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Synchronization with harmonics in an injected nuclear-magnetic-resonance laser
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In injected lasers, only synchronization of the order 1/1 (when a frequency of laser oscillations becomes equal
to the master laser frequency) is usually observed. Such locking appears due to single-photon transitions in a
laser. We show that with the use of multiple-photon transitions a higher-order synchronization can arise. We
present the results of numerical simulations and the preliminary experimental observations, which demonstrate
that in the mercury NMR laser, with the use of triple-photon transitions, a frequency of locked laser oscillations
becomes three times higher than the frequency of an external rf magnetic field. Such synchronization appears
only in the case of a linearly polarized (oscillating) external magnetic field. For the circularly polarized (rotating)
external field, only synchronization of the order 1/1 is possible.
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I. INTRODUCTION

Injection locking of laser oscillations may be considered
one of numerous examples of synchronization of self-sustained
oscillations by external force. If the frequency of the external
force (injected signal) � is close to the frequency of the
autonomous oscillator (the slave laser) ω0, one can observe
frequency locking (synchronization of the order 1/1). In this
case the frequency of forced oscillations ω becomes equal
to the frequency of external force (ω = �). In a general
case of synchronization of the order n/m (see, for example,
[1]), one has the following relation between the frequency
of forced oscillations ω and the frequency of an external
force �:

nω = m�, (1)

where n and m are integers.
Such locking ranges are often called the Arnold tongues [2].
Injection locking of laser oscillations has been studied

practically since the invention of the first laser, but in the vast
majority of publications on this subject synchronization of an
order higher than 1/1 has never been observed in injected
lasers (in practically all studies the frequency of the master
laser � was close to the frequency of an autonomous slave
laser ω0). As one of exclusions, it is worth citing Ref. [3],
where injection locking in a solid-state laser with intracavity
second-harmonic generation was studied theoretically. As was
shown in [3], one can realize, in this case, synchronization of
the order 2/1 of laser oscillations, using an injected light with
the frequency close to 2ω0.

Apart from synchronization of laser oscillations at the
frequencies of the order of ω0 (the frequency of a resonant
quantum transition), there are some publications (see, for
example, [4–6]) relating to the high-order synchronization
of the self-pulsing oscillations in lasers with feedback. The
frequencies of the self-pulsing oscillations and modulating
signals, in this case, are much less than ω0. For such low-
frequency oscillations, the high-order synchronization easily
appears, and corresponding Arnold tongues were observed in
the periodically modulated lasers with optical feedback [4–6].
In a nuclear magnetic resonance (NMR) laser, numerous
Arnold tongues, corresponding to such a low-frequency
synchronization, were also experimentally observed [7]. With

respect to synchronization at frequencies of the order of
the frequency of a resonant quantum transition ω0, only a
synchronization of the order 1/1 was observed in the injected
ruby NMR laser [8,9].

In contrast with [4–9], we study in this article a higher-
order synchronization of laser oscillations by injected signals
with frequencies close to ω0/q, where ω0 is the frequency
of a resonant quantum transition and q is an odd integer.
In addition to well-known applications of optical injection
for synchronization of optical oscillations, realization of the
higher-order synchronization could give a new potential for
nonlinear transformation of frequencies of laser oscillations.

In a NMR laser, there is a possibility to use multiple-
photon transitions [10,11] for the high-order synchronization
of laser oscillations by an injected signal. Such a possibility is
discussed in the present article in detail.

This article is structured as follows. In Sec. II we describe
the mercury NMR laser with nonresonant feedback and
external rf magnetic field. The optical Bloch equations,
modified to incorporate nonresonant feedback, are also given
in this section. In Secs. III and IV we present the results of
numerical simulation and the experimental results concerning
of synchronization in the considered system, before drawing
our conclusions in Sec. V.

II. MERCURY NMR LASER

For the study of locking phenomena, we choose the mercury
(NMR) laser with nonresonant feedback. The mercury NMR-
laser activity is produced by the nuclear spins of the mercury
isotope 199Hg (I = 1/2). For the mercury atoms in the gas
phase, optical pumping of nuclear magnetization and optical
NMR detection are used. With such a NMR laser, an attempt
to search a new type of fundamental interaction (the arion
long-range interaction) was performed in [12].

