε) (the propagation
constant and the strength of the coupling between the two
subsystems), for the localized symmetric, asymmetric, and
antisymmetric discrete solitons pinned to the interface. The
stability of the modes was predicted as per the VK criterion and
general properties of the supercritical pitchfork bifurcation,
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which destabilizes the SyS (symmetric solitons) giving birth
to AS (asymmetric solitons). The predictions were verified
against numerical results, as concerns the existence and
stability of all the soliton species. In both systems considered,
the existence regions of all the localized modes are bounded.
The AS are stable in their entire existence domain. The
existence and stability domains for AnS (antisymmetric
solitons) were found in the numerical form. Both systems give
rise to the bistability between the AnS, on the one hand, and
either SyS or AS, on the other. Direct simulations demonstrate
that unstable SyS are transformed into asymmetric breathers.
Those antisymmetric modes which are unstable shed off a part

of the total power and also evolve into breathers. In system 2,
in a part of the parametric domain where the computation of
the eigenvalues predicts the instability of the antisymmetric
localized modes, they actually evolve into strongly pinned
robust spikes.
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