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To analyze the ground-state phase diagram of Bose-Bose mixtures loaded into d-dimensional hypercubic
optical lattices, we perform a strong-coupling power-series expansion in the kinetic energy term (plus a scaling
analysis) for the two-species Bose-Hubbard model with onsite boson-boson interactions. We consider both
repulsive and attractive interspecies interaction, and obtain an analytical expression for the phase boundary
between the incompressible Mott insulator and the compressible superfluid phase up to third order in the
hoppings. In particular, we find a re-entrant quantum phase transition from paired superfluid (superfluidity of
composite bosons, i.e., Bose-Bose pairs) to Mott insulator and again to a paired superfluid in all one, two, and
three dimensions, when the interspecies interaction is sufficiently large and attractive. We hope that some of our
results could be tested with ultracold atomic systems.
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I. INTRODUCTION

The single-species Bose-Hubbard (BH) model is the
bosonic generalization of the Hubbard model, and was intro-
duced originally to describe 4He in porous media or disordered
granular superconductors [1]. For hypercubic lattices in all
dimensions d, there are only two phases in this model:
an incompressible Mott insulator at commensurate (integer)
fillings and a compressible superfluid phase otherwise. The
superfluid phase is well described by weak-coupling theories,
but the insulating phase is a strong-coupling phenomenon
that only appears when the system is on a lattice. Transition
from the Mott insulator to the superfluid phase occurs as the
hopping, particle-particle interaction, or the chemical potential
is varied [1].

It is the recent observation of this transition in effectively
three- [2], one- [3], and two-dimensional [4,5] optical lattices,
which has been considered one of the most remarkable
achievements in the field of ultracold atomic gases, since it
paved the way for studying other strongly correlated phases
in similar setups. Such lattices are created by the intersection
of laser fields, and they are nondissipative periodic potential
energy surfaces for the atoms. Motivated by this success in
experimentally simulating the single-species BH model with
ultracold atomic Bose gases loaded into optical lattices, there
has been recently an intense theoretical activity in analyzing
BH as well as Fermi-Hubbard type models [6].

For instance, in addition to the Mott insulator and single-
species superfluid phases, it has been predicted that the
two-species BH model has at least two additional phases: an
incompressible supercounter flow and a compressible paired
superfluid phase [7–16]. Our main interest here is in the
latter phase, where a direct transition from the Mott insulator
to the paired superfluid phase (superfluidity of composite
bosons, i.e., Bose-Bose pairs) has been predicted, when both
species have integer fillings and the interspecies interaction
is sufficiently large and attractive. Given that the interspecies
interactions can be fine tuned in ongoing experiments (e.g.,
with 41K-87Rb with mixtures [17,18]), via using Feshbach
resonances, we hope that some of our results could be tested
with ultracold atomic systems.

In this paper, we examine the ground-state phase dia-
gram of the two-species BH model with onsite boson-boson

interactions in d-dimensional hypercubic lattices, including
both the repulsive and attractive interspecies interaction, via a
strong-coupling perturbation theory in the hopping. We carry
the expansion out to third order in the hopping, and perform
a scaling analysis using the known critical behavior at the
tip of the insulating lobes, which allows us to accurately
predict the critical point, and the shape of the insulating lobes
in the plane of the chemical potential and the hopping. This
technique was previously used to discuss the phase diagram of
the single-species BH model [19–23], the extended BH model
[24], and the hardcore BH model with a superlattice [25], and
its results showed an excellent agreement with Monte Carlo
simulations [23,25]. Motivated by the success of this technique
with these models, here we apply it to the two-species
BH model, hoping to develop an analytical approach which
could be as accurate as the numerical ones.

The remaining paper is organized as follows. After intro-
ducing the model Hamiltonian in Sec. II, we develop the
strong-coupling expansion in Sec. III, where we derive an
analytical expression for the phase boundary between the
incompressible Mott insulator and the compressible superfluid
phase. Then, in Sec. IV, we propose a chemical-potential
extrapolation technique based on scaling theory to extrapolate
our third-order power-series expansion into a functional form
that is appropriate for the Mott lobes, and use it to obtain
typical ground-state phase diagrams. A brief summary of our
conclusions is given in Sec. V.

II. TWO-SPECIES BOSE-HUBBARD MODEL

To describe Bose-Bose mixtures loaded into optical lattices,
we consider the following two-species BH Hamiltonian,

H = −
∑
i,j,σ

tij,σ b
†
i,σ bj,σ +

∑
i,σ

Uσσ

2
n̂i,σ (̂ni,σ − 1)

+U↑↓
∑

i

n̂i,↑n̂i,↓ −
∑
i,σ

µσ n̂i,σ , (1)

where the pseudospin σ ≡ {↑,↓} labels the trapped hyperfine
states of a given species of bosons, or labels different types
of bosons in a two-species mixture, tij,σ is the tunneling
(or hopping) matrix between sites i and j , b

†
i,σ (bi,σ ) is the
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boson creation (annihilation) and n̂i,σ = b
†
i,σ bi,σ is the boson

number operator at site i, Uσσ ′ is the strength of the onsite
boson-boson interaction between σ and σ ′ components, and
µσ is the chemical potential. In this manuscript, we consider
a d-dimensional hypercubic lattice with M sites, for which
we assume tij,σ is a real symmetric matrix with elements
tij,σ = tσ � 0 for i and j nearest neighbors and 0 otherwise.
The lattice coordination number (or the number of nearest
neighbors) for such lattices is z = 2d.

