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Phase shifts and wave-packet displacements in neutron interferometry and a nondispersive,
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A phase shifter in neutron interferometry creates not only a phase shift but also a spatial displacement of
the neutron wave packet, leading to a reduced interference contrast. This wave-packet displacement constitutes
a major hindrance in measuring large phase shifts. Here we present a nondispersive configuration with two
identical phase shifters placed on one path in successive gaps of a symmetric triple Laue (LLL) interferometer.
As compared to a single phase shifter, the dual phase shifter generates double the phase shift, yet a net null
displacement of the wave packet. The interferometer thus remains fully focused however large the phase shift or
the incident wavelength spread, permitting a white incident neutron beam as in the case of a purely topological
phase measurement. Misalignment angles of a monolithic nondispersive dual phase shifter are equal and opposite
in the two gaps. Its phase therefore remains nondispersive over a much wider angular range and attains a
minimum magnitude at the correct orientation, obviating the need to alternate the phase shifter between the
two interferometer paths during its alignment. The setup is hence ideally suited for measuring neutron coherent
scattering lengths to ultrahigh precision.
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I. INTRODUCTION

Neutron interferometry affords precise determination of the
coherent neutron scattering length bc of a material from the
shift in the interference pattern brought about by a sample of
the material inserted in one beam path of the interferometer [1].
We will confine ourselves to the symmetric LLL perfect crystal
interferometer which has been the principal workhorse of
neutron interferometry. Early experimenters placed the sample
with its surface at right angles to the neutron beam (standard
configuration). The phase-shift dependence on neutron wave-
length as well as the longitudinal displacement of the wave
packet reduced the interference contrast for very large phase
shifts, hindering precise bc determination.

Scherm [2] suggested placing the sample with its surface
parallel to the Bragg planes of the interferometer. In this config-
uration, neutrons of each wavelength subtend the correspond-
ing Bragg angle with the sample surface and the phase is ex-
actly wavelength independent (i.e., nondispersive). The sample
needs to be aligned to ∼arcsecond precision for this purpose
and enables bc determination to within a few parts in 104.

Ioffe and Vrana [3] and Ioffe et al. [4] recorded an
interferogram each with the nondispersive sample placed on
either of the two beam paths of the interferometer. The phase
shift between these two interferograms remains nondispersive
over a wider (∼arcminute) angular range, reducing the bc

imprecision to a few parts in 105.
Wagh and Abbas [5] proposed a comprehensive optimiza-

tion of this method to attain a further order-of-magnitude
improvement in bc precision and showed that a correction
for neutron refraction at the air-sample interfaces would then
become mandatory.

We present here a monolithic dual phase shifter in the
nondispersive configuration which facilitates a much cleaner
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measurement, enhancing the bc precision still further. In
addition, the angular alignment of the dual phase shifter turns
out to be much simpler compared to the single one.

In Sec. II we compare the phase dispersion in frequently
employed sample configurations. In addition to the
nondispersive and standard configuration we include
the strongly dispersive configuration, which is frequently
used for the phase flag and for coherence measurements.
Section III recapitulates the phase-shifter formulas and
discusses phase shifts and spatial displacements for single
and dual phase shifters. In Sec. IV we calculate the phase
dispersion originating from dynamical diffraction within the
interferometer blades and conclude that the dual phase shifter
is much more nondispersive than the single one, thereby
extending the magnitude of measurable phases by orders
of magnitude. Preliminary bc measurements with a silicon
nondispersive dual phase shifter are described in Sec. V.

II. PHASES AND DISPERSION

Figure 1 depicts the nondispersive (a), standard (b), and
strongly dispersive (c) configurations [6] alluded to in the
previous section. In all these configurations, the neutron
wave packet undergoes not only a phase shift but a spatial
displacement as well, as illustrated by the gray bullets in
the figure. A large wave-packet displacement causes a drop
in the interference contrast [7], allowing characterization of
longitudunal and transverse coherence lengths of the neutron
beam [8].

The right column in Fig. 1 displays the dependence of
the phase shift χ = χII − χI on the misalignment angle ε.
In the standard configuration (b), the exact alignment setting
(ε = 0) can be determined easily from the phase measurement
itself as the phase is symmetric about ε = 0. This possibility
does not exist for the nondispersive configuration (a), though
the alignment is required to be more precise (∼arcsecond).
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FIG. 1. Sample configurations in nondispersive (a), standard (b),
and strongly dispersive (c) geometry. The bullets along the beam
paths compare the positions of wave packets in paths I and II at
certain times. The phase shift χ is plotted versus misalignment angle
ε calculated for a 1-mm silicon phase shifter and two different Bragg
angles θ1 = 36◦ and θ2 = 40◦.

