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We study the effect of atom-molecule internal tunneling on the ground state of atom-molecule Bose-Einstein
condensates in a double-well potential. In the absence of internal tunneling between atomic and molecular states,
the ground state is symmetric, which has equal-particle populations in two wells. From the linear stability analysis,
we show that the symmetric stationary state becomes dynamically unstable at a certain value of the atom-molecule
internal tunneling strength. Above the critical value of the internal tunneling strength, the ground state bifurcates
to the particle-localized ground states. The origin of this transition can be attributed to the effective attractive
interatomic interaction induced by the atom-molecule internal tunneling. This effective interaction is similar to
that familiar in the context of BCS-BEC crossover in a Fermi gas with Feshbach resonance. Furthermore, we
point out the possibility of reentrant transition in the case of the large detuning between the atomic and molecular
states.
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I. INTRODUCTION

Bose-Einstein condensation in dilute atomic gases has
been offering opportunities to research macroscopic quantum
phenomena since its experimental realization in 1995. In
particular, one of the most fascinating macroscopic quan-
tum phenomena is the Josephson effect between two Bose-
Einstein condensates (BECs) trapped in a double-well po-
tential. This system is called as a boson Josephson junction
(BJJ) [1]. Recently, BJJs have been realized experimentally,
and macroscopic wave functions are observed directly [2].
This experimental achievement has triggered much interesting
research [3–5]. Though in BJJs the spatial coherence of
BECs is focused, Josephson effects occur not only between
spatially separated BECs but also between internal degrees of
freedom in a single BEC. In particular, Josephson-like effects
between atomic and molecular states have been discussed
theoretically [6–8].

In the past decade many efforts have been devoted to
creating molecular BECs from ultracold atoms [9–13]. Al-
ready molecular BECs have been created from fermionic
atoms using magnetic Feshbach resonances [11]. On the
other hand, the creation of coexisting atomic and molecular
condensates by means of photoassociation has been discussed
theoretically [14–16]. Photoassociation permits precise con-
trol of population transfer between individual discrete quantum
states [17]. Currently, a mixture of a Rb BEC and a degenerate
gas of Rb2 ground-state molecules has been realized using
photoassociation [13]. Furthermore, though not in a Bose-
Einstein condensed phase, the collective oscillation of the
populations between an atomic state and a molecular state has
been observed [10,18,19]. The realization of atom-molecule
BECs is forthcoming, and these experimental achievements
have accelerated much theoretical research on atom-molecule
coherence [20–25]. In particular it has been discussed that the
atom-molecule internal tunneling changes the nature of system
drastically. For instance, it is predicted that atom-molecule
internal tunneling can induce a droplet-like ground state in
atom-molecule BEC mixtures [6]. The relation between the
Ising model and the phase transition of bosonic atom-molecule

mixtures is also discussed [26–28]. As for atom-molecule
mixtures in optical lattices, the possibility of a so-called
super-Mott phase has been pointed out [29,30].

In this paper, we study atom-molecule BECs in a double-
well potential by focusing on the effect of atom-molecule
internal tunneling on the ground state. Although several
authors have discussed BJJs of binary mixtures [31–34], the
effects of internal degrees of freedom in BECs in a double-well
potential have not been fully discussed. In the present paper,
we consider atom-molecule internal tunneling. Even in a
single-component BJJ, the competition between strengths of
tunneling and interaction causes various phenomena such
as macroscopic quantum self-trapping (MQST) [1]. Adding
atom-molecule internal tunneling as a new degree of freedom,
we will show that the competition between the atom-molecule
internal tunneling and interwell tunneling or interaction leads
to new phenomena.

As our main result, we will show that atom-molecule
internal tunneling induces the asymmetric ground state, which
has unequal particle populations in two wells. In the absence
of internal tunneling, the ground state is symmetric, with
equal particle populations in two wells. We note that ground
states breaking the symmetry of trapping potentials have been
found in various BEC systems. A well-known example of
a symmetry-breaking ground state is a soliton in a quasi-one-
dimensional attractive BEC [35,36]. The ground state in attrac-
tive BJJs also breaks the left-right symmetry of the double-well
potential above a certain value of the interaction strength as
predicted theoretically [37]. The asymmetric ground states in
these systems are caused by attractive interactions. In contrast
we will show that, even for repulsively interacting Bose gases,
spontaneous symmetry breaking in the ground state emerges
in atom-molecule BECs in a double-well potential owing to
atom-molecule internal tunneling.

In addition, we show in the simplest case that the effect of
atom-molecule internal tunneling can be described in terms of
the effective interatomic attractive interaction. This effective
interaction is similar to that familiar in the context of BCS-
BEC crossover in a Fermi gas with Feshbach resonance [38].
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We show that this effective interaction is always attractive
and induces the asymmetric ground states in the absence of
molecular tunneling, the intermolecule interaction, and the
inter-atom-molecule interaction. Furthermore, we discuss the
possibility of a reentrant transition, which cannot be explained
by the simple form of the effective attractive interaction.

This paper is organized as follows. In Sec. II, we explain
the model and approximations used in this paper. In Sec. II A,
we introduce a four-mode model and classical analysis. In
the four-mode model, we concentrate on condensate modes
only and ignore other modes. Furthermore, we ignore quantum
fluctuations by replacing creation-annihilation operators in the
Hamiltonian by the c-number. Next, the parameters in this
model are estimated from experiments.

In order to investigate the ground state, we first derive
time-evolution equations in Sec. II B. Then, by using these
equations, we derive the equations for the particle populations
in the ground states in Sec. II C, and we develop the expression
for eigenfrequencies in Sec. II D.

