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Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries
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We analyze a system comprising a one-dimensional single-mode waveguide (a) coupled directly to a two-level
atom (b) side-coupled to a cavity containing a two-level atom and show that in both cases it is possible to invert
the atom with a single-photon pulse. In contrast to the semiclassical π pulse, the inverting single-photon pulse is
unique.
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The interaction between an optical field and two-level atom
is one of most important models of light-matter interaction.
Here, a fundamental question is whether the optical field can
completely invert a two-level atom. In the rate-equation limit,
complete inversion is impossible. Beyond the rate-equation
limit, in the semiclassical regime, one can consider a pulse with
duration far shorter than the spontaneous emission lifetime of
the atom, and hence ignore the effect of spontaneous emission.
In such a case, an on-resonance pulse will fully invert the atom
if it is a “π pulse” with its electric-field envelope E(τ ) at the
atom’s position satisfying the relation [1–3]

(Area) = 2D

h̄

∫ ∞

−∞
E (τ ) dτ = (2n + 1) π, (1)

where n is an integer, and D denotes the atom’s dipole moment.
In the semiclassical regime, there are many pulse profiles
capable of fully inverting an atom [1].

In recent years, there has been great interest in interactions
between atoms or atom-like systems and single-photon or few-
photon states. To describe such an interaction properly, a fully
quantized treatment of light-matter interaction is necessary.
In such a fully quantized treatment, full inversion of a two-
level atom was shown possible in free space [4] using a pulse
consisting of a single photon. To do so however, requires spatial
mode matching between the single-photon incident wave and
the emission profile of the atom [4]. Such a spatial mode
matching is difficult to accomplish in practice.

In this paper, we consider light-matter interaction when
photons are confined to a one-dimensional geometry such as
a strongly confining single-mode waveguide [5–19]. We show
that full inversion of a two-level atom with a single-photon
pulse is in general possible in these one-dimensional geome-
tries. In contrast to the three-dimensional case in Ref. [4],
the use of a single-mode waveguide geometry provides
automatic spatial mode matching, which greatly simplifies
practical implementation. Unlike the semiclassical case, here
full inversion is related to the spontaneous emission properties
of the atom, and requires a specific temporal pulse profile
which is unique, and differs drastically from a π pulse. This
inverting pulse should prove useful in manipulating quantum
circuits and accessing strong atom-mediated photon-photon
interactions [9]. In addition, our results here complement ex-
isting theoretical literature in the study of few-photon transport
in one-dimensional systems [5–14]. In contrast to these works,

our focus is on pulse behavior, and is in the regime of strong
atom excitation. This regime is particularly important because
photon-photon interaction is related to atomic excitation. Also,
in this regime many standard theoretical techniques, developed
for the weak excitation limit [20], do not apply.

We start by outlining a general procedure for determining
the single-photon pulse capable of inverting an atom, which
we will call the inverting pulse. As concrete examples, in this
paper we will consider two systems, shown in Fig. 1. Both
systems contain a one-dimensional single-mode waveguide.
The waveguide is either coupled directly to a two-level atom
[Fig. 1(a)] or side-coupled to a cavity containing a two-level
atom [Fig. 1(b)].

In these systems, one can rigorously prove both the exis-
tence, and the uniqueness of an inverting pulse. An inverting
pulse, upon injection into the system at t0 → −∞, needs to put
the atom completely into the excited state |+〉 at t = 0. In the
single-excitation Hilbert space, when the atom is completely
inverted, there cannot be any photons in the system. Hence at
t = 0 the quantum state of the composite photon-atom system
is uniquely specified to be |0,+〉, with the photon part in the
vacuum state |0〉. The inverting pulse is therefore

|ψ〉 = e−iĤ t0/h̄ |0,+〉 , (2)

where Ĥ is the Hamiltonian of the system.
To see that the inverting pulse as defined by Eq. (2) is

unique, suppose that at t0 we have another state |φ〉 that
can also invert the atom at t = 0. From the discussions
above we must have |0,+〉 = e−iĤ (0−t0)/h̄|φ〉. Thus |φ〉 =
e−iĤ t0/h̄|0,+〉 = |ψ〉. Here, the uniqueness of the inverting
pulse is directly related to the uniqueness of the quantum state
when the atom is completely inverted. In the following discus-
sion, we will generate the detailed pulse shape using Eq. (2).