We take the intraspecies interactions to be repulsive
({U↑↑,U↓↓} > 0), but discuss both repulsive and attractive
interspecies interaction U↑↓ as long as U↑↑U↓↓ > U 2

↑↓. This
guarantees the stability of the mixture against collapse when
U↑↓ � 0, and against phase separation when U↑↓ � 0. How-
ever, when the interspecies interaction is sufficiently large and
attractive, we note that instead of a direct transition from
the Mott insulator to a single-particle superfluid phase, it is
possible to have a transition from the Mott insulator to a
paired superfluid phase (superfluidity of composite bosons,
i.e., Bose-Bose pairs) [7–16]. Therefore, one needs to consider
both possibilities, as discussed next.

III. STRONG-COUPLING EXPANSION

We use the many-body version of the Rayleigh-Schrödinger
perturbation theory in the kinetic energy term to perform
the expansion (in powers of t↑ and t↓) for the different
energies needed to carry out our analysis. The strong-coupling
expansion technique was previously used to discuss the phase
diagram of the single-species BH model [19–21,23], the
extended BH model [24], and the hardcore BH model with a
superlattice [25], and its results showed an excellent agreement
with Monte Carlo simulations [23,25]. Motivated by the
success of this technique with these models, here we apply
it to the two-species BH model.

To determine the phase boundary separating the incom-
pressible Mott phase from the compressible superfluid phase
within the strong-coupling expansion method, one needs the
energy of the Mott phase and of its “defect” states (those states
which have exactly one extra elementary particle or hole about
the ground state) as a function of t↑ and t↓. At the point where
the energy of the incompressible state becomes equal to its
defect state, the system becomes compressible, assuming that
the compressibility approaches zero continuously at the phase
boundary. Here, we remark that this technique cannot be used
to calculate the phase boundary between two compressible
phases.

A. Ground-state wave functions

The perturbation theory is performed with respect to the
ground state of the system when t↑ = t↓ = 0, and therefore
we first need zeroth-order wave functions of the Mott phase
and of its defect states. To zeroth order in t↑ and t↓, the Mott
insulator wave function can be written as∣∣� ins(0)

Mott

〉 = 1√
n↑!n↓!

∏
i

(b†i,↑)n↑ (b†i,↓)n↓ |0〉, (2)

where 〈̂ni,σ 〉 = nσ is an integer number corresponding to the
ground-state occupancy of the pseudospin σ bosons, 〈· · ·〉 is

the thermal average, and |0〉 is the vacuum state. On the other
hand, the wave functions of the defect states are determined by
degenerate perturbation theory. The reason for that lies in the
fact that when exactly one extra elementary particle or hole is
added to the Mott phase, it could go to any of the M lattice
sites, since all of those states share the same energy when
t↑ = t↓ = 0. Therefore, the initial degeneracy of the defect
states is of order M .

When the elementary excitations involve a single-σ -particle
(exactly one extra pseudospin σ boson) or a single-σ -hole
(exactly one less pseudospin σ boson), this degeneracy is lifted
at first order in t↑ and t↓. The treatment for this case is very
similar to the single-species BH model [19,24], and the wave
functions (to zeroth order in t↑ and t↓) for the single-σ -particle
and single-σ -hole defect states turn out to be

∣∣�sσp(0)
def

〉 = 1√
nσ + 1

∑
i

f
sσp
i b

†
i,σ

∣∣� ins(0)
Mott

〉
, (3)

∣∣�sσh(0)
def

〉 = 1√
nσ

∑
i

f sσh
i bi,σ

∣∣� ins(0)
Mott

〉
, (4)

where f
sσp
i = f sσh

i is the eigenvector of the hopping matrix
tij,σ with the highest eigenvalue (which is ztσ with z = 2d)
such that

∑
j tij,σ f

sσp
j = ztσ f

sσp
i . The normalization con-

dition requires that
∑

i |f sσp
i |2 = 1. Notice that we choose

the highest eigenvalue of tij,σ because the hopping matrix
enters the Hamiltonian as −tij,σ , and we ultimately want the
lowest-energy states.