In Sec. III, we perform a linear stability analysis, using
the equations derived in Sec. II. In particular, we investigate
the stability of symmetric stationary states, where the particle
numbers in the left and right wells are equal. By performing
a linear stability analysis, we show that the atom-molecule
tunneling induces the dynamical instability of the symmetric
stationary state, which is the ground state in the absence of
atom-molecule tunneling. This indicates the emergence of
symmetry-breaking ground states, where the particles localize
in one well. In Sec. III A, by using the equations for the
particle populations in the ground state derived in Sec. II C, we
show that this instability is accompanied by the bifurcation of
symmetric stationary states to asymmetric ones. By comparing
the energies of symmetric and asymmetric states, we confirm
that the asymmetry state is the ground state. The general
relation between dynamical instability and phase transition
of ground states is discussed briefly in Appendix A. Some
details of the calculations are given in Appendices B–E.

II. MODEL AND APPROXIMATIONS

A. Four-mode model and classical analysis

The second-quantized Hamiltonian for Bose atoms and
molecules can be written as

Ĥ =
∑
i=a,b

∫
dr

(
h̄2

2mi

∇�̂
†
i · ∇�̂i + Vext(r)�̂†

i �̂i

)

+ gi

2

∑
i=a,b

∫
dr�̂†

i �̂
†
i �̂i�̂i + gab

∫
dr�̂†

a�̂
†
b�̂b�̂a

− λ

∫
dr(�̂†

b�̂a�̂a + �̂†
a�̂

†
a�̂b) + δ

∫
dr�̂†

b�̂b, (1)

where �̂a and �̂b represent field operators for Bose atoms and
molecules, respectively, λ is the internal tunneling strength
between atomic and molecular states, δ is the energy difference
between atoms and molecules, and Vext(r) is a double-
well potential. The interatomic, the intermolecule, and the
atom-molecule interactions can be approximated in terms of
the s-wave scattering lengths as gi = 4πh̄2asi/mi and gab =
6πh̄2asab/ma (i = a,b,mb = 2ma). Here, ma is the mass of a

Bose atom. Furthermore, we introduce the four-mode approx-
imation. In this approximation, we concentrate on condensate
modes only, and we ignore the effect of the particles occupying
other modes. From this point of view, field operators can be
approximated as �̂a � �aLâL + �aRâR and �̂b � �bLb̂L +
�bRb̂R , where �aL,�aR (�bL,�bR) are the wave functions of
the atomic (molecular) condensate modes in the left well and
the right well, respectively. âL,âR (b̂L,b̂R) are annihilation
operators for the atomic (molecular) condensate modes in
the left well and the right well, respectively. Applying these
approximations to Eq. (1), we obtain the quantum four-mode
Hamiltonian (four-mode model)

Ĥ = −Ja(a†
LaR + a

†
RaL) − Jb(b†LbR + b

†
RbL)

+�(b†LbL + b
†
RbR) + Ua

2
(a†

La
†
LaLaL + a

†
Ra

†
RaRaR)

+ Ub

2
(b†Lb

†
LbLbL + b

†
Rb

†
RbRbR)

+Uab(a†
LaLb

†
LbL + a

†
RaRb

†
RbR)

− g(b†LaLaL + b
†
RaRaR + a

†
La

†
LbL + a

†
Ra

†
RbR), (2)

where the parameters are defined in Appendix B. In addition,
we use classical analysis, in which annihilation operators are
replaced by the c number

√
Neiθ , where N is the particle

number of a condensate mode and θ is its phase. This
approximation is justified when an occupation number is
macroscopic. Using this procedure, we obtain the classical
four-mode Hamiltonian as

Hcl = −2Ja

√
NaLNaR cos(θaR − θaL)

− 2Jb

√
NbLNbR cos(θbR − θbL) + �(NbL + NbR)

+ Ua

2

(
N2

aL + N2
aR

) + Ub

2

(
N2

bL + N2
bR

)
+Uab(NaLNbL + NaRNbR)

− 2g[NaL

√
NbL cos(2θaL − θbL)

+NaR

√
NbR cos(2θaR − θbR)], (3)

where NaL (NaR) represents the particle number of the atom in
the left (right) well, and NbL(bR) represents that of the molecule
in the left (right) well. θaL (θaR) is the phase of the atomic
condensate in the left (right) well, and θbL (θbR) is the phase
of the molecular condensate in the left (right) well.

In order to relate our model to realistic systems, we consider
the double-well trap potential used in the experiment of a
single-component BJJ of 87Rb [2], and we set the parameters
to be consistent with this experiment. In this experiment,
the parameters are as follows: The ratio � = NUa/(2Ja) is
estimated as 15 in Ref. [2], which corresponds to the strong-
coupling case. Since the total-particle number N is 1150
in [2], the atomic interaction strength normalized by the atomic
tunneling strength can be obtained as Ua/Ja � 3 × 10−2. We
use this value for the atomic interaction strength. As for the
molecular interaction strength, we suppose that the molecular
scattering length is the same as the atomic one and that the
shapes of condensate wave functions of atoms and molecules
are the same. Under this condition Ub = Ua/2 from Eq. (B4).
In addition, in this study we set the total particle number as
N = NaL + NaR + 2NbL + 2NbR = 2000.
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We next consider the atom-molecule interaction. From the
experiment [9], the atom-molecule scattering length of 87Rb
is estimated as aam = −180 ± 150a0, where a0 is the Bohr
radius, and the ratio of the atom-molecule scattering length
and the atomic scattering length aam/aa can be estimated
to range from about −3.2 to 0.3. Based on this value we
suppose the atom-molecule interaction Uab to be negative, but
we treat it as a variable parameter. We will compare results
with different values of Uab. The negative Uab is well suited
to the internal tunneling between internal states because phase
separation does not occur. This is different from a binary BEC
mixture in the |F = 2,mf = 2〉 and |1,−1〉 spin states of 87Rb,
where component separation is observed due to the repulsive
interspecies interaction [39].

In order to set the molecular tunneling strength, we suppose
that the atomic eigenstate �aL (�aR) and the molecular
eigenstate �bL (�bR) have almost the same shapes. From
Eq. (B1) and mb = 2ma , Jb/Ja = 1/2.