Figure 1 shows a schematic of the experimental setup. For
simplicity, in Fig. 1 we show only one feedback circuit (for
Hx). The sample is a quartz cell containing the vapors of atoms
of the mercury isotope 199Hg at a pressure of 10−3 Torr. The
mercury atoms are subjected to a static external magnetic field
H0, which is provided by a solenoid Lz and is parallel to the
z axis. The x and y axes are parallel to the axes of two feedback
coils Lx and Ly .
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FIG. 1. Schematic of the mercury NMR laser with nonresonant
feedback and external rf magnetic field.

Nuclear magnetization in the mercury NMR laser is opti-
cally pumped by a resonant light at 2537 Å, which is produced
by a spectral lamp with the isotope 204Hg. The light beam for
optical pumping Ip has circular polarization and is parallel
to the direction of magnetic field H0. The linearly polarized
nonresonant light beams Ix and Iy for optical NMR detection
are perpendicular to �H0 and parallel to the x and y axes. Due
to the Faraday effect [13], precession of transverse nuclear
magnetization Mx,y with the frequency ω creates the rotation
of the polarization of the monitoring light beams Ix,y . This
rotation, proportional to Mx,y , is transformed into modulation
of the intensities Ix,y after passing the analyzers (not shown
in Fig. 1), which are placed before the photodetectors. After
detection of the monitoring beams, two rf signals with the
frequency ω appear on the photodetectors. These signals
are amplified by the broadband rf amplifiers and produce
transverse magnetic fields Hx,y of feedback. The magnetic
fields Hx,y are proportional to the currents Ix,y in the feedback
coils Lx,y .

The main difference of this NMR laser from the ruby NMR
laser studied in Refs. [7–9] is the following. In the ruby NMR
laser a LC circuit with a resonance frequency ω=1/

√
LC plays

the role of the cavity of a laser. In the mercury NMR laser,
feedback is nonresonant. The feedback circuits of the mercury
NMR laser include two photodetectors, two broadband linear
rf amplifiers, and the feedback coils Lx,y . The mercury NMR
laser can be driven by an injected signal.

In the presence of injected signal, one can write transverse
magnetic fields Hx,y as

Hx = KxMy + H ext
x cos �t, Hy = KyMx + H ext

y sin �t,

(2)

where Kx,y are the transmission coefficients in the correspond-
ing feedback circuits and H ext

x cos �t and H ext
y sin �t are the

external magnetic fields produced by the rf generator.
The dynamical variables of the mercury NMR laser are the

components (Hx,Hy) of the precessing magnetic rf field in
the feedback coils Lx,y , the components (Mx,My) of the pre-
cessing transverse nuclear magnetization, and the longitudinal
nuclear magnetization Mz. We may model the mercury NMR
laser using the so-called Bloch-Kirchhoff equations,

d �M/dt = γ [ �M �H ] − �ex

1

T2
Mx − �ey

1

T2
My + �ez

1

T1
(M0 − Mz),

(3)

where �ex,y,z are the unit vectors in the directions x,y,z,
γ is the gyromagnetic ratio of the 199Hg spins, T2 is the
transverse relaxation time, 1/T1 is an effective pump rate, and

M0 is magnetization produced by optical pump. Nonresonant
feedback and the external rf signal are described in the mercury
NMR laser by relations (2).

For numerical simulations, it is convenient to rewrite
Eqs. (3) with account of (2) in the dimensionless form

⎧⎪⎨
⎪⎩

dx/dτ + x(1 − κyz) = αy + byz sin �̄τ,

dy/dτ + y(1 − κxz) = −αx + bxz cos �̄τ,

dz/dτ +zr=−κyx
2 −κxy

2 −bxy cos �̄τ − byx sin �̄τ + r,

(4)

where x = Mx

M0
, y = My

M0
, z = Mz

M0
, τ = t/T2, and

κx,y = Kx,yγM0T2, α = ω0T2, bx,y = γH ext
x,yT2,

�̄ = �T2,r = T2/T1. (5)

In (5) we denote ω0 = γH0, where ω0 is the central frequency
of the NMR transition.

Equations (4) were used for the simulations and analytical
studies presented in what follows. In these investigations,
frequency locking of the mercury NMR laser by an external rf
magnetic field was considered. With the use of triple-photon
transitions [10,11], synchronization of the order 1/3, when the
frequency � was close to ω0/3, was, at first, discovered in these
simulations and in preliminary experimental investigations.