However, when the elementary excitations involve two
particles (exactly one extra boson of each species) or two holes
(exactly one less boson of each species), the degeneracy is
lifted at second order in t↑ and t↓. Such elementary excitations
occur when U↑↓ is sufficiently large and attractive [26], and the
wave functions (to zeroth order in t↑ and t↓) for the two-particle
and two-hole defect states can be written as

∣∣� tp(0)
def

〉 = 1√
(n↑ + 1)(n↓ + 1)

∑
i

f
tp
i b

†
i,↑b

†
i,↓

∣∣� ins(0)
Mott

〉
, (5)

∣∣� th(0)
def

〉 = 1√
n↑n↓

∑
i

f th
i bi,↑bi,↓

∣∣� ins(0)
Mott

〉
, (6)

where f
tp
i = f th

i turns out to be the eigenvector of the tij,↑tij,↓
matrix with the highest eigenvalue (which is zt↑t↓ with z = 2d)
such that

∑
j tij,↑tij,↓f

tp
j = zt↑t↓f

tp
i . Since the elementary

excitations involve two particles or two holes, the degenerate
defect states cannot be connected by one hopping, but rather
require two hoppings to be connected. Therefore, one expects
the degeneracy to be lifted at least at second order in t↑ and t↓,
as discussed next.

B. Ground-state energies

Next, we employ the many-body version of the Rayleigh-
Schrödinger perturbation theory in t↑ and t↓ with respect to the
ground state of the system when t↑ = t↓ = 0, and calculate the
energy of the Mott phase and of its defect states. The energy
of the Mott state is obtained via nondegenerate perturbation
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theory, and to third order in t↑ and t↓ it is given by

Eins
Mott

M
=

∑
σ

Uσσ

2
nσ (nσ − 1) + U↑↓n↑n↓ −

∑
σ

µσnσ

−
∑

σ

nσ (nσ + 1)
zt2

σ

Uσσ

+ O(t4). (7)

This is an extensive quantity (i.e., Eins
Mott is proportional to the

number of lattice sites M). The odd-order terms in t↑ and t↓
vanish for the d-dimensional hypercubic lattices considered in
this manuscript, which is simply because the Mott state given
in Eq. (2) cannot be connected to itself by only one hopping,
but rather requires two hoppings to be connected. Notice
that Eq. (7) recovers the known result for the single-species
BH model when one of the pseudospin components have
vanishing filling (e.g., n↓ = 0 [19,24]).

The calculation of the defect-state energies is more involved
since it requires using degenerate perturbation theory. As
mentioned previously, when the elementary excitations involve
a single-σ -particle or a single-σ -hole, the degeneracy is lifted
at first order in t↑ and t↓. A lengthy but straightforward
calculation leads to the energy of the single-σ -particle defect
state up to third order in t↑ and t↓ as

E
sσp
def = Eins

Mott + U↑↓n−σ + Uσσnσ − µσ − (nσ + 1)ztσ

− nσ

[
nσ + 2

2
+ (nσ + 1)(z − 3)

]
zt2

σ

Uσσ

− 2n−σ (n−σ + 1)
U 2

↑↓
U 2−σ−σ − U 2

↑↓

zt2
−σ

U−σ−σ

− nσ (nσ + 1)[nσ (z − 1)2 + (nσ + 1)(z − 1)(z − 4)

+ (nσ + 2)(3z/4 − 1)]
zt3

σ

U 2
σσ

− 4(nσ + 1)n−σ (n−σ + 1)

× U 2
↑↓

U 2−σ−σ − U 2
↑↓

(
z − 1 − U 2

−σ−σ

U 2−σ−σ − U 2
↑↓

)

× ztσ t2
−σ

U 2−σ−σ

+ O(t4), (8)

where (−↑) ≡ ↓ and vice versa. Here, we assume Uσσ �
tσ and {U−σ−σ ,|U−σ−σ ± U↑↓|} � t−σ . Equation (8) is valid
for all d-dimensional hypercubic lattices, and it recovers the
known result for the single-species BH model when n−σ = 0
[19,24]. Note that this expression also recovers the known
result for the single-species BH model when U↑↓ = 0, which
provides an independent check of the algebra. To third order
in t↑ and t↓, we obtain a similar expression for the energy of
the single-σ -hole defect state given by

Esσh
def = Eins

Mott − U↑↓n−σ − Uσσ (nσ − 1) + µσ − nσ ztσ

− (nσ + 1)

[
nσ − 1

2
+ nσ (z − 3)

]
zt2

σ

Uσσ

− 2n−σ (n−σ + 1)
U 2

↑↓
U 2−σ−σ − U 2

↑↓

zt2
−σ

U−σ−σ

− nσ (nσ + 1)[(nσ + 1)(z − 1)2 + nσ (z − 1)(z − 4)

+ (nσ − 1)(3z/4 − 1)]
zt3

σ

U 2
σσ

− 4nσ n−σ (n−σ + 1)

× U 2
↑↓

U 2−σ−σ − U 2
↑↓

(
z − 1 − U 2

−σ−σ

U 2−σ−σ − U 2
↑↓

)

× ztσ t2
−σ

U 2−σ−σ

+ O(t4), (9)

which is also valid for all d-dimensional hypercubic lattices,
and it also recovers the known result for the single-species
BH model when n−σ = 0 or U↑↓ = 0 [19,24]. Here, we again
assume Uσσ � tσ and {U−σ−σ ,|U−σ−σ ± U↑↓|} � t−σ . We
also checked the accuracy of the second-order terms in Eqs. (8)
and (9) via exact small-cluster (two-site) calculations with one
σ and two −σ particles.