B. Equations of time evolution

In order to obtain the ground state and the eigenfre-
quencies corresponding to the excitation spectra, we derive
the time-evolution equations. Using the classical four-mode
Hamiltonian, we can derive the Hamilton equations of motion
describing the dynamics of atomic and molecular BECs in a
double-well potential as

h̄ṄaL = ∂Hcl

∂θaL

, h̄ṄaR = ∂Hcl

∂θaR

, (4)

h̄ṄbL = ∂Hcl

∂θbL

, h̄ṄbR = ∂Hcl

∂θbR

, (5)

h̄θ̇aL = − ∂Hcl

∂NaL

, h̄θ̇aR = − ∂Hcl

∂NaR

, (6)

h̄θ̇bL = − ∂Hcl

∂NbL

, h̄θ̇bR = − ∂Hcl

∂NbR

. (7)

These time-evolution equations can also be obtained by
applying classical analysis to the Heisenberg equations derived
from the quantum four-mode Hamiltonian. The Heisenberg
equation and the Hamilton equation are related through
the canonical commutation relation [h̄N̂ ,θ̂ ] = ih̄ and the
Poisson bracket {h̄N,θ} = 1. The explicit expressions of these
equations are given in Appendix C.

C. Equations for the ground state

We now look for stationary solutions of the equations of
motion for the particle numbers (C1)–(C4). We can easily find
that the relative phases should be 0 in the ground states, that is,
the atomic relative phase θaL − θaR = 0, the molecular relative
phase θbL − θbR = 0, and the atom-molecule relative phases
2θaL(aR) − θbL(bR) = 0, respectively.

In this study, we investigate the ground states in
the presence of the atom-molecule internal tunneling in
a symmetric double-well potential. From the Hamilto-
nian (3), the competition between the tunneling strengths
and the interparticle interactions determines the ground states.
The interwell tunnelings Ja and Jb lower the energy most when
the particle populations are equal in the two wells. The inter-

atomic and intermolecular repulsive interactions Ua and Ub

act in the same way. In contrast to these contributions, the
attractive atom-molecule interaction Uab lowers the energy
when the particles localize in one well. As discussed later
in Sec. III B, the atom-molecule internal tunneling g can
act effectively as an attractive interatomic interaction. This
competition will create an asymmetric ground state, which
breaks the symmetry of the double-well trap potential.

In order to look for the ground state with a fixed particle
number, we introduce the chemical potential µ and the grand
canonical energy

K ≡ Hcl − µN, (8)

where the total number is defined as N = NaL + NaR +
2NbL + 2NbR . Then the ground state can be determined from

∂K

∂NaL(aR)
= 0,

∂K

∂NbL(bR)
= 0, (9)

or equivalently [from Eqs. (6) and (7)]

h̄θ̇aL(aR) = −µ, h̄θ̇bL(bR) = −2µ. (10)

From Eqs. (C5)–(C8), we obtain

−µ = Ja

√
NaR

NaL

− NaLUa − NbLUab + 2g
√

NbL, (11)

−µ = Ja

√
NaL

NaR

− NaRUa − NbRUab + 2g
√

NbR, (12)

−2µ = Jb

√
NbR

NbL

− � − UbNbL − NaLUab + g
NaL√
NbL

, (13)

−2µ = Jb

√
NbL

NbR

− � − UbNbR − NaRUab + g
NaR√
NbR

. (14)

These equations determine the stationary states. It is clear
that these equations always have a symmetric solution NaL =
NaR,NbL = NbR . However, the symmetric solution does not
always have the lowest energy. We will show this in Sec. III
from both the linear stability analysis and by calculating
energy.

D. Excitation spectra

Solving the linearized Hamilton equations, we obtain the
four eigenfrequencies of the excitation spectra from the
stationary states. We will look at these eigenfrequencies
to investigate the stability of the system. If the excitation
frequency ω has an imaginary part, such a stationary state is
dynamically unstable; that is, if the stationary state is perturbed
slightly, the small-amplitude oscillation exponentially grows
in time.
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Our procedure is summarized as follows. We first ex-
pand Hcl in fluctuations around the symmetric stationary
state to second order. Next, by performing the canoni-
cal transformation (θaL,θaR,θbL,θbR) → (φ̃0,φ̃AM,φ̃+,φ̃−) and
(NaL,NaR,NbL,NbR) → (X̃0,X̃AM,X̃+,X̃−), we diagonalize
the canonical momentum part of the Hamiltonian. Details
of calculations are given in Appendix D. We arrive at the
quadratic Hamiltonian

Hcl � 1
2 φ̃2

0 + 1
2 φ̃2

AM + 1
2 φ̃2

+ + 1
2 φ̃2

− + Veff(X̃+,X̃−,X̃AM ).

(15)

The explicit form of Veff is given by

Veff(X̃+,X̃−,X̃AM )

� gNa

√
Nb

[
4Ua + Ub − 4Uab + g√

Nb

(
4 + Na

2Nb

)]

× (δX̃AM )2 + (δX̃+,δX̃−)V

(
δX̃+
δX̃−

)
, (16)

where Na(Nb) is the atomic (molecular) particle number in
each well at the symmetric stationary state, that is, Na ≡
NaL(aR),Nb ≡ NbL(bR). The 2 × 2 matrix V is defined as

V ≡
(

2�+Z+
(
α2

+J e
a + J e

b + 2α+Ue
ab

)
, 2

√
�+�−Z+Z−

[ − J e
a + J e

b + (α+ + α−)Ue
ab

]
2
√

�+�−Z+Z−
[ − J e

a + J e
b + (α+ + α−)Ue

ab

]
, 2�−Z−

(
α2

−J e
a + J e

b + 2α−Ue
ab

)
)