On alternating the nondispersive sample between the two
beam paths of the interferometer at each ε [3,4], the phase
shift χ (ε) − [−χ (−ε)] between the interferograms for the two
paths is symmetric about ε = 0, attaining a minimum magni-
tude at the correct alignment which only needs ∼arcminute
accuracy [cf. Fig. 2(a)].

To augment the precision of this method still further, we
propose here a dual nondispersive phase shifter comprising
two identical and parallel phase shifters placed on one path,
one before and the other after the mirror blade [Fig. 2(a)], in
the nondispersive configuration. The phase shift χ (ε) + χ (−ε)
can now be obtained in a single measurement with this dual
phase shifter placed on a single beam path. (The situation
χ (ε) − χ (−ε) is shown in Fig. 3 for completeness.) The
parallelity and identical thicknesses of the samples can be
most easily attained by monolithic construction. The effective
thickness of the phase shifter is doubled, resulting in higher
interference order and even better accuracy. Furthermore, the
spatial displacement of the wave packet effected by the sample
in the first gap is exactly annulled in the second. The wave
packets arriving from the two beam paths always fully overlap,
that is, they reach the analyzer blade at the same time and
same position, regardless of the magnitude of the phase shift
or the incident neutron wavelength. This large nondispersive
phase and the concomitant null spatial shift of the wave
packet yields full interference contrast even with a white,
and hence high-intensity, incident neutron beam, enabling a
fast and precise measurement. The situation is akin to that
for the observation [9] of the purely topological (and hence
nondispersive) Aharonov-Bohm phase [10].
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FIG. 2. Setups for measuring the sum χ (ε) + χ (−ε) for the
phase-shifter geometries explained in Fig. 1.

III. CALCULATIONS

A. Phase shift

If a plane wave ψin = ei�k·�r traverses a material slab of
thickness D, the transmitted wave is given by ψout = eiχψin

with the phase shift χ = D(K⊥−k⊥), with K⊥ and k⊥
denoting the wave vector components (inside and outside,
respectively) perpendicular to the surface (see Fig. 4). The
total energy of the neutron must be conserved:

E = k2h̄2

2m
+ Vair = K2h̄2

2m
+ V, (1)

where V denotes the neutron optical potential of the phase
shifter V = 2πh̄2Nbc/m, with the neutron mass m, atomic
density N, and coherent neutron scattering length bc. Vair is
the neutron optical potential for air, which can usually be
neglected but is included here for completeness. This yields
the (relative) index of refraction

n = K

k
=

√
1 − V − Vair

E−Vair
. (2)

For thermal neutrons and virtually all materials the condition
E � |V | � |Vair| applies and n is very close to unity: n ≈
1 − λ2Nbc/2π .

With K‖ = k‖ = k sin ϕ and K⊥ =√
K2−K2

‖ =
√

n2k2−k2
‖ we

obtain the phase shift

χ = D(K⊥−k⊥) = Dk(
√

n2 − sin2 ϕ − cos ϕ). (3)

A first-order series expansion by n around 1 gives

χ ≈ −Dk
1 − n

cos ϕ
≈ −Dk

V/E

2 cos ϕ
= −NbcDλ

cos ϕ
. (4)
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FIG. 3. Setups for measuring the difference χ (ε) − χ (−ε) for the
phase-shifter geometries explained in Fig. 1.

For the nondispersive geometry [Fig. 1(a)], ϕ = π/2 − θ .
Here θ stands for the interferometer Bragg angle for neutrons
of wavelength λ = 2d sin θ , with d denoting the Bragg planar
spacing of the interferometer crystal. Inserting (1) and (2) in
Eq. (3), we obtain

χ = Dπ

d

(√
1 − 2md2(V −Vair)

h̄2π2
− 1

)
, (5)

which is exactly nondispersive. A misalignment of the phase
shifter by a few arcseconds however makes the phase slightly
dispersive [cf. plots in Fig. 1(a)]. Over the finite angular width
of the interferometer Laue reflection, deviations from exact
Bragg incidence introduce a minute dispersion in the phase,
which is discussed in Sec. IV.

If the phase shifter is misaligned by an angle ε, ϕ =
π/2 − (θ + ε). Then cos ϕ = sin(θ + ε) in Eq. (4) and the
approximate phase becomes

χ (ε) ≈ − NbcDλ

sin(θ+ε)
= −2NbcDd sin θ

sin(θ+ε)
. (6)

In addition to the rotation ε about the vertical axis we
consider a tilt γ of the phase shifter about a horizontal axis
parallel to its surface. The tilt changes the phase shift by a
factor of 1/ cos γ [8].