We note that the mean-field phase boundary between the
Mott phase and its single-σ -particle and single-σ -hole defect
states can be calculated as

µpar,hol
σ = Uσσ (nσ − 1/2) + U↑↓n−σ − ztσ /2

±
√

U 2
σσ

/
4 − Uσσ (nσ + 1/2)ztσ + z2t2

σ

/
4. (10)

This expression is exact for infinite-dimensional hypercubic
lattices, and it recovers the known result for the single-species
BH model when n−σ = 0 or U↑↓ = 0 [1]. In the d → ∞ limit
(while keeping dtσ constant), we checked that our strong-
coupling perturbation results given in Eqs. (8) and (9) agree
with this exact solution when the latter is expanded out to
third order in t↑ and t↓, providing an independent check of the
algebra. Equation (10) also shows that, for infinite-dimensional
lattices, the Mott lobes are separated by U↑↓n−σ , but their
shapes and critical points (the latter are obtained by setting
µ

par
σ = µhol

σ ) are independent of U↑↓. This is not the case for
finite-dimensional lattices as can be clearly seen from our
results. It is also important to mention here that both the shapes
and critical points are independent of the sign of U↑↓ in finite
dimensions (at the third order presented here) as can be seen
in Eqs. (8) and (9).

However, when the elementary excitations involve two
particles or two holes (which occurs when U↑↓ is sufficiently
large and attractive [26]), the degeneracy is lifted at second
order in t↑ and t↓. A lengthy but straightforward calculation
leads to the energy of the two-particle defect state up to third
order in t↑ and t↓ as

E
tp
def = Eins

Mott + U↑↓(n↑ + n↓ + 1) +
∑

σ

(Uσσnσ + µσ )

+ 2(n↑ + 1)(n↓ + 1)

U↑↓
zt↑t↓ +

∑
σ

[
(nσ + 1)2

U↑↓

− nσ (nσ + 2)

2Uσσ + U↑↓
+ 2nσ (nσ + 1)

Uσσ

]
zt2

σ + O(t4). (11)

Here, we assume {Uσσ ,|U↑↓|,2Uσσ + U↑↓} � tσ . Equation
(11) is valid for all d-dimensional hypercubic lattices, where
the odd-order terms in t↑ and t↓ vanish [27]. To third order in
t↑ and t↓, we obtain a similar expression for the energy of the
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two-hole defect state given by

Eth
def = Eins

Mott − U↑↓(n↑ + n↓ − 1) −
∑

σ

[Uσσ (nσ − 1) − µσ ]

+ 2n↑n↓
U↑↓

zt↑t↓ +
∑

σ

[
n2

σ

U↑↓
− (n2

σ − 1)

2Uσσ + U↑↓

+ 2nσ (nσ + 1)

Uσσ

]
zt2

σ + O(t4), (12)

which is also valid for all d-dimensional hypercubic lattices,
where the odd-order terms in t↑ and t↓ vanish [27]. Here,
we again assume {Uσσ ,|U↑↓|,2Uσσ + U↑↓} � tσ . Since the
single-σ -particle and single-σ -hole defect states have cor-
rections to first order in the hopping, while the two-particle
and two-hole defect states have corrections to second order
in the hopping, the slopes of the Mott lobes are finite as
{t↑,t↓} → 0 in the former case, but they vanish in the latter
case. Hence, the shape of the insulating lobes are expected
to be very different for two-particle or two-hole excitations.
In addition, the chemical-potential widths (µσ ) of all Mott
lobes are Uσσ in the former case, but they [(µ↑ + µ↓)/2] are
U↑↓ + (U↑↑ + U↓↓)/2 in the latter.

We note that in the limit when t↑ = t↓ = t , U↑↑ = U↓↓ =
U0, U↑↓ = U ′, n↑ = n↓ = n0, µ↑ = µ↓ = µ, and z = 2 (or
d = 1), Eq. (12) is in complete agreement with Eq. (3) of
Ref. [11], providing an independent check of the algebra.
In addition, in the limit when t↑ = t↓ = J , U↑↑ = U↓↓ = U ,
U↑↓ = W ≈ −U , n↑ = n↓ = m, and µ↑ = µ↓ = µ, Eqs. (11)
and (12) reduce to those given in Ref. [12] (after setting UNN =
0 there). However, the terms that are proportional to t↑t↓ are not
included in their definitions of the two-particle and two-hole
excitation gaps. We also checked the accuracy of Eqs. (11)
and (12) via exact small-cluster (two-site) calculations with
one particle of each species.

We would also like to remark in passing that the energy
difference between the Mott phase and its defect states
determine the phase boundary of the particle and hole
branches. This is because at the point where the energy
of the incompressible state becomes equal to its defect
state, the system becomes compressible, assuming that the
compressibility approaches zero continuously at the phase
boundary. While Eins

Mott and its defects E
sσp
def , Esσh

def , E
tp
def ,

and Eth
def depend on the lattice size M , their differences do

not. Therefore, the chemical potentials that determine the
particle and hole branches are independent of M at the phase
boundaries. This indicates that the numerical Monte Carlo
simulations should not have a strong dependence on M .

