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Lossless backward second-harmonic generation of extremely narrow subdiffractive
beams in two-dimensional photonic crystals
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We report efficient second harmonic generation using extremely narrow beams (with diameter of the order of
the wavelength) that propagate in the self-collimation (or nondiffractive) regime in a two-dimensional photonic
crystal. We design and numerically test an AlGaAs photonic crystal membrane, where both fundamental
and generated second harmonic beams propagate without diffraction and without out-of-plane losses. The
characteristics of the generated second harmonic that is mainly propagating in the backward direction and the
conversion efficiency of the proposed scheme are obtained by nonlinear finite-difference time-domain numerical
simulations.

DOI: 10.1103/PhysRevA.82.033805 PACS number(s): 42.65.Ky, 42.70.Qs

I. INTRODUCTION

During the last two decades, photonic crystals (PhCs),
made by periodic distribution of dielectric material with a
lattice constant comparable to the wavelength of light, have
proved to be powerful tools for efficient control of light
propagation [1,2]. A wide range of applications, such as
frequency convertors, filters, waveguides, and lasers, can be
implemented using PhCs, initiating thus a new approach to
photonic circuits, that is, densely integrated devices with
multiple optical functionalities [3–6].

Active two-dimensional (2D) PhCs are also interesting
candidates for enhancing nonlinear effects due to tight light
confinement. In particular, devices for second harmonic gener-
ation (SHG) have been investigated in the last years as possible
new integrated frequency convertors. It has been demonstrated
that one-dimensional and 2D PhCs are ideal materials for
nonlinear processes because their unique properties allow
simultaneously phase matching and optical field enhancement,
two important requirements for efficient SHG [7–12]. How-
ever, there appear several problems to be taken into account
in order to design an integrated SH-generator photonic device,
apart from a stringent requirement of technological precision in
the fabrication of the structure. In particular, very small devices
require extremely narrow input beams. Working with narrow
beams implies confronting mechanisms limiting the efficiency
of the SHG: the first one is diffraction—as narrow beams
spread over a short propagation distance, their peak intensity
decreases. The second one is the phase mismatch, since a
narrow beam has a broad distribution in the k-vector space,
and simultaneously phase matching (PM) all of these spatial
Fourier components is difficult. In addition, the out-of-plane
losses at both fundamental and SH frequencies decrease the
efficiency of the nonlinear process. Finally, one must have a
good overlap between the waveguide modes and the in-plane
2D PhC Bloch modes. Simultaneous optimization of all these
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conditions is a formidable challenge in the design of a PhC
nonlinear device.

It has been shown that the use of nondiffractive (or self-
collimation) regimes in 2D PhCs may significantly improve
the conditions for SHG. It is also known that the diffraction of
optical beams can be reduced and even completely suppressed
for beams propagating along certain directions in linear PhCs
[12–15]. More recently it has been suggested that second-order
nonlinear coupling of narrow beams can be substantially
enhanced in PhCs tuned to self-collimation regimes [16,17]
and, in particular, that an extranarrow beam at the fundamental
frequency can be converted into an extranarrow beam at
the SH frequency in a 2D PhC [18]. Three simultaneous
conditions have to be fulfilled for the efficient conversion:
nondiffractive propagation for both fundamental and SH
beams, PM condition for maximally broad spatial spectra
of both interacting waves, and sufficiently strong nonlinear
coupling between the considered Bloch modes. However, in
[18] the broad angular range PM is reached for an ideal 2D PhC
structure, where the dispersion of the material is neglected.

The introduction of the dispersion of material and the planar
configuration results in changes of the dispersive properties of
the PhC structure, which are treated in the present article.
Therefore, our goal is to design a realistic device where all
the previously listed necessary conditions are simultaneously
fulfilled. We study a 2D PhC membrane of a highly nonlinear
semiconductor material (AlGaAs) and we optimize it through
2D and 3D numerical simulations. In addition, we show that
no out-of-plane losses are expected for the input or the SH
generated beams. Finally, a 2D nonlinear FDTD numerical
study of the optimized structure demonstrates backward SHG
and allows the evaluation of the efficiency of the process.