For the nondispersive dual phase shifter configuration
[Fig. 2(a)], the misalignment angles are equal and opposite
in the two gaps of the interferometer, yielding a total phase

χd (ε) = χ (ε) + χ (−ε) (7)

= −2NbcDd

cos γ

(
sin θ

sin(θ+ε)
+ sin θ

sin(θ−ε)

)
(8)

≈ 2χ (0)[1 + ε2(cot2 θ + 1/2)](1 + γ 2/2). (9)

ψin = ei�k�r

ψout = eiχψin
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FIG. 4. A plane wave passing a phase shifter.

Since the first-order terms in the misalignment angles cancel
out here, the phase for the dual phase shifter remains nondis-
persive over a wider (∼arcminute) range of incidence angles
[cf. plots in Fig. 2(a)]. In contrast to the single nondispersive
phase shifter, which needs to be alternated between the two
paths in the interferometer at each angular setting [4] for
alignment, the dual phase shifter can be aligned while placed
on one path of the interferometer due to the quadratic variation
of its phase with both the misalignment angles.

B. Spatial shift of the wave packet

We have just derived the phase shift of a single plane wave.
We now consider a Gaussian wave packet with the central
wave component �k. The center of the wave packet’s envelope
travels the classical path PQ shown in Fig. 4. An undisturbed
wave packet (with no phase shifter) would propagate along
the dashed path PR and reach the point R at the same
time the disturbed wave packet reaches Q. This follows
from the fact that both wave packets always have the same r‖
position because k‖ = K‖. The wave packet thus undergoes the
displacement �	 from R to Q, which is always perpendicular to
the phase shifter surface. With the unit surface normal vector
�s, D�s/K⊥ = (D�s − �	)/k⊥ and

�	 = −�sD
(

k⊥
K⊥

− 1

)
= −�sD

(
cos ϕ√

n2 − sin2 ϕ
− 1

)
. (10)

The spatial shift can be accompanied by both a time lag
of the wave packet and a transverse displacement of the
beam, the latter defocusing the interferometer as the two
beam paths do not meet at the entrance face of the analyzer
blade. The terms “transverse” and “longitudinal” are used
ambiguously in the literature, sometimes relative to the beam
direction and at other times relative to the Bragg planes. In this
paper, we resolve �	 into two nonorthogonal components, the
defocusing component f perpendicular to the Bragg planes
and the delaying component l parallel to the beam. Figure 5
depicts this decomposition in the three cases of nondispersive,
standard, and strongly dispersive configurations. The former
two are purely defocusing and delaying, respectively, while
the latter is a mixture of both. Using this prescription, we can
easily add up the respective components of �	 due to several
phase shifters placed in various sections of the interferometer
and arrive at the net effect. The results are displayed in
Figs. 1–3. The interferometer is focused if neutrons from
both beam paths reach the third interferometer blade at the
same position. The time lag is zero if the wave packets reach
the third blade simultaneously. Gray bullets in the figures
indicate simultaneous wave-packet positions on the two paths.
All configurations of χ (ε)+χ (−ε) [Figs. 2(a) to 2(c)] and all
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FIG. 5. Decomposition of the spatial shift �	 into defocusing f

and lag distance l for different phase-shifter geometries (a) to (c).
The orientations of the f and l axes for different sample positions are
shown in (d).

phase shifters perpendicular to the beam [Figs. 1 to 3(b)] are
fully focused (f = 0). On the other hand, all configurations
of χ (ε)−χ (−ε) [Figs. 3(a) to 3(c)] and all nondispersive
configurations [Figs. 1 to 3(a)] have no time lag (l = 0). A
complete overlap of the wave packets (f = 0 and l = 0) occurs
in configurations Figs. 3(b) and 2(a). While the former is the
trivial case with zero phase shift (χ = 0) the latter generates
double the phase shift with a null wave-packet displacement
as already described.

The spatial shift �	 and phase shift χ (3) are related as

�K · �	 = −K⊥D

(
k⊥
K⊥

− 1

)
= D(K⊥ − k⊥) = χ. (11)

In the nondispersive dual phase shifter configuration [Fig. 2(a)]
the equal and opposite spatial shifts �	 in the two gaps of
the interferometer cancel out and yield a null defocusing.
However, since K⊥ also reverses sign in the second gap,
χ = �K · �	 has the same sign in both gaps and adds up.