It is known that the third-order strong-coupling expansion is
not very accurate near the tip of the Mott lobes, as t↑ and t↓ are
not very small there [19,24]. For this reason, an extrapolation
technique is highly desirable to determine more accurate
phase diagrams. Therefore, having discussed the third-order
strong-coupling expansion for a general two-species Bose-
Bose mixtures with arbitrary hoppings tσ , interactions Uσσ ′ ,
densities nσ , and chemical potentials µσ , next we show how
to develop a scaling theory.

IV. EXTRAPOLATION TECHNIQUE

In this section, we propose a chemical potential extrapo-
lation technique based on scaling theory to extrapolate our

third-order power-series expansion into a functional form that
is appropriate for the entire Mott lobes. It is known that the
critical point at the tip of the lobes has the scaling behavior of a
(d + 1)-dimensional XY model, and therefore the lobes have
Kosterlitz-Thouless shapes for d = 1 and power-law shapes
for d > 1. For illustration purposes, here we analyze only the
latter case, but this technique can be easily adapted to the
d = 1 case [19].

A. Scaling ansatz

From now on we consider a two-species mixture with t↑ =
t↓ = t , U↑↑ = U↓↓ = U , U↑↓ = V , n↑ = n↓ = n, and µ↑ =
µ↓ = µ. When d > 1, we propose the following ansatz which
includes the known power-law critical behavior of the tip of
the lobes,

µ±

U
= A(x) ± B(x)(xc − x)zν, (13)

where A(x) = a + bx + cx2 + dx3 + · · · and B(x) = α +
βx + γ x2 + δx3 + · · · are regular functions of x = 2dt/U , xc

is the critical point which determines the location of the lobes,
and zν is the critical exponent for the (d + 1)-dimensional
XY model which determines the shape of the lobes near
xc = 2dtc/U . In Eq. (13), the plus sign corresponds to the
particle branch, and the minus sign corresponds to the hole
branch. The form of the ansatz is taken to be the same for both
single- and two-particle (or single- and two-hole) excitations,
but the parameters are very different.

The parameters a, b, c, and d depend on U , V , and
n, and they are determined by matching them with the
coefficients given by our third-order expansion such that
A(x) = (µpar + µhol)/(2U ). Here, µpar and µhol are our
strong-coupling expansion results determined from Eqs. (8)
and (9) for the single-particle and single-hole excitations,
or from Eqs. (11) and (12) for the two-particle and two-
hole excitations, respectively. Writing our strong-coupling
expansion results for the particle and hole branches in the
form µpar = U

∑3
n=0 e+

n xn and µhol = U
∑3

n=0 e−
n xn, leads

to a = (e+
0 + e−

0 )/2, b = (e+
1 + e−

1 )/2, c = (e+
2 + e−

2 )/2, and
d = (e+

3 + e−
3 )/2. To determine the U , V , and n dependence

of the parameters α, β, γ , δ, xc, and zν, we first expand
the left-hand side of B(x)(xc − x)zν = (µpar − µhol)/(2U ) in
powers of x, and match the coefficients with the coefficients
given by our third-order expansion, leading to

α = e+
0 − e−

0

2xzν
c

, (14)

β

α
= zν

xc

+ e+
1 − e−

1

e+
0 − e−

0

, (15)

γ

α
= zν(zν + 1)

2x2
c

+ zν

xc

e+
1 − e−

1

e+
0 − e−

0

+ e+
2 − e−

2

e+
0 − e−

0

, (16)

δ

α
= zν(zν + 1)(zν + 2)

6x3
c

+ zν(zν + 1)

2x2
c

e+
1 − e−

1

e+
0 − e−

0

+ zν

xc

e+
2 − e−

2

e+
0 − e−

0

+ e+
3 − e−

3

e+
0 − e−

0

. (17)
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We fix zν at its well-known values such that zν ≈ 2/3 for
d = 2 and zν = 1/2 for d > 2. If the exact value of xc is known
via other means (e.g., numerical simulations), α, β, γ , and
δ can be calculated accordingly, for which the extrapolation
technique gives very accurate results [23,25]. If the exact value
of xc is not known, then we set δ = 0, and solve Eqs. (14)–(16)
and the δ = 0 equation to determine α, β, γ , and xc self-
consistently, which also leads to accurate results [19,24]. Next
we present typical ground-state phase diagrams for (d = 2)-
and (d = 3)-dimensional hypercubic lattices obtained from
this extrapolation technique.

B. Numerical results

In Figs. 1 and 2, the results of the third-order strong-
coupling expansion (dotted lines) are compared to those of the
extrapolation technique (hollow pink squares and solid black
circles) when V = 0.5U and V = −0.85U , respectively, in
two (d = 2 or z = 4) and three (d = 3 or z = 6) dimensions.
We recall here that t↑ = t↓ = t , U↑↑ = U↓↓ = U , U↑↓ = V ,
n↑ = n↓ = n, and µ↑ = µ↓ = µ.