, (17)

where J e
a ≡ Ja/Na + Ua,J

e
b ≡ Jb/Nb + Ue

b , and

Ue
b ≡ Ub + gNa

2Nb

√
Nb

, Ue
ab ≡ g√

Nb

− Uab. (18)

Using this quadratic Hamltonian, we obtain the linearized
Hamilton equations. Eliminating the phase variables, we
arrive at

h̄2δ ¨̃XAM = −2gNa

√
Nb

(
4Ua + Ue

b + 4Ue
ab

)
δX̃AM, (19)

h̄2 d2

dt2

(
δX̃+
δX̃−

)
= −2V

(
δX̃+
δX̃−

)
. (20)

We then assume the normal mode solutions δX̃± ∝
e±iωt , δX̃AM ∝ e±iωt . Equation (19) immediately gives one
eigenfrequency:

(h̄ωAM )2 = 2gNa

√
Nb

(
4Ua + Ue

b + 4Ue
ab

)
(21)

The other two eigenfrequencies can be obtained by diagonal-
izing the coefficient matrix of Eq. (20):

(h̄ω±)2 = 2
(
AJe

a + CJ e
b

) + 4BUe
ab ±

√
4
[(

AJe
a + CJ e

b

) + 2BUe
ab

]2 − 16(AC − B2)
[
J e

a J e
b − (

Ue
ab

)2]
, (22)

where we have defined the coefficients A, B, and C
as A ≡ NaJa + 2gNa

√
Nb,B ≡ gNa

√
Nb, and C ≡ NbJb +

1
2gNa

√
Nb, respectively. We note that, from Eq. (D4), X̃AM

and X̃± can be expressed in terms of number variables as

X̃AM = Nb − 2Na

10
√

gNa

√
Nb

. (23)

X̃± = ± [(NaL − NaR) + α∓(NbL − NbR)]

2(α+ − α−)
√

2�±Z±
. (24)

From Eq. (23), we see that the X̃AM mode represents the
oscillation between atomic and molecular BECs. Therefore,
ωAM represents the internal Josephson frequency between
atomic-molecular states. Since one can easily show α+ > 0
and α− < 0, Eq. (24) clearly shows that X̃+ represents
the out-of-phase interwell motion, in which the atoms and
molecules oscillate inversely, whereas X̃− represents the
in-phase interwell motion, in which the atoms and molecules
oscillate in the same direction. For the parameters defined
in Sec. II, ω+(ω−) represents the out-of-phase (in-phase)
mode. More generally, the eigenvectors of ω± modes are the

linear combination of in-phase and out-of-phase motions. In
addition, the corresponding frequencies ω± are reduced to the
Josephson frequencies in the single-component case in the
limit of g → 0 and Uab → 0.

III. PARTICLE-LOCALIZED GROUND STATES INDUCED
BY INTERNAL ATOM-MOLECULE TUNNELING

When the atom-molecule interaction Uab and the atom-
molecule internal tunneling g are small, the ground state is
symmetric (i.e., the particle populations in two wells are equal
to each other). In this section, we will show that the atom-
molecule internal tunneling induces the particle-localized
ground state. This transition from the nonlocalized ground
state to the localized one is signaled by the dynamical insta-
bility of the in-phase mode. In what follows, we investigate
the dynamical stability of the original symmetric ground state
by using the excitation spectra derived in the previous section.
After the stability analysis, we investigate the stationary states
and show the bifurcation of the symmetric stationary state to
the asymmetric ones. The cause of particle localization will be
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FIG. 1. (Color online) � dependence of particle populations in
the symmetric stationary states. � (©) represents Na (Nb).

discussed in Secs. III B and III C. In Secs. III C and III D, we
also discuss the possibility of a reentrant transition.

Here, we explain the parameters of the particle interactions.
We set the atomic interaction strength Ua and the molecular
interaction strength Ub as described in Sec. II throughout this
section. In what follows, we set the atom-molecule interaction
strength as Uab/Ja = −2.3 × 10−2 (except in the stability
diagrams of Figs. 8 and 9 in which Uab and g are varied),
whose absolute value is slightly smaller than Ua .

A. Particle localization transition

First, we determine the atom-molecule energy difference
�, which we use in this section. The stationary states are
determined by solving Eq. (11)–(14). In the absence of atom-
molecule internal tunneling there only exists the symmetric
stationary state, which is the ground state. The � dependence
of particle populations in the limit g → 0 is shown in Fig. 1.
From Fig. 1 each condensate has a few hundred particles so
that the classical analysis introduced in Sec. II A is appropriate.
Hereafter we choose the atom-molecule energy difference as
�/Ja = 3 in order that the atomic and molecular particle
numbers be almost the same.

In Fig. 2, we investigate the g dependence of particle
populations in the symmetric stationary state. From this
figure we conclude that the particle populations are large
enough for applying the mean-field approximation in a wide
range of atom-molecule internal tunneling g. We also find
that the atomic populations in the ground states grows, by
increasing the atom-molecule internal tunneling strength. In
the symmetric stationary state, where 2θaL(aR) − θbL(bR) = 0,
Na = NaL(aR), and Nb = NbL(bR), the internal tunneling term
in the Hamiltonian (3) is reduced to be −4gNa

√
Nb. Because

the order of Na is larger than that of Nb, the symmetric
stationary state tends to lower the total energy by increasing
Na rather than Nb in the large-g region.

Next, we investigate the dynamical stability of the symmet-
ric stationary state by looking at the excitation frequencies.
Figure 3 is the excitation spectra. ω+ and ωAM are always real
and close to each other in the large-g region. On the other hand,
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FIG. 2. (Color online) g dependence of particle populations in
the symmetric stationary states. � (©) represents Na (Nb).

as shown in Fig. 3, ω− goes to zero at the finite atom-molecule
internal tunneling g. As shown in Fig. 4, the imaginary part of
ω− emerges at the same value of g, while the other modes are
still dynamically stable. This fact indicates the occurrence of
a symmetry-breaking phase transition.