Both systems in Fig. 1 are described by a Hamiltonian of
the form Ĥ /h̄ = Hwvg + H1 [5], where

Hwvg =
∫

dxc
†
R(x)

(
� − ivg

∂

∂x

)
cR(x)

+
∫

dxc
†
L(x)

(
� + ivg

∂

∂x

)
cL(x) (3)

describes the waveguide. Here, we have linearized the waveg-
uide dispersion relation around the atomic transition frequency
�, where the group velocity is vg . c

†
R(x)[cR(x)] creates

[annihilates] a right-moving photon and c
†
L(x)[cL(x)] creates
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FIG. 1. (Color online) Illustration of setup considered in the
paper. (a) Atom placed directly in waveguide; (b) atom placed inside
a cavity, side-coupled to a waveguide; (c) a Sagnac interferometer for
the purpose of inverting an atom. The gray rectangle region, placed
halfway around the ring, symbolizes the system of either (a) or (b).
The upper arm of the interferometer includes a π/2 phase delay ele-
ment. As a result, the upper input port accesses the even subspace, and
the lower input port accesses the odd-subspace of the Hamiltonian.

[annihilates] a left-moving photon. When expressed in terms
of even [ce(x) ≡ cR(x)+cL(−x)√

2
] and odd [co(x) ≡ cR(x)−cL(−x)√

2
]

photon operators, Hwvg separates into He
wvg + Ho

wvg, where

He,o
wvg = ∫

dxc
†
e,o(x)(� − ivg

∂
∂x

)ce,o(x), respectively.
We first consider the system as shown in Fig. 1(a),

where an atom located at x = 0, is directly coupled to the
waveguide. This system has been experimentally realized
using a plasmonic nanowire [17], a photonic crystal waveguide
[21], and a slot waveguide [22]. In this system, the atom and
the atom-photon interaction is described by

H1 = V

∫
dxδ(x)

[
c†e(x)σ− + ce(x)σ+

] + �a†
eae. (4)

In Eq. (4), we set the atomic ground-state frequency to zero.
a+

g [ag] and a+
e [ae] are creation [annihilation] operators for

the ground and excited state, respectively. σ+ ≡ a
†
eag and σ− ≡

a
†
gae are atomic raising and lowering operators, respectively.

V ≡ D
h̄

√
h̄�
ε0A

is the atom-photon coupling strength, where A is

the waveguide’s cross-sectional area, assuming that the atomic
dipole moment is parallel to the electric field of the waveguide
mode at the atom’s position. Notice from Eq. (4) that the
atom-photon interaction, and hence the process of emitting
and absorbing a photon, occurs only in the even subspace,
as described by the Hamiltonian He = He

wvg + H1. The odd
subspace, as described by Ho = Ho

wvg is interaction free. Thus,
only the even subspace contributes to the inversion process.

In the even subspace, at an eigenfrequency ω, we may
write a general normalized interacting eigenstate for the

one-excitation manifold:

|k+〉 =
{∫

dx[θ (−x) + tkθ (x)]
eikx

√
2π

c†e(x) + eaσ+

}
|0,−〉,

(5)

where |0,−〉 denotes the vacuum with zero photons and atom
in the ground state, tk = (ω − � − i�/2)/(ω − � + i�/2) is
the transmission coefficient, ea = V/[

√
2π (ω − � + i�/2)]

is the atomic excitation amplitude, and k = (ω − �)/vg . Here
� ≡ V 2/vg is the atom’s spontaneous-emission rate into the
waveguide.

We calculate the inverting pulse using Eq. (2). At t → −∞,
the atom is in the ground state, and the photon wave function is

ψi(x,t) = 〈0,−|ce(x)e−iH et |0,+〉
=

∫
dke−i(kvg+�)t 〈0,−|ce(x)|k+〉〈k+|0,+〉. (6)

Using Eq. (5) for |k+〉, and noting that in taking the t → −∞
limit, the term proportional to θ (x) vanishes, we obtain the
inverting one-photon pulse (Fig. 2):

ψi(x,t) = i

√
�

vg

θ (−x)θ (x/vg − t)e−i�t− �
2 (x/vg−t). (7)

The inverting pulse grows exponentially in time at the
location of the atom, with a characteristic growth rate equal
to the atom’s spontaneous-emission rate. Propagating ψi(x,t)
toward the atom found in its ground state at t → −∞, results
in the atomic excitation probability

|ea(t)|2=
∣∣∣∣
∫

dk〈0,+|k+〉〈k+|e−iH et |ψi(x,t)〉
∣∣∣∣
2

= e−�|t |.