In Fig. 1, we show the chemical potential µ (in units of U )
versus x = 2dt/U phase diagram for (a) two-dimensional and
(b) three-dimensional hypercubic lattices, where we choose the
interspecies interaction to be repulsive V = 0.5U . Comparing
Eqs. (8) and (9) with Eqs. (11) and (12), we expect the excited
state of the system to be the usual superfluid for all V > 0 for
all t . The dotted lines correspond to phase boundary for the
Mott insulator to superfluid state as determined from the third-
order strong-coupling expansion, and the hollow pink squares
correspond to the extrapolation fits for the single-particle and
single-hole excitations discussed in the text. We recall here that
an incompressible supercounter flow phase [7–9,13] also exists
outside of the Mott insulator lobes, but our current formalism
cannot be used to locate its phase boundary.

At t = 0, the chemical potential width of all Mott lobes
are U (similar to the single-species BH model), but they are
separated from each other by V as a function of µ. As t

increases from zero, the range of µ about which the ground
state is a Mott insulator decreases, and the Mott insulator
phase disappears at a critical value of t , beyond which the
system becomes a superfluid. In addition, similar to what was
found for the single-species BH model [19,24], the strong-
coupling expansion overestimates the phase boundaries, and
it leads to unphysical pointed tips for all Mott lobes, which
is expected since a finite-order expansion cannot describe the
physics of the critical point correctly. A short list of V/U

versus the critical points xc = 2dtc/U is presented for the
first two Mott insulator lobes in Table I, where it is shown
that the critical points tend to move in as V increases. This is
because the presence of a second species (say −σ ones) screens
the onsite intraspecies repulsion Uσσ between σ species and,
hence, increases the superfluid region.

In Fig. 2, we show the chemical potential µ (in units of U )
versus x = 2dt/U phase diagram for (a) two-dimensional
and (b) three-dimensional hypercubic lattices, where in these
figures we choose the interspecies interaction to be attractive
V = −0.85U . Comparing Eqs. (8) and (9) with Eqs. (11)
and (12), we expect the excited state of the system to be a
paired superfluid for all V < 0 when t → 0. This is clearly
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FIG. 1. (Color online) Chemical potential µ (in units of U ) versus
x = 2dt/U phase diagram for (a) two- and (b) three-dimensional
hypercubic lattices with t↑ = t↓ = t , U↑↑ = U↓↓ = U , U↑↓ = V =
0.5U , n↑ = n↓ = n, and µ↑ = µ↓ = µ. The dotted lines correspond
to the phase boundary for the Mott insulator to superfluid state as
determined from the third-order strong-coupling expansion, and the
hollow pink squares to the extrapolation fit for the single-particle
or single-hole excitations discussed in the text. Recall that an
incompressible supercounter flow phase also exists outside of the
Mott insulator lobes.

seen in the figure where the dotted lines correspond to
phase boundary for the Mott insulator to superfluid state as
determined from the third-order strong-coupling expansion,
the hollow pink squares correspond to the extrapolation fits for
the single-particle and single-hole excitations (shown only for
illustration purposes), and the solid black circles correspond
to the extrapolation fits for the two-particle and two-hole
excitations (this is the expected transition) discussed in the
text.

At t = 0, the chemical potential width of all Mott lobes are
V + U = 0.15U , which is in contrast with the single-species
BH model. As t increases from zero, the range of µ about
which the ground state is a Mott insulator decreases here as
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FIG. 2. (Color online) Chemical potential µ (in units of U )
versus x = 2dt/U phase diagram for (a) two- and (b) three-
dimensional hypercubic lattices with t↑ = t↓ = t , U↑↑ = U↓↓ = U ,
U↑↓ = V = −0.85U , n↑ = n↓ = n, and µ↑ = µ↓ = µ. The dotted
lines correspond to the phase boundary for the Mott insulator to
superfluid state determined from the third-order strong-coupling
expansion, the hollow pink squares to the extrapolation fit for the
single-particle or single-hole excitations (shown only for illustration
purposes), and the solid black circles to the extrapolation fit for
the two-particle or two-hole excitations (the expected transition)
discussed in the text.

well, and the Mott insulator phase disappears at a critical value
of t , beyond which the system becomes a paired superfluid.
The strong-coupling expansion again overestimates the phase
boundaries, and it again leads to unphysical pointed tips for
all Mott lobes. In addition, a short list of V/U versus the
critical points xc = 2dtc/U are presented for the first two Mott
insulator lobes in Table II. Our results are consistent with the
expectation that, for small V , the locations of the tips increase
as a function of V , because the presence of a nonzero V is what
allowed these states to form in the first place. However, when
V is larger than some critical value (∼0.6U ), the locations of
the tips decrease, and they eventually vanish when V = −U .