In order to confirm the appearance of the particle-localized
ground state, we investigate the particle populations in the
stationary state by solving Eqs. (11)–(14). Figures 5 and 6
show the atomic and molecular populations in the stationary
solutions. These represent the bifurcation of the populations,
which means the appearance of the new stationary states
induced by the atom-molecule internal tunneling. In these new
stationary states, the populations of atoms and molecules are
localized in the same well, which means the breaking of the
left-right symmetry of a double-well potential. The value of g

at the bifurcation point is the same as that of the point where
dynamical instability occurs. Furthermore, we compare the
total energies of the symmetric and asymmetric ground states.
Figure 7 shows that the total energy of the asymmetric state
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FIG. 3. (Color online) g dependence of excitation spectra of the
symmetric stationary states.
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FIG. 4. (Color online) g dependence of imaginary part and real
part of h̄ω− of symmetric stationary states.

is lower than that of the symmetric state, which means the
alteration of the ground state.

Finally, we investigate the stability of symmetric stationary
states by varying Uab and g. The stability diagram of the
symmetric stationary state is presented in Fig. 8. From this
figure, the large g and negative Uab induce the asymmetric
ground state.

B. The effective attractive interaction

The effective interatomic attractive interaction mediated by
molecular bosons is often discussed in the context of BCS-
BEC crossover in a Fermi gas with Feshbach resonance using
the two-channel model [38]. We discuss the same type of
attractive interaction in the four-mode model, assuming the
simplest case Jb = Ub = Uab = 0.
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FIG. 5. (Color online) g dependence of atomic particle popula-
tions in the symmetric and asymmetric stationary states.
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FIG. 6. (Color online) g dependence of molecular particle popu-
lations in the symmetric and asymmetric stationary states.
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FIG. 7. (Color online) g dependence of total energy of the
symmetric and asymmetric stationary states. The inset is the energy
difference between symmetric and asymmetric stationary states.
Es (Ea) represents the total energy of the symmetric (asymmetric)
stationary state.

FIG. 8. (Color online) The stability phase diagram for the
symmetric stationary state at � = 3Ja . The black line represents
h̄ω− = 0.
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In this simple case, we can solve Eqs. (13) and (14) for√
NbL(bR) as

√
NbL(bR) = g

NaL(aR)

� − 2µ
. (25)

By using this in the grand canonical energy, we obtain

K = −2Ja

√
NaLNaR + 1

2 Ũa

(
N2

aL + N2
aR

) − µ(NaL + NaR),

(26)

where

Ũa ≡ Ua − 2g2

� − 2µ
. (27)

This clearly shows that the effect of the atom-molecule
tunneling modifies the interatomic interaction Ua to the
effective interaction Ũa . From Eq. (25), it is clear that � > 2µ

always. Therefore, the contribution from the atom-molecule
tunneling is always attractive in the case Jb = Ub = Uab = 0.

In order to investigate the transition from the symmetric to
asymmetric state, we write

NaL = Na(1 + x), NaR = Na(1 − x), (28)

and we expand K in x. We obtain

K � −2NaJa + N2
a Ũa − 2µNa

+Na(Ja + NaŨa)x2 + NaJa

4
x4. (29)

This clearly shows that the ground state is determined by
the competition between the interwell tunneling Ja and the
effective interaction Ũa . The transition from the symmetric
solution (x = 0) to the asymmetric solution (x 	= 0) occurs
when the sign of the coefficient of the quadratic term changes
from positive to negative. More explicitly, the asymmetric state
become the ground state when Ja + NaŨa < 0. By using (25),
this condition is written as

Ja + NaUa < 2g
√

Nb. (30)

From this condition, the atom-molecule tunneling always
tend to make the asymmetric ground state. This analysis
assumed the simple case Jb = 0, Ub = 0, and Ua = 0. One
might expect that the quantitative results do not change for the
general case, as long as Jb, Ub, and Uab are small. However,
in the following sections, we show that the atom-molecule
tunneling also has the effect creating the symmetric ground
state in the general case Jb 	= 0, Ub 	= 0, and Uab 	= 0.

C. The stability condition of the symmetric stationary state

In this section, we consider the general case Jb 	= 0, Ub 	=
0, and Uab 	= 0. In this case, we have not been able to reduce
the ground canonical energy in a simple closed form in terms of
atomic populations NaL and NaR . Thus, we use the excitation
spectra in order to discuss the stability of the symmetric state.

From Eq. (22), the dynamical instability condition
(h̄ω−)2 < 0 is reduced to be(

Ja

Na

+ Ua

) (
Jb

Nb

+ Ub + gNa

2Nb

√
Nb

)
<

(
− g√

Nb

+ Uab

)2

.

(31)

When this inequality is satisfied, the h̄ω− mode becomes
dynamically unstable, signifying that the ground state becomes
asymmetric. This condition generalizes Eq. (30) to including
Jb,Ub, and Uab. The remarkable difference from (30) is
that the atom-molecule tunneling strength g appears on both
sides of the equation. This means that the atom-molecule
internal tunneling tends to create not only the asymmetric
ground state but also the symmetric one. This nonmonotonic
behavior has not been found in the simplest model neglecting
Jb,Ub, and Uab.

The term including g is gNa/(2Nb

√
Nb) on the left-hand

side, and g/
√

Nb on the right-hand side. The ratio of these
terms is Na/(2Nb), which is the ratio of the numbers of atomic-
state and molecular-state particles. This is controlled by the
atom-molecule energy difference � as in Fig. 1 and explained
in Sec. III A.

The large � tends to increase Na as seen from Fig. 1.
Therefore, when �(>0) is large, by increasing g in Eq. (31),
the term including g on the left-hand side is more enlarged
than the one on the right-hand side. In contrast, when � is
small, the term including g on the left-hand side does not
have a significant role in the symmetric-asymmetric transition.
Therefore, the atom-molecule tunneling tends to create an
asymmetric ground state as Eq. (30).