II. DESCRIPTION AND LINEAR OPTIMIZATION
OF THE PHOTONIC CRYSTAL

We consider a 2D PhC consisting of a rhombic lattice of
air holes etched in a Al0.3Ga0.7 As membrane surrounded by
air, as schematically represented in Fig. 1(a). We consider
a TE-polarized fundamental wave (FW) with a wavelength
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FIG. 1. (Color online) (a) Schematic representation of the 2D
PhC. (b) Photonic band diagram for the two chosen modes; the red
(lower) line corresponds to the first band for the TE0 guided mode
and the blue (upper) line corresponds to the first band for the TM2

mode. (c) Isofrequency lines corresponding to the first band for the
TE0 mode. (d) Isofrequency lines corresponding to the first band for
the TM2 mode.

around λF = 1.55 µm, propagating in the [110] direction. A
TM-polarized SH beam is generated around λSH = 0.775 µm.
We consider a nonlinear coefficient deff = 97 pm/V [19]. The
refractive indices of Al0.3Ga0.7As at the fundamental and SH
wavelength are nF = 3.224 and nSH = 3.452, respectively.
We have developed a rigorous optimization of the structure
parameters in order to fulfill simultaneously the conditions
necessary for an efficient SHG using very narrow beams in
2D PhC, as described previously. The optimization was made
in a first approximation, considering separately the FW and
SH field propagation in a linear 2D structure (deff = 0) with
the same effective refractive indices as those of the selected
modes of the waveguide. The results were checked by 3D
calculations which confirmed the self-collimation regimes
at the phase-matched frequencies and the sufficiently large
coupling coefficient between the two interacting modes.

The parameters which were varied and analyzed are the
thickness of the membrane (with the concomitant effective
refractive indices), the diameter of the holes, and the lattice
geometry. Also, different combinations of TE and TM modes
were explored. After a systematic study using these parame-
ters, we obtained a structure where the optimal thickness for
the air/Al0.3Ga0.7As/air membrane waveguide for confining
the fields in the vertical plane is 350 nm. The wave guide is
monomode (TE0) for the fundamental field at 1.55 µm, with an
effective refractive index of the mode neff

F = 2.85. For the SH
(0.775 µm) the waveguide is multimode and we chose the TM2

guided mode with an effective refractive index neff
SH = 1.425;

the angle of the 2D PhC rhombic lattice is 76◦, the lattice
constant a = 322.4 nm with the hole radius r = 80.6 nm, as
schematically illustrated Fig. 1(a).

We calculate the band structure of the 2D PhC with these
parameters applying the standard technique of plane-wave

expansion [20]. The two calculated bands of interest are
represented in Fig. 1(b): the FW frequency falls in the
first band corresponding to the TE0 polarized guided mode,
represented by the red (lower) line, and the SH frequency in the
first band corresponding to the TM2 polarized guided mode,
represented by the blue (upper) line. Note that both bands are
placed completely below the light cone, represented by gray
area in Fig. 1(b). For the PhC structures proposed in the
literature for SHG the fundamental frequency can be placed
below the light cone, but the SH usually falls above. Then the
generated SH beam couples to the radiative modes in air and
consequently suffers vertical losses. The optimization of our
particular 2D PhC geometry leads to zero coupling of both FW
and SH beams to the radiative modes of the air, a situation that
completely eliminates losses for both beams. The vanishing of
out-of-plane losses was reported in [21], but in conditions of
diffraction similar to those obtained in homogeneous materials
for both FW and SH waves, the coupling between the two
modes was rather small. In the present article we report a
configuration where the out-of-plane losses vanish while there
are obtained simultaneous self-collimation regimes for both
waves.

The nondiffractive propagation for FW and SH beams is
indicated by the dispersion surfaces of the two waves. The
optimization of the structure brought us to the situation where
the fundamental hits zero diffraction point (the flat segment
in the isofrequency lines) in the first TE band and the SH
in the first TM band for the propagation direction along the
short diagonal of the rhombic structure (�Q), as seen in
Figs. 1(c) and 1(d), respectively. We identify zero diffraction
point for the FW at ωFW = 0.208 (c/a units) and for the
SH at ωSH = 0.416 (c/a units), marked with red and blue
arrows, respectively, in Figs. 1(c) and 1(d). These frequencies
are also marked in the band structure [Fig. 1(b)] with red
and blue small circles, respectively. Note that the position of
these frequencies on the isofrequency lines indicates that the
fundamental field would propagate forward, but the SH would
propagate backward [22]. Backward SH generation in PhC
was described in [23], where the authors report an increasing of
conversion efficiency due to the slow light propagation regime.
However, in the present article we follow the self-collimation
of FW and backward-generated SH wave, propagation regimes
that are checked using 2D FDTD calculations.

For efficient SHG, the FW and SH wave also have to fulfill
the PM condition. In Fig. 2 are represented the dispersion curve

FIG. 2. (Color online) Dispersion curve for the SH (blue line) and
the “doubled” dispersion curve for the FW (red line) corresponding
to the structure with the parameters described in text.
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for the SH wave with a blue (ωSH) line and the “doubled”
dispersion curve for the FW (the double of the ωFW versus
the double of the modulus of the wave number) with a red
(2ωFW) line. The crossing point of the two curves indicates the
PM condition and we note that the phase-matched frequencies
and wave vectors correspond to nondiffractive propagation
regimes.