TABLE I. List of the critical points (location of the tips) xc =
2dtc/U for the first two Mott insulator lobes that are found from
the chemical potential extrapolation technique described in the
text. Here, t↑ = t↓ = t , U↑↑ = U↓↓ = U , U↑↓ = V , n↑ = n↓ = n,
and µ↑ = µ↓ = µ. These critical points for the single-particle or
single-hole excitations are determined from Eqs. (8) and (9), and
they tend to move in as V increases, and are independent of the sign
of V .

d = 2 d = 3

V/U n = 1 n = 2 n = 1 n = 2

0.0 0.234 0.138 0.196 0.116
0.1 0.234 0.138 0.196 0.115
0.2 0.233 0.137 0.195 0.115
0.3 0.230 0.136 0.194 0.114
0.4 0.227 0.134 0.193 0.113
0.5 0.223 0.131 0.190 0.112
0.6 0.217 0.128 0.187 0.110
0.7 0.208 0.123 0.182 0.107
0.8 0.197 0.116 0.174 0.102
0.9 0.193 0.113 0.163 0.095

This may indicate an instability toward a collapse since at this
point U↑↑U↓↓ is exactly equal to U 2

↑↓.
Compared to the V > 0 case shown in Fig. 1, note that

the shape of the Mott insulator to paired superfluid phase
boundary is very different, showing a re-entrant behavior in

TABLE II. List of the critical points (location of the tips)
xc = 2dtc/U that are found from the chemical potential extrapolation
technique described in the text. Here, t↑ = t↓ = t , U↑↑ = U↓↓ = U ,
U↑↓ = V , n↑ = n↓ = n, and µ↑ = µ↓ = µ. These critical points for
the two-particle or two-hole excitations are determined from Eqs. (11)
and (12) when V < 0. Note that, for small V , xc’s tend to increase as
a function of V , since the presence of a nonzero V is what allowed
these states to form in the first place. However, xc’s decrease beyond
a critical V , and they eventually vanish when V = −U , which may
indicate an instability toward a collapse.

d = 2 d = 3

V/U n = 1 n = 2 n = 1 n = 2

−0.01 0.0543 0.0337 0.0611 0.0379
−0.03 0.0937 0.0582 0.105 0.0655
−0.05 0.121 0.0749 0.136 0.0843
−0.07 0.142 0.0883 0.160 0.0994
−0.1 0.169 0.105 0.190 0.118
−0.2 0.233 0.145 0.262 0.164
−0.3 0.277 0.173 0.311 0.195
−0.4 0.307 0.193 0.345 0.217
−0.5 0.325 0.205 0.366 0.230
−0.6 0.331 0.209 0.372 0.235
−0.7 0.321 0.203 0.362 0.228
−0.8 0.291 0.183 0.327 0.206
−0.9 0.225 0.141 0.253 0.159
−0.93 0.193 0.121 0.217 0.136
−0.95 0.166 0.103 0.187 0.116
−0.97 0.1304 0.0812 0.147 0.0913
−0.99 0.0764 0.0474 0.0860 0.0534
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all dimensions from paired superfluid to Mott insulator and
again to a paired superfluid phase, as a function of t . Our
results are consistent with an early numerical time-evolving
block decimation (TEBD) calculation [11], where such a
re-entrant quantum phase transition in one dimension was
predicted.

The re-entrant quantum phase transition occurs when the
coefficient of the hopping term in Eq. (12) is negative [so
that the two-hole excitation branch has a negative slope in
(µ↑ + µ↓)/2 versus tσ phase diagram when tσ → 0], that
is, −(2n↑n↓/U↑↓)zt↑t↓ − ∑

σ [n2
σ /U↑↓ − (n2

σ − 1)/(2Uσσ +
U↑↓) + 2nσ (nσ + 1)/Uσσ ]zt2

σ term, which occurs for the first
few Mott lobes beyond a critical U↑↓. When this coefficient is
negative, its value is most negative for the first Mott lobe, and
therefore the effect is strongest there. However, the coefficient
increases and eventually becomes positive as a function
of filling, and thus the re-entrant behavior becomes weaker
as filling increases, and it eventually disappears beyond a
critical filling. For the parameters used in Fig. 2, this occurs
only for the first lobe, as can be seen in the figures. We
also note that the sign of this coefficient is independent of
the dimensionality of the lattice, since z = 2d enters into the
coefficient only as an overall factor.

What happens when t↑ �= t↓ and/or U↑↑ �= U↓↓? We do
not expect any qualitative change for attractive interspecies
interactions. However, for repulsive interspecies interactions,
this lifts the degeneracy of the single-particle or single-hole
excitation energies. While the transition is from a double-
Mott insulator to a double superfluid of both species in the
degenerate case, it is from a double-Mott insulator of both
species to a Mott insulator of one species and a superfluid of
the other in the nondegenerate case.

V. CONCLUSIONS

We analyzed the zero temperature phase diagram of the two-
species Bose-Hubbard (BH) model with onsite boson-boson
interactions in d-dimensional hypercubic lattices, including
both the repulsive and attractive interspecies interaction. We
used the many-body version of the Rayleigh-Schrödinger
perturbation theory in the kinetic energy term with respect
to the ground state of the system when the kinetic energy term
is absent, and calculate ground-state energies needed to carry
out our analysis. This technique was previously used to discuss

the phase diagram of the single-species BH model [19–21,23],
the extended BH model [24], and the hardcore BH model
with a superlattice [25], and its results showed an excellent
agreement with Monte Carlo simulations [23,25]. Motivated
by the success of this technique with these models, here we
generalized it to the two-species BH model, hoping to develop
an analytical approach which could be as accurate as the
numerical ones.