However, this � dependence is not the case in the large-g
region. Since the right-hand side is quadratic in g, the right-
hand side of Eq. (31) is enlarged by g independently to the
atom-molecule energy difference � in the large-g region. In
this large-g region, Eq. (31) reduces to Eq. (30).

Therefore, when �(>0) is large, atom-molecule tunneling
has a tendency to create a symmetric ground state in the small-
g region, whereas it tends to create an asymmetric ground
state in the large-g region. The influence of the atom-molecule
tunneling on the ground state depends on the strength of the
atom-molecule tunneling when �(>0) is large. In Sec III A,
we investigated the small-� region. In the next section, we
investigate the large-� region.

D. Reentrant transition

In this section, we discuss the possibility of reentrant
transition, where the ground state changes in the order of
asymmetric-symmetric-asymmetric by increasing g. Reen-
trant transition occurs when the positive � and the negative
Uab are large. As explained in the previous section, when
�(>0) is large, atom-molecule tunneling tends to create a
symmetric ground state in the small-g region. Therefore, when
the negative Uab is large enough to create an asymmetric
ground state at g = 0, the finite g can cause the transition
to the symmetric ground state from the asymmetric one. In
contrast, in the large-g region, atom-molecule tunneling tends
to create an asymmetric ground state, and the transition from
symmetric to asymmetric ground state is possible. In this way,
by increasing the internal tunneling g at a sufficiently large
�, the ground state turns from the asymmetric state to the
symmetric state, and again, goes to the asymmetric phase.

In fact, the large � changes the stability phase diagram
to that shown in Fig. 9, which is quite different from Fig. 8.
In this figure, around Uab/Ja = −2.5 × 10−2 at g = 0, the
symmetric stationary state is unstable, and increasing the
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FIG. 9. (Color online) The stability phase diagram for the
symmetric stationary state at � = 50Ja . The black line represents
h̄ω− = 0.

internal tunneling g changes the symmetric state to a stable
one. By increasing g further, the symmetric state turns to
being unstable again. We note that asymmetric stationary states
exist, when the symmetric state is unstable. In this region, the
asymmetric states are the ground states.

In what follows, we estimate the value of � required to
cause the reentrant transition at the ground state. From Eq. (31),
the phase boundary between the stable and unstable phases is
given by

Uab = g√
Nb

−
√(

Ja

Na

+ Ua

)(
Jb

Nb

+ Ub + gNa

2Nb

√
Nb

)
.

(32)

If the reentrant transition does not occur, the stability phase
diagram is as shown in Fig. 8, where the phase boundary is
almost a straight line. In contrast, in the case that the reentrant
transition occurs as in Fig. 9, the phase boundary line has a
minimal Uab value. Therefore, from the condition ∂Uab/∂g =
0, we can derive the condition for reentrant transition. We find
that

gmin = 1

8
√

Nb

(Ja + NaUa) − 2
√

Nb

Na

(Jb + NbUb), (33)

where we define gmin as g at the minimal Uab point. The
condition for reentrant transition is given by gmin > 0. In
the weak-coupling limit NaUa 
 Ja and NbUb 
 Jb, the
condition gmin > 0 is reduced to be Na/Nb > 16Jb/Ja , and
in the strong-coupling limit NaUa � Ja and NbUb � Jb, the
condition for reentrant transition is Na/Nb > 4

√
Ub/Ua . In

this paper, we take NUa/Ja = NUb/Jb = 60 following the
discussion in Sec. II. Therefore, we are in the strong-coupling
limit. Using the parameters in Sec. II, we have Ub/Ua = 1/2
and Na/Nb > 2

√
2. By using this criterion, � � 40Ja is

needed to cause the reentrant transition from Fig. 10.
We now examine the experimental possibility of realizing

this large detuning �. First, we estimate the value of Ja/h̄.
Within a two-mode model, the Josephson frequency in the
single-component case [1] is h̄ωJ = 2Ja

√
1 + �. In the single

BJJ experiment [2], the Josephson frequency is estimated as
ωJ = 40(ms)−1, and � = 15 as explained in Sec. II. Using
these values, we find Ja/h̄ � 20 s−1. Using this value, we

 0
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 0  10  20  30  40  50  60  70  80

FIG. 10. (Color online) � dependence of Na/Nb of the symmetric
stationary state. The thick line represents Na/Nb = 2

√
2.

estimate the value of � = 50Ja , which we use in Fig. 9. This
gives

�

h̄
= 50 × 20 s−1 = 1 kHz. (34)

We compare this value with the experimental value of the
Feshbach resonance using 87Rb [19]. In this experiment, the
energy difference between the open-channel (closed-channel),
which corresponds to the atomic (molecular) state, is �µ(B −
Bres), where �µ is the difference of magnetic moments
between these states, and B is the strength of the magnetic
field. Bres is the strength of the magnetic field at the Feshbach
resonance point. In this experiment, �µ is estimated as
�µ = 2πh̄ × 111 kHz/G. In this experiment, B ends up being
typically 50 mG away from the Feshbach resonance. Using this
value, we obtain �µ × (B − Bres)/h̄ � 2π × 5 kHz. This is
larger than the estimated value given in (34).

IV. SUMMARY

We investigated how atom-molecule internal tunneling
changes the ground state of atom-molecule BECs in a double-
well potential. From the linear stability analysis, we showed
that atom-molecule internal tunneling induces the particle-
localized ground state through dynamical instability. This is
quite different from the single-component BJJ because the
tunneling terms between BECs tend to prevent localizations in
a single-component BJJ [37].

As explained in Sec. III C the particle localization is caused
by the fact that the interatom-molecule tunneling behaves like
interatomic attractive interaction effectively. We showed that
this effective interaction is always attractive in the absence of
Jb,Ub, and Uab. This is the same type of effective interaction as
in the two-channel model often used in the study of BEC-BCS
crossover in a Fermi gas with Feshbach resonance [38].