III. LOCKED STATES INDUCED BY EXTERNAL RF
MAGNETIC FIELD

In what follows we present the results of theoretical study
and numerical simulations for the mercury NMR laser in the
presence of an external rf magnetic field. We consider two
types of an external rf magnetic field: the circularly polarized
(rotating) external field and the linearly polarized (oscillating)
external field.

A. Rotating external field

In the case of a rotating external field (H ext
x = H ext

y = H⊥,
bx = by = b = γH⊥T2, kx = ky = k), one can find analyti-
cally an exact periodic solution of Eqs. (4) for the locked state.
This solution is the following:

x = A sin(�̄τ )+B cos(�̄τ ), y =−B sin(�̄τ )+A cos(�̄τ ),

z = C = const, (6)

where A = bC(1−kC)
(α−�̄)2+(1−kC)2 , B = bC(α−�̄)

(α−�̄)2+(1−kC)2 , and C is a root
of the cubic equation

(C − 1)r[(α − �̄)2 + (1 − kC)2] + b2C = 0. (7)

This solution is stable if kC < 1. The stability condition kC <

1 is fulfilled inside the locking range, �− � � � �+, and
the boundaries of the locking range are determined by the
condition kC = 1. After substitution C = 1/k in Eq. (6), one
finds the following expressions for the left (�−) and right (�+)
boundaries of the locking range:

(�± − ω0)/ω0 ≡ (�̄± − α)/α = ±b/[α
√

(k − 1)r]. (8)

Using (5) one can rewrite (8) as

(�± − ω0)/ω0 = ±(H⊥/H0)/
√

(k − 1)r. (9)
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FIG. 2. (Color online) The left (�−) and right (�+) boundaries
of the locking range 1/1 in units of the central frequency of the
laser transition, ω0 = γH0, versus the ratio of the amplitude H⊥
of a circularly polarized (rotating) external rf magnetic field to the
strength of a static magnetic field H0. The solid lines show the
analytical results given by (9). The squares are the results of numerical
simulations. The dashed line corresponds to the resonant frequency
(� = ω0).

It follows from (9) that the width �+ − �− of the locking
range of the order 1/1 is proportional to the amplitude H⊥ of
the external magnetic field.

We have solved numerically Eqs. (4) for the following
values of laser parameters: r = 1(T1 = T2), kx = ky = k = 2,
α = 100. The results of numerical simulations (see Fig. 2)
are in excellent agreement with the analytical results given
by (9). Numerical simulations have shown that for the
circularly polarized external magnetic field only a synchro-
nization of the order 1/1 might be observed. In this case
only a main resonance (at ω0 ≈ �) exists and higher-order
resonances at ω0 ≈ (2m + 1)�(m is integer) disappear. The
NMR laser with the circularly polarized magnetic field is an
isochronous self-oscillation system: The Bloch-Siegert shift
of the resonant frequency [14] is absent in this case, and
the frequency of laser oscillations ω does not depend on
their amplitude (ω = ω0 = γH0). Due to isochronisms, the
boundaries of the locking range [see (9) and Fig. 2] are
symmetric about the central line � − ω0 = 0. The Arnold
tongues corresponding to synchronization of a higher order
were found only for the oscillating (linearly polarized) external
field.

B. Oscillating external field

For the oscillating external magnetic fields (H ext
x = H⊥,

H ext
y = 0, bx = γH⊥T2, by = 0), Eqs. (4) were numerically

solved by us at the same values of parameters: r = 1(T1 = T2),
kx = ky = 2, α = 100.

In numerical simulations we have observed the Arnold
tongue (synchronization of the order 1/1) with the use of
single-photon transitions (Fig. 3). This Arnold tongue is
analogous to that one for the circularly polarized external
magnetic field (Fig. 2) but the boundaries of the locking range
are here nonsymmetric about the line � − ω0 = 0. In this

FIG. 3. The same as in Fig. 2, but in the case of a linearly polarized
(oscillating) external rf magnetic field. The solid lines correspond to
the approximations given by (11), and the dashed curve corresponds
to the shifted resonant frequency [see (10)].

case the Bloch-Siegert shift of the resonant frequency [14] is
observed: The shifted resonant frequency ω is equal to

ω = ω0 − γH 2
⊥/16H0. (10)

The results of numerical simulations show that the left
(�−) and right (�+) boundaries of the locking range may
be approximated (at the parameters used in this numerical
simulation) by the expressions