(8)

|ea(t)|2 indeed reaches unity at t = 0. Afterward it
decays exponentially due to the spontaneous emission.
We now contrast the inverting pulse in Eq. (7) with a
π pulse. To quantify the characteristics electric-field strength
of the single photon pulse, we examine the quantity
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FIG. 2. (Color online) Top: inverting pulse |ψ(x)|2/�. Bottom:
atomic excitation probability |ea(t)|2 for an atom coupled directly to
a 1D waveguide.
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E = √〈E−(0−,t)E+(0−,t)〉, where [23]

E−(0−,t)E+(0−,t) =
∑
k,k′

√
h̄ωk

2ε0AL

√
h̄ωk′

2ε0AL
c
†
kck′ . (9)

L is the quantization length (in the longitudinal direction).
By transforming to a real-space representation, this quantity
simplifies to

E =
√

h̄�

2ε0A
|ψ(0−,t)|. (10)

When applied to the inverting pulse in Eq. (7) we find

E =
(

h̄�√
2D

)
e

�
2 t θ (−t). (11)

Using Eq. (1), this results in a pulse area of 2
√

2. Thus, an
inverting single-photon pulse has an area comparable to a
π pulse. Despite this, the nature of the pulse is dramatically
different. In the semiclassical model—in which a π pulse
is defined—the inverting pulse’s duration is far shorter than
the atom’s spontaneous-emission lifetime, such that the atom
does not decay throughout the inversion process. In contrast,
the inverting single-photon pulse’ duration is comparable
to the spontaneous-emission lifetime. We emphasize that
in the semiclassical case, the inversion of the atom is due
to stimulated emission, while in the case treated here, the
inversion instead arises from spontaneous emission, which is
accounted for in our fully quantized treatment.

From an experimental standpoint, an inverting system
can be implemented using a Sagnac interferometer setup, as
illustrated in Fig. 1(c) [24]. In this setup, a waveguide loop
connects the two output ports of a directional coupler. An
atom coupled to the waveguide loop is placed at a location such
that light propagating in the upper arm acquires an additional
π/2 phase delay as it reaches the atom. A single-photon pulse
injected into the upper input port of the directional coupler
splits into two amplitudes propagating in the upper and lower
arms. These two amplitudes arrive at the atom from both
sides with equal phase, ensuring that only the even channel
is excited. In this setup, injecting a pulse with a waveform
according to Eq. (7) will completely invert the atom.

The procedure outlined above for determining an inverting
single-photon pulse is in fact generally applicable to any
one-dimensional system. Next, we consider a slightly more
complicated example, where single-mode one-dimensional
waveguide is side-coupled to a single-mode cavity, which
has a resonant frequency ωc and contains an atom [Fig. 1(b)]
[6,7,11]. Understanding this system has direct relevance for
experiments in both microwave [15] and optical [16,18,19]
frequencies. The Hamiltonian for this system is H = Hwvg +
H1 [11], where Hwvg is given by Eq. (3), and

H1 = V

∫
δ(x) dx[c†e(x)a + ce(x)a†]

+�a†
eae + ωca

†a + g(a†σ− + aσ+). (12)

Here, a†(a) creates (annihilates) a cavity photon. V char-
acterizes the strength of cavity-waveguide coupling, and g
is the atom-cavity coupling rate. Here too, the atom-photon

interaction occurs only in the even channel, as described by
the Hamiltonian He = He

wvg + H1.
At an eigenfrequency ω, the Hamitonian He has an

eigenstate [11]:

|k+〉 =
{∫

dx[θ (−x) + tkθ (x)]

× eikx

√
2π

c†e(x) + eca
† + eaσ+

}
|0,−〉, (13)

where

tk = (ω − �)
(
ω − ωc − i �

2

) − g2

(ω − �)
(
ω − ωc + i �

2

) − g2
, (14a)

ec = 1√
2π

V (ω − �)