However, the situation can be quite different in the general
case that Jb 	= 0, Ub 	= 0, and Uab 	= 0. We pointed out
the possibility of a reentrant transition, which cannot be
understood in terms of the effective attractive interaction. In the
large-�(>0) region, the ground state changes from localized
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to nonlocalized, and again to localized, with increasing atom-
molecule internal tunneling. From this result, we pointed
out the possibility that atom-molecule internal tunneling
exhibits the rich physics undiscovered in the treatment of
the simple two-channel model neglecting atom-molecule and
intermolecule interactions.

Next, we pointed out that quantum fluctuations do not pre-
vent the particle localization. In order to consider the effect of
quantum fluctuations, we performed the exact diagonalization
of the Hamiltonian (2) [40]. From this full-quantum treatment,
we conclude that the ground state becomes the superposition
of the particle-localized states in the left and right well.

Finally, we note that the reentrant transition cannot occur
in a binary BEC mixture. By replacing the internal tunneling
term in the (2) with (b̂†LâL + b̂Lâ

†
L + b̂

†
RâR + b̂Râ

†
R), we have

the Hamiltonian for a binary BEC mixture. From the same
procedure as in Sec. II, we can obtain the equation for a
binary BEC mixture similar to Eq. (31). From this equation,
we can conclude that the reentrant transition is unique to
atom-molecule mixture BECs.
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APPENDIX A: DYNAMICAL INSTABILITY AND
SECOND-ORDER PHASE TRANSITION

In this Appendix, we briefly review the general re-
lation between symmetry breaking and dynamical in-
stability. We suppose the classical Hamiltonian having

f degrees of freedom as H = ∑f

i=1
p2

i

2 + Veff(x1,x2, . . . ,xf ),
where xi(i = 1, . . . ,f ) are the dynamical variables and
pi(i = 1, . . . ,f ) are their canonical momenta. The coeffi-
cients of kinetic terms have been normalized by scaling
the dynamical variables. Expanding this effective poten-
tial around stationary states to second order in the fluc-

tuations, one obtains H � ∑f

i

p2
i

2 + 1
2

∑
i,j

∂2H
∂xi∂xj

δxiδxj ≡∑f

i

p2
i

2 + 1
2δx†Vδx. Here we defined δx† ≡ (δx1,δx2, . . . ,δxf )

and Vi,j ≡ ∂2H/∂xi∂xj . The linearized Hamilton equations
are given by ṗi = − ∂H

∂xi
= −∑f

j=1
∂2H

∂xi∂xj
δxj , δẋi = ∂H

∂pi
= pi ,

then δẍi = −∑f

j=1
∂2H

∂xi∂xj
δxj ⇔ δẍ = −Vδx. Defining the

eigenfrequency as ω, with xi ∝ e±iωt (i = 1, . . . ,f ), we find
that the eigenvalue of V is equal to ω2.

It is thus clear that the matrix V is positive definite, if we
expand around the ground state. Then, if any of eigenvalues
change to be negative at a ground state by varying parameters,
this state is no longer a ground state. In general, the original
ground state becomes a saddle point or a local maximum, and
the new ground states are bifurcated around the original one.

Consequently, the second-order phase transition of Veff

corresponds to the fact that an excitation spectrum h̄ω becomes
purely imaginary number. A purely imaginary ω represents a
slipping off from the original ground state to the symmetry-
breaking ones. Since V is the symmetric matrix, the eigenvalue

is always real, and thus in this second-order phase transition
of a ground state, an excitation spectra becomes a purely
imaginary number.

APPENDIX B: PARAMETERS

The parameters are defined as follows:

Ji ≡ −
∫

dr�∗
iL

[
− h̄2

2mi

∇2 + Vext(r)

]
�iR, (B1)

E0
i ≡

∫
dr�∗

iL

[
− h̄2

2mi

∇2 + Vext(r)

]
�iL

=
∫

dr�∗
iR

[
− h̄2

2mi

∇2 + Vext(r)

]
�iR, (B2)

Ui ≡ gi

∫
dr|�iL|4 = gi

∫
dr|�iR|4, (B3)

Uab ≡ gab

∫
dr|�aR|2|�bR|2 = gab

∫
dr|�aL|2|�bL|2, (B4)

g ≡ λ

∫
dr�∗

bL�aL�aL = λ

∫
dr�∗

bR�aR�aR, (B5)

� ≡ δ

∫
dr|�bL|2 + E0

b − 2E0
a

= δ

∫
dr|�bR|2 + E0

b − 2E0
a, (B6)

where i = a (b) represents atomic (molecular) BEC modes,
and L (R) expresses the left (right) well, respectively.

APPENDIX C: TIME-EVOLUTION EQUATIONS

The explicit forms of the Hamilton equations (4)–(7) are as
follows:

h̄ṄaL = −2Ja

√
NaLNaR sin(θaR − θaL)

+ 4gNaL

√
NbL sin(2θaL − θbL), (C1)

h̄ṄaR = −2Ja

√
NaLNaR sin(θaL − θaR)

+ 4gNaR

√
NbR sin(2θaR − θbR), (C2)

h̄ṄbL = −2Jb

√
NbLNbR sin(θbR − θbL)

− 2gNaL

√
NbL sin(2θaL − θbL), (C3)

h̄ṄbR = −2Jb

√
NbLNbR sin(θbL − θbR)

− 2gNaR

√
NbR sin(2θaR − θbR), (C4)

h̄θ̇aL = Ja

√
NaR

NaL

cos(θaR − θaL) − NaLUa − NbLUab

+ 2g
√

NbL cos(2θaL − θbL), (C5)

h̄θ̇aR = Ja

√
NaL

NaR

cos(θaL − θaR) − NaRUa − NbRUab

+ 2g
√

NbR cos(θbR − 2θaR), (C6)
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h̄θ̇bL = Jb