We derived analytical expressions for the phase boundary
between the incompressible Mott insulator and the compress-
ible superfluid phase up to third order in the hoppings. We also
proposed a chemical potential extrapolation technique based
on the scaling theory to extrapolate our third-order power series
expansion into a functional form that is appropriate for the
Mott lobes. In particular, when the interspecies interaction
is sufficiently large and attractive, we found a re-entrant
quantum phase transition from paired superfluid (superfluidity
of composite bosons, i.e., Bose-Bose pairs) to Mott insulator
and again to a paired superfluid in all one, two, and three
dimensions. Since the available Monte Carlo calculations
[9,10] do not provide the Mott insulator to superfluid transition
phase boundary in the experimentally more relevant chemical
potential versus hopping plane, we could not compare our
results with them. This comparison is highly desirable to judge
the accuracy of our strong-coupling expansion results.

A possible direction to extend this work is to consider the
limit where hopping of one species is much larger than the
other. In this limit, the two-species BH model reduces to
the Bose-Bose version of the Falicov-Kimball model [28],
the Fermi-Fermi version of which has been widely discussed
in the condensed-matter literature and the Fermi-Bose version
has just been studied [29]. It is known for such models
that there is a tendency toward both phase separation and
density wave order [30], which requires a new calculation
partially similar to that of Ref. [24]. One can also examine
how the momentum distribution changes with the hopping in
the insulating phases [23,31], which has direct relevance to
ultracold atomic experiments.
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[11] A. Argüelles and L. Santos, Phys. Rev. A 75, 053613
(2007).

[12] C. Trefzger, C. Menotti, and M. Lewenstein, Phys. Rev. Lett.
103, 035304 (2009).

033630-7

http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.100.120402
http://dx.doi.org/10.1103/PhysRevLett.100.120402
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1103/PhysRevLett.90.100401
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1088/1367-2630/5/1/113
http://dx.doi.org/10.1103/PhysRevLett.92.050402
http://dx.doi.org/10.1103/PhysRevLett.92.050402
http://dx.doi.org/10.1103/PhysRevB.72.184507
http://dx.doi.org/10.1103/PhysRevA.75.053613
http://dx.doi.org/10.1103/PhysRevA.75.053613
http://dx.doi.org/10.1103/PhysRevLett.103.035304
http://dx.doi.org/10.1103/PhysRevLett.103.035304


M. ISKIN PHYSICAL REVIEW A 82, 033630 (2010)

[13] A. Hu, L. Mathey, I. Danshita, E. Tiesinga, C. J. Williams, and
C. W. Clark, Phys. Rev. A 80, 023619 (2009).

[14] P. Buonsante, S. M. Giampaolo, F. Illuminati, V. Penna, and
A. Vezzani, Eur. Phys. J. B 68, 427 (2009).

[15] A. Hubener, M. Snoek, and W. Hofstetter, Phys. Rev. B 80,
245109 (2009).

[16] C. Menotti and S. Stringari, Phys. Rev. A 81, 045604 (2010).
[17] J. Catani, L. De Sarlo, G. Barontini, F. Minardi, and M. Inguscio,

Phys. Rev. A 77, 011603(R) (2008).
[18] G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi,

and M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008).
[19] J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).
[20] T. D. Kühner and H. Monien, Phys. Rev. B 58, 14741(R) (1998).
[21] P. Buonsante, V. Penna, and A. Vezzani, Phys. Rev. B 70, 184520

(2004).
[22] K. Sengupta and N. Dupuis, Phys. Rev. A 71, 033629 (2005).
[23] J. K. Freericks, H. R. Krishnamurthy, Y. Kato, N. Kawashima,

and N. Trivedi, Phys. Rev. A 79, 053631 (2009).

[24] M. Iskin and J. K. Freericks, Phys. Rev. A 79, 053634 (2009).
[25] I. Hen, M. Iskin, and M. Rigol, Phys. Rev. B 81, 064503 (2010).
[26] Recall that U 2

↑↓ cannot be greater than or equal to U↑↑U↓↓,
otherwise the mixture would be unstable against collapse. In
addition (see, e.g., Fig. 7 in [13]), where TEBD calculations
show in one dimension that V <∼ −0.06U is already sufficient
for the Mott insulator to paired superfluid transition.

[27] Note that, unlike those of single-particle and single-hole exci-
tations where dtσ is a constant when d → ∞, in the case of
two-particle and two-hole excitations, dt2

σ must be kept constant
when d → ∞. In this respect, Eqs. (11) and (12) do not contain
any finite-d correction at the second order in hopping.

[28] L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969).
[29] M. Iskin and J. K. Freericks, Phys. Rev. A 80, 053623 (2009);

and see references therein.
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