The last condition that has to be fulfilled by our structure
is the nonlinear parametric coupling between the FW and
SH modes. A general formalism for a reciprocity theorem
and perturbation theory in PhC waveguides was developed
in [24,25]. The strength of the nonlinear interaction is
characterized by the Hamiltonian of nonlinear interaction
which, for parametric processes, can be calculated from the
relation

Hint =
∫

d3rP (−)
ω E(+)

ω + H.c.,

where P (−)
ω is the polarization and E(±)

ω is the scalar part of
the electric field operator oscillating as e∓iωt . For the case
of AlGaAs, which has only one nonvanishing term in the
nonlinear susceptibility tensor, the polarization can be written
as

P (−)
ω = ε0χE

(−)
2ω E(+)

ω = ε0χε2ωεωE2ωE∗
ωei(k2ω−kω)e−iωt ,

with χ the relevant nonlinear susceptibility tensor element. Af-
ter the integration, at PM (k2ω = 2kω) we obtain the following
expression for the density of Hamiltonian of interaction:

Hint ∝ i
(
E2

1E
∗
2 + E∗2

1 E2
)
.

Here E1 and E2 are the spatial envelopes of the Bloch modes
of the FW and SH, respectively. Therefore, in order to evaluate
the efficiency of nonlinear coupling, we calculate the cross-
correlation between the functions E2

1 and E2 normalized in
such a way that unity would correspond to the perfect matching
of the modes (the interaction of plane waves gives unity under
this normalization),

K =
∣∣∫

M

(
E2

1E
∗
2

)
d−→r ∣∣

(∣∣∫
C

∣∣E4
1 |d−→r |∣∣∫

C

∣∣E2|2d−→r |)12 ,

where the upper integral is calculated in the nonlinear material
from one unit cell, while the lower integrals are taken over
the entire unit cell. We calculated first the coupling coefficient
in 2D, representing the 2D overlap of the Bloch modes and
we obtained the value KB ≈ 0.37. Due to different vertical
distribution of the two fields, as they belong to different guided
modes, the overlap of the TE0 mode and the TM2 mode is
KW ≈ 0.41. The full 3D overlap results in K ≈ 0.15.

The results obtained through the linear optimization of
our sample presented in this section demonstrate that the
Al0.3Ga0.7As PhC membrane with the parameters determined
above fulfils the necessary conditions for an efficient non-
diffractive SHG. The parameters of the AlGaAs waveguide
(as effective refractive indices and dispersion), as well as
the periodic structure of air holes, can be achieved from the
technological point of view.

III. NONLINEAR FDTD NUMERICAL SIMULATION
AND RESULTS

Next, we proceed with nonlinear FDTD simulations in
order to analyze the SHG process, check whether the predicted
PM condition occurs, and calculate the overall efficiency. The
nonlinear FDTD method that we used is described in Ref. [11].
The structure 14 µm wide and 54 µm long is chosen. It is
considered and simulated, in the following section, in 2D.
From the band structure calculations, we see that the modes
propagating at the frequencies in which we are interested, ω

and 2ω, fall below the air light line, which renders them, in
theory, lossless (in the absence of disorder), justifying that the
FDTD calculations can be carried out in 2D.

We first simulate the system by launching a short pulse
at ω (centered at 1550 nm, with bandwidth of 150 nm
corresponding to a pulse duration of approximately 23 fs) into
the structure in order to obtain the intensity of the second
harmonic field generated as a function of the wavelength.
The modulus of the field amplitude spatial profiles at ω (Ey)
and 2ω (Ez) are plotted in Figs. 3(a) and 3(b), respectively,
for different time steps. As the FW propagates from left to
the right, its spatial distribution on a small scale experiences
the periodic nature of the rhombic PhC. The short pulses
broaden weakly in propagation due to their nonzero spectral
width and obtain a characteristic spatiotemporal shape for
the nondiffractively propagating pulses studied in [26]. The
SH is generated on the position of the FW pulse and, when
the time increases, the SH beam spreads along the structure
as it is generated in the opposite direction with respect to
the FW propagation direction. In the bottom-most frames
of Fig. 3 the FW has already left the structure at the right-
hand boundary of the structure, whereas the SH is still in
the structure and propagates toward its left border. We can
note that the SH beam is highly collimated and does not
diffract.

Figure 4 shows the spectrum of the SH generated in the
backward direction normalized to the incident FW power (at
the centered wavelength of 1550 nm). A sharp peak is obtained
at 766 nm very close to the wavelength of the expected PM.

FIG. 3. (Color online) Spatial distribution of the FW (Ey) (left)
and the SH (Ez) (right) fields at time steps during the propagation;
the modulus of the field abs(E) is represented.
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FIG. 4. Spectrum of the SH wave generated in the backward
direction normalized to the incident FW.