(ω − �)
(
ω − ωc + i �

2

) − g2
, (14b)

ea = 1√
2π

gV

(ω − �)
(
ω − ωc + i �

2

) − g2
, (14c)

k = ω − �

vg

. (14d)

Here � ≡ V 2/vg is the cavity’s decay rate into the waveguide.
Using the same back-propagating technique, we obtain the
inverting pulse:

ψi(x,t) =
√

4g2�

vg

e−i�t e
−( �

4 +i 
2 )( x

vg
−t)√(

i �
2 − 

)2 + 4g2
θ (−x)θ (x/vg − t)

× sin

⎡
⎣(

x

vg

− t

)√(
i�

4
− /2

)2

+ g2

⎤
⎦ . (15)

When this pulse is injected into the system, the resulting atomic
inversion probability may be analytically calculated.

In order to better understand the nature of the inverting
pulse in this system, we first consider the zero detuning
( ≡ � − ωc = 0) case (Fig. 3). In the strong-coupling regime
(� < 4g), both the inverting pulse and the corresponding
atomic excitation probability exhibit oscillatory behavior. In
contrast, no oscillatory behavior is present in the weak-
coupling regime (� > 4g). Additionally, in the weak coupling
regime, the atomic inversion probability has a much shorter
duration, defined as the length of time during which the atom
has substantial probability to be in its excited state, since in
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FIG. 3. (Color online) Top: inverting pulse |ψ(x)|2/g. Bottom:
atomic excitation probability |ea(t)|2, for an atom placed inside a
side-coupled cavity with  = 0.
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FIG. 4. (Color online) Top: inverting pulse |ψ(x)|2/�. Bottom:
atomic excitation probability |ea(t)|2, for an atom placed inside a
cavity side-coupled to a 1D waveguide. � = 5g.

this regime the cavity photon readily leaks to the waveguide
without oscillating back into the atomic excitation.

In general, and perhaps counterintuitively, we emphasize
that full inversion of the atom is always possible with any
choice of parameters in Eq. (12), as long as the coupling
constants are nonzero. In particular, full inversion is possible
even in the regime of significant atom-cavity detuning, and
does not require the system to be in the strong-coupling regime.
To illustrate this, in Fig. 4 we exhibit a case in which � = 5g,
and hence the system is in the weak-coupling regime. We see
that the larger the detuning, the longer the inverting pulse and
the longer the atomic inversion duration.

We now briefly discuss some of the practical aspects for
implementing the proposed scheme. Our scheme requires
accurate control of the temporal shape of the pulse. Such a ca-
pability was experimentally demonstrated in Ref. [25], where
one starts with a time-energy entangled pair of Stokes and
anti-Stokes photons as generated via spontaneous parametric
down-conversion. An electro-optic modulator is then used to
shape the temporal profile of the anti-Stokes photon, using a

time origin established by the detection of the Stokes photon
[25]. Our scheme also requires that the atom predominantly
couple to the waveguide. In practice, this requires achieving
a high β factor, defined as β ≡ γwvg/γtotal, where γwvg is
the decay rate of the atom due to atom-waveguide coupling,
and γtotal is the total decay rate that includes nonradiative
decay processes as well as emission into nonguided modes.
A near-unity β factor has been reported in Refs. [21,22]. In
these structures, therefore, near complete inversion of a single
quantum emitter should be achievable. Finally, the dispersion
relation of the waveguide becomes well defined when the
length of the waveguide is several wavelengths long. In an
on-chip strongly confined single-mode waveguide system, a
waveguide length on the order of 10 µm should already be
very well described by our model. On the other hand, the
loss of such waveguide is already as low as a few dB/cm
experimentally [26]. Therefore, the effect of waveguide loss
should be minimal in such a short waveguide structure.