√
NbR

NbL

cos(θbR − θbL) − � − NbLUb − NaLUab

+ g
NaL√
NbL

cos(2θaL − θbL), (C7)

h̄θ̇bR = Jb

√
NbL

NbR

cos(θbL − θbR) − � − NbRUb − NaRUab

+ g
NaR√
NbR

cos(2θa2 − θbR). (C8)

APPENDIX D: CANONICAL TRANSFORMATION

The relative phases in the ground state are θaL(bL) −
θaR(bR) = 0,2θaL(aR) − θbL(bR) = 0. Expanding cosines around

these zero phases as cos θ � 1 − 1
2θ2, we obtain the quadratic

form in the phase variables. Therefore, the classical Hamil-
tonian can be expanded to second order in phase fluctuations
around the symmetric stationary state. Furthermore, we di-
agonalize the Hamiltonian about the phase fluctuations. As a
result, one of the eigenvalues is zero, and therefore the number
of degrees of freedom decreases by one. We avoid this problem
by introducing a fictitious parameter α, and in the last of the
calculations, we set α → 0. After these procedures, we obtain
the Hamiltonian as

Hcl � αφ2
0 + 1

2Uφ2
AM + �+Z+φ2

+ + �−Z−φ2
−

+Veff(NaL,NaR,NbL,NbR), (D1)

where

�± ≡ NaJa + NbJb + 5
2gNa

√
Nb

± 1
2

√
4(NaJa − NbJb)2 + 12(NaJa − NbJb)gNa

√
Nb + 25g2N2

a Nb, (D2)

and Z± ≡ (2α2
± + 2)−1, where α± ≡ (�± − 2NbJb −

gNa

√
Nb)/(2gNa

√
Nb). We defined the following notation:

φ0 ≡ 1
2θaL + 1

2θaR + θbL + θbR, φAM ≡ −2θaL −2θaR + θbL

+ θbR , and φ± ≡ α±θaL − α±θaR − θbL + θbR . φ0 represents
the whole increase of phases keeping the relative phases
constant, φ± are the interwell oscillation modes, and φAM

is the oscillation between the atomic and molecular states.
Veff is

Veff = −2Ja

√
NaLNaR − 2Jb

√
NbLNbR + �(NbL + NbR)

+ Ua

2

(
N2

aL + N2
aR

) + Ub

2

(
N2

bL + N2
bR

)
+Uab(NaLNbL + NaRNbR)

− 2g[NaL

√
NbL + NaR

√
NbR]. (D3)

We denote the canonical conjugate variables with
φ0, φ+, φ−, φAM as Xi(i = 0, + , − ,AM). These are related
to the particle numbers as

⎛
⎜⎝

X0

X+
X−
XAM

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

1
5

1
5

2
5

2
5

1
2ξ − 1

2ξ 1
2α−ξ − 1

2α−ξ

− 1
2ξ 1

2ξ − 1
2α+ξ 1

2α+ξ

− 1
5 − 1

5
1

10
1
10

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

NaL

NaR

NbL

NbR

⎞
⎟⎟⎟⎠ ,

(D4)

where ξ ≡ (α+ − α−)−1. X0 represents the increase of whole
particle number, X± is the interwell oscillation mode, and
XAM is the oscillation between the atomic and molecular
states. The Poisson brackets are {Xi,φj } = iδi,j (i,j = 0, +
, − ,AM), and therefore these are canonical conjugate vari-
ables. We then rescale φ0, φ±, φAM as φ̃0 ≡ √

2αφ0,φ̃AM ≡√
gNa

√
NbφAM, φ̃+ ≡ √

2�+Z+φ+, φ̃− ≡ √
2�−Z−φ−.

Corresponding canonical transformation for the coordi-
nate variables are X̃0 ≡ X0/

√
2α, X̃AM ≡ XAM/

√
gNa

√
Nb,

X̃+ ≡ X+/
√

2�+Z+, X̃− ≡ X−/
√

2�−Z−. It is easy to
see that the Poisson brackets are maintained as
{Xi,φj } = {X̃i,φ̃j } = δi,j (i,j = 0,+,−,AM). Therefore this
transformation is the canonical transformation. As a result of
this procedure, the αdependence of the coefficient of φ0 moves
to that of X̃0. By setting the fictitious parameter α → 0 and
eliminating the degrees X̃0 relating to global phase rotation, the
degrees of the interwell and internal tunnelings are decoupled
in Veff . Then, we finally arrive at the Hamiltonian (15)
and (16).

APPENDIX E: LINEARIZED HAMILTON EQUATIONS

The linerarized Hamilton equations are h̄δ ˙̃Xi =
∂Hcl/∂φ̃i = φ̃i , where i = 0,AM,±, and

h̄ ˙̃φ0 = −∂Veff

∂X̃0
= −α

(
Ua + 4Ue

b − 4Ue
ab

)
δX̃0

−
√

2αC
( − 2Ua + 2Ue

b + 3Ue
ab

)
δX̃AM. (E1)

h̄ ˙̃φAM = − ∂Veff

∂X̃AM

= −
√

2αC
(−2Ua + 2Ue

b + 3Ue
ab

)
δX̃0

−2C
(
4Ua + Ue

b + 4Ue
ab

)
δX̃AM (E2)

h̄ ˙̃φ± = −∂Veff

∂X̃±
= −4�±Z±

(
α2

±J e
a + J e

b + 2α±Ue
ab

)
δX̃±

− 4
√

�+�−Z+Z−
(−J e

a +J e
b +(α+ + α−)Ue

ab

)
δX̃∓.

(E3)

By setting the fictitious parameter α → 0, the contribution
from the degrees X̃0 and φ̃0 relating to global phase rotation is
eliminated.
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[36] P. Ziń, B. Oleś, M. Trippenbach, and K. Sacha, Phys. Rev. A 78,

023620 (2008).
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