Next, we simulate the system in the continuous wave
regime. The wavelength of the FW is set at 1532 nm, which
is double the wavelength of the peak obtained in the pulsed
regime, represented in Fig. 4. The spatial distributions of the
FW and SH are plotted in Fig. 5 after a sufficiently long time
so that the stationary regime is reached.

The high degree of collimation of the FW and the SH is
clearly demonstrated in the figures, as the Rayleigh length
calculated in homogeneous material for the FW and SH beams
are approximately 5 µm for a beamwitdth of 2 µm. The field
amplitude cross sections are plotted in Figs. 6(a) and 6(b). We
also note that the amplitude of the FW is almost constant as it
propagates in the structure, except for the first 10 µm. This is
an additional proof of the nondiffractive propagation regime
at the FW frequency. The SH beam profile shows an almost
linear growth with distance in the backward direction, which
indicates that the FW and SH are in PM.

The spatial distribution of the FW and SH fields from Fig. 5
were Fourier transformed to obtain the distributions in the wave
vector space. The results are shown in Figs. 7(a) and 7(b).
We find that the FW is distributed in the k-space according
to what is expected from the band structure simulations. The
distribution is indeed localized in the first Brillouin zone at a kx

value equal to ±0.64 × 2π/ax , where ax = 2a sin(76◦/2), the
other components being the higher-order Bloch harmonics.
Around each of these values, the wave-vector distribution
spreads vertically in the ky direction, which indicates that the

FIG. 5. (Color online) Spatial distribution of the FW (a) (Ey) and
the SH (b) (Ez) fields at the time step 2780 fs; the modulus of the
field abs(E) is represented.

FIG. 6. (Color online) Field cross section at y = 7 µm of the FW
(a) (Ey) and SHF (b) (Ez).

field propagates in the real space along the x direction with a
very low diffraction. At the SH frequency, the field is generated
with a specific value of kx equal to ±0.72 × 2π/ax plus the
higher-order Bloch harmonics. Like the FW, the distribution is
flat along the ky direction, indicating the collimation in the real
space. The “flat” range of ky is smaller at the SH frequency than
at the FW one, as can be predicted from Fig. 1, representing
also the reason why the generated SH beam is broader than the
FW beam (in Figs. 3 and 5). The calculations demonstrate that
the PM is obtained between the two components indicated by
red circles on the figures with wave vector matching given by
k2ω = 2kω − 2 × 2π/ax .

With an input power of 1 GW/cm2, we obtain a conversion
efficiency of 6.3 × 10−4 for the 2D calculations. To calculate
the conversion efficiency of the real structure, one must
consider the overlap of the TE0 and TM2 modes, which
is KW = 0.41. As the conversion depends on the square
of the overlap coefficient, this results in a conversion of
approximately 1.06 × 10−4 for the real 3D structure.

For comparison, we calculate the conversion efficiency
in an ideal homogeneous material with the same nonlinear
coefficient at the PM condition. We obtain for the nonlinear
length (the distance after which the conversion should be 1)
the value 6.11 × 10−4 m, which means that after 54 µm

FIG. 7. (Color online) Wave-vector distribution of the FW and
the SH fields. The distance used for the wave-vector units are defined
by ax = 2a sin(76◦/2) and ay = 2a cos(76◦/2) and the red circles
indicate the components which are phase matched. We overlay for
comparison the equifrequency contours from Fig. 1 in yellow.
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(the distance used in the FDTD simulations) the conversion
efficiency should be 7.8 × 10−3. Taking into account the
overlap of the two guided modes in the planar structure,
the conversion obtained in homogeneous material for the
interaction of the TE0 and TM2 modes becomes 1.3 × 10−3.
Therefore, the conversion efficiency in PC is lower than in
homogeneous materials by a factor of approximately 12,
caused mainly by the overlap of the Bloch modes for the two
waves in PhC (where it is KB = 0.37, as calculated in Sec. II)
compared to the homogeneous case.

IV. CONCLUSIONS

In conclusion, we have suggested and proved the design of a
2D PhC structure with realistic material parameters capable of
generating second harmonics using very narrow fundamental
beams with diameters comparable to the wavelength of the
light. We obtain the characteristics and evaluate the efficiency

of the frequency conversion by a full nonlinear FDTD study.
The SHG occurs in the backward propagation direction and
both fundamental and SH beams propagate under the light
cone (without radiative losses) and in a nondiffractive regime.
The very good confinement attesting the very low diffractive
losses of the fields as well as the estimated SHG efficiency
of the process in a very short propagation distance make the
structure suitable for applications as frequency convertor in
photonic circuits.
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