In conclusion, we have shown that a single-photon pulse can
give rise to full atomic inversion in various one-dimensional
geometries. In the field of quantum information processing
there is great interest in demonstrating on-chip quantum
circuits, where the flying qubits of photons remain confined
to waveguides, as evidenced from recent developments in
superconducting transmission line resonators [15] and on-chip
photonic circuits [27]. Compared with free-space setups,
one-dimensional geometries provide far more control of the
photon’s behavior, and a viable pathway toward integration.
Our work here shows that very strong exchange between the
flying photon and the stationary atom qubits may be realized
in these quantum circuits. Moreover, in the few-photon
limit, photon-photon interaction is directly related to atomic
excitation [8,9]. Therefore, the use of an inverting pulse—
which maximizes atomic excitation—should be important in
achieving strong nonlinearity at the few-photon level.
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[4] M. Stobińska et al., EPL 86, 14007 (2009).
[5] J.-T. Shen and S. Fan, Opt. Lett. 30, 2001 (2005).
[6] E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006).
[7] P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and

M. Soljacic, Phys. Rev. A 74, 043818 (2006).
[8] K. Srinivasan and O. Painter, Phys. Rev. A 75, 023814

(2007).
[9] J.-T. Shen and S. Fan, Phys. Rev. Lett. 98, 153003 (2007).

[10] L. Zhou et al., Phys. Rev. Lett. 101, 100501 (2008).
[11] J.-T. Shen and S. Fan, Phys. Rev. A 79, 023837 (2009).
[12] T. S. Tsoi and C. K. Law, Phys. Rev. A 80, 033823 (2009).
[13] D. E. Chang et al., Nature Phys. 3, 807 (2007).
[14] P. Longo, P. Schmitteckert, and K. Busch, Phys. Rev. Lett. 104,

023602 (2010).
[15] A. Wallraff et al., Nature (London) 431, 162 (2004).
[16] T. Aoki et al., Nature (London) 443, 671 (2006).

[17] A. V. Akimov et al., Nature (London) 450, 402 (2007).
[18] K. Srinivasan and O. Painter, Nature (London) 450, 862

(2007).
[19] A. Faraon et al., Opt. Express 16, 12154 (2008).
[20] R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett.

68, 1132 (1992).
[21] T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup,

T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, Phys. Rev.
Lett. 101, 113903 (2008).

[22] Q. Quan, I. Bulu, and M. Loncar, Phys. Rev. A 80, 011810
(2009).

[23] R. Loudon, The Quantum Theory of Light (Clarendon, Oxford,
1973).

[24] J. Gao, F. W. Sun, and C. W. Wong, Appl. Phys. Lett. 93, 151108
(2008).

[25] P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris,
Phys. Rev. Lett. 101, 103601 (2008).

[26] Y. Vlasov, and S. McNab, Opt. Express 12, 1622 (2004).
[27] J. L. O’Brien, A. Furusawa, and J. Vuckovic, Nat. Photon. 3,

687 (2009).

033804-4

http://dx.doi.org/10.1038/nature00912
http://dx.doi.org/10.1103/PhysRevLett.29.459
http://dx.doi.org/10.1209/0295-5075/86/14007
http://dx.doi.org/10.1364/OL.30.002001
http://dx.doi.org/10.1103/PhysRevLett.96.153601
http://dx.doi.org/10.1103/PhysRevA.74.043818
http://dx.doi.org/10.1103/PhysRevA.75.023814
http://dx.doi.org/10.1103/PhysRevA.75.023814
http://dx.doi.org/10.1103/PhysRevLett.98.153003
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevA.79.023837
http://dx.doi.org/10.1103/PhysRevA.80.033823
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1103/PhysRevLett.104.023602
http://dx.doi.org/10.1103/PhysRevLett.104.023602
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature05147
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06274
http://dx.doi.org/10.1038/nature06274
http://dx.doi.org/10.1364/OE.16.012154
http://dx.doi.org/10.1103/PhysRevLett.68.1132
http://dx.doi.org/10.1103/PhysRevLett.68.1132
http://dx.doi.org/10.1103/PhysRevLett.101.113903
http://dx.doi.org/10.1103/PhysRevLett.101.113903
http://dx.doi.org/10.1103/PhysRevA.80.011810
http://dx.doi.org/10.1103/PhysRevA.80.011810
http://dx.doi.org/10.1063/1.2999588
http://dx.doi.org/10.1063/1.2999588
http://dx.doi.org/10.1103/PhysRevLett.101.103601
http://dx.doi.org/10.1364/OPEX.12.001622
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1038/nphoton.2009.229