(�± − ω0)/ω0 = − (1.3H⊥/4H0)2 ± H⊥/2H0, (11)

when H⊥ � H0. It follows from (11) that the width �+ − �−
of the locking range of the order 1/1 is proportional to the
amplitude H⊥ for weak external magnetic fields (when H⊥ �
H0):

(�+ − �−)/ω0 = H⊥/H0. (12)

In addition to the main resonance (ω0 ≈ �), the higher-
order resonances at ω0 ≈ (2m + 1)�(m is integer) appear due
to multiple-photon transitions [10,11]. In numerical simula-
tions we have observed the Arnold tongue (synchronization
of the order 1/3) with the use of the triple-photon transition
(Fig. 4). For a triple-photon transition (ω0 ≈ 3�), the shifted
resonant frequency is equal to [10]

ω = ω0 − 9γH 2
⊥/32H0. (13)

As consistent with the results of numerical simulations, the
left (�−) and right (�+) boundaries of the locking range may
be approximated, at the parameters used in the simulations, by
the expressions

(3�± − ω0)/ω0 = (3H⊥/4H0)2 /2 ± (H⊥/H0)3/9 (14)

for H⊥ � H0.
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FIG. 4. The left (3�−) and right (3�+) boundaries of the locking
range 1/3 in units of a central frequency of the laser transition,
ω0 = γH0, versus the ratio of the amplitude H⊥ of a linearly polarized
(oscillating) external rf magnetic field to the strength of a static
magnetic field H0. The solid lines correspond to the approximations
given by (14). The dashed curve corresponds to the shifted resonant
frequency [3� = ω, see (13) and (14)].

As follows from (14), the width �+ − �− of the locking
range of the order 1/3 is proportional, for H⊥ � H0, to the
cube of the amplitude H⊥:

3(�+ − �−)/ω0 = 2(H⊥/H0)3/9. (15)

IV. EXPERIMENTAL RESULTS

The Arnold tongues 1/1 and 1/3 were observed by us
experimentally for the linearly polarized (oscillating) external
rf magnetic field. In the NMR laser under study, the central
frequency of laser transition was ω0/2π = 104 Hz. In Fig. 5
we show the experimentally measured dependence of the
locking-range width of the order 1/1 on the amplitude H⊥

FIG. 5. Measured width of the locking range 1/1 versus the
amplitude H⊥ of a linearly polarized (oscillating) rf magnetic field.
The solid line corresponds to the equation (�+ − �−)/2π = 22H⊥
[see (12)].

FIG. 6. Measured width of the locking range 1/3 versus the
amplitude H⊥ of a linearly polarized (oscillating) rf magnetic field.
The solid line corresponds to the equation (�+ − �−)/2π = 9 ×
10−4H 3

⊥ [see (15)].

of the external magnetic field. It was difficult to measure the
effective amplitude H⊥ since the external magnetic field is
applied to the nuclear spins placed inside the quartz cell. Using
this reason, we give in Figs. 5 and 6 the values of H⊥ in
arbitrary units. Experimental investigations show (see Fig. 5)
that, in accordance with the theory, the width of the locking
range 1/1 is proportional to H⊥. Using the autonomous slave
laser frequency ω0/2π = 104 Hz, it is possible to estimate
H⊥ comparing the experimental results in Fig. 5 with the
expression (12). For the measured width of the locking
range (�+ − �−)/2π = 100 Hz, one obtains H⊥/H0 = 0,01.

Figure 6 shows the experimentally measured dependence of
the locking-range width of the order 1/3 on the amplitude H⊥
of the external magnetic field. In accordance with theory, the
experimentally measured width of this locking range is propor-
tional to cube of H⊥ for weak external magnetic fields (when
H⊥ � H0). Comparing the experimental results in Fig. 6 with
the expression (15), we estimate H⊥/H0 = 0,5 for the mea-
sured width of the locking range (�+ − �−)/2π = 100 Hz.

V. CONCLUSION

In summary, we have demonstrated numerically and exper-
imentally that, with the use of triple-photon transitions, the
frequency of locked oscillations of the mercury NMR laser is
three times higher than the frequency of an external rf magnetic
field. The Arnold tongues 1/1 and 1/3 are observed in the case
of a linearly polarized (oscillating) external magnetic field.
For a circularly polarized external field, only synchronization
of the order 1/1 is possible. For weak external magnetic
fields (H⊥ � H0), the locking-range width of the order 1/1
is proportional to the amplitude H⊥ of the external magnetic
field, and that of the order 1/3 is proportional to the cube of H⊥.
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