Some authors identify the product �k · �	 with the phase shift
χ [1,8]. However, this holds as an approximation only for n

very close to unity. In general,

�k · �	 = Dk cos ϕ

(
1 − cos ϕ√

n2 − sin2ϕ

)
= χ

cos ϕ√
n2 − sin2ϕ

(12)

differs from χ . Even for normal incidence (ϕ = 0) where K⊥
and k⊥ are the closest to each other,

�k · �	 = kD(1−1/n) = χ/n, (13)
�K · �	 = nk	 = kD(n−1) = χ. (14)

A tilt γ of the phase shifter about the horizontal axis creates
a vertical defocusing �h. We can take Fig. 4 as a vertical cut
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eiχ
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r̄3

z1 z2 z3
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t t

t̄
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FIG. 6. Interferometer setup. For calculating the exiting wave
functions ψO and ψH all factors indicated along the beam paths have
to be collected.

through the phase shifter and replace ϕ by γ . Then �h equals−→
SQ, that is,

�h = �	 sin γ ≈ −�zD 1−n

cos2 γ
sin γ ≈ −�zNbcDλ2 tan γ

2π cos γ
. (15)

With the nondispersive dual phase shifter [Fig. 2(a)] the net
vertical shift also becomes zero.1

IV. LIMITS OF NONDISPERSION

How nondispersive is the “nondispersive” configuration?
The phase shift depends on kx , which is the wave vector
component perpendicular to the phase shifter surface (cf.
Fig. 6):

χ = D(Kx −kx), (16)

Kx =
√

k2
x − 2m(V −Vair)/h̄2. (17)

The kx distribution, determined by the interferometer crystal,
is centered at kxB = H/2 = π/d, with d denoting the Bragg
planar spacing and H the magnitude of the corresponding
reciprocal lattice vector. Using the deviation from the exact
Bragg law δkx = kx − kxB , we express the phase shift (16) as
a series expansion in powers of δkx/kxB as

χ = χB

[
1 − δkx

nxkxB

+
1+ 1

nx

2

δk2
x

n2
xk

2
xB

− O
δk3

x

k3
xB

]
, (18)

with χB = D(KxB −kxB ) and nx = KxB/kxB .
The kx distribution is delineated by the theory of dynamical

diffraction [1,6,11,12], which we will use in the next para-
graphs to determine the phase dispersion δχ/χB as well as
the resulting contrast of the interference fringes. The phase
dispersion turns out to be in the order of 10−5 for a single
phase shifter. With the dual phase shifter all odd power terms
in this series cancel out, leaving a dispersion of ∼10−10.

A. Single beam splitter

The interferometer consists of identical crystal slabs in
symmetric Laue geometry. Each crystal slab splits an incoming
plane wave into two components, a transmitted and a reflected
one [see Fig. 7(a)]. The reflection coefficient depends on the

1The cos γ term in the denominator of Eq. (15) is missing in [8]
Eq. (27) and [1] Eq. (4.43).
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FIG. 7. Geometry of symmetric Laue reflection.

blade position zj (Fig. 7) and is therefore denoted by rj . We
adapt the notation of [13] and express rj and the transmission
coefficient t as

t = exp[i(−A0 − AHy)]

{
cos(AH

√
1 + y2)

+ iy√
1 + y2

sin(AH

√
1 + y2)

}
, (19)

rj = exp[i(−A0 + AH y + 2AH yzj/D0)]

√
VH

V−H

× −i√
1 + y2

sin(AH

√
1 + y2), (20)

A0,H = D0k

2 cos θB

|V0,H |
E

. (21)

D0 denotes the blade thickness, V0,H the crystal potentials,
and E the neutron energy. The parameter y is a dimensionless
scaled deviation from the exact Bragg incidence and can be
expressed in terms of either the misset angle δθ or in terms of
δkx as

y = − h̄2kxB

m|VH |δkx = − 1

X

δkx

kxB

, δkx = kx − kxB, (22)

y ≈ − sin 2θB

|VH |/E δθ, δθ = θ − θB. (23)

X is half the ratio between the reflecting crystal potential VH

and the kinetic energy h̄2k2
xB/(2m) of the x component. Both

depend solely on parameters of the interferometer crystal since
kxB = π/d:

X = m|VH |
h̄2k2

xB

=
{

0.485 × 10−5 for Si 220,

1.297 × 10−5 for Si 111.
(24)

The wave vector �k of the transmitted component behind the
crystal is identical to the incident one since the incidence and
exit surfaces of the crystal slab are parallel. The wave vector
�kH of the reflected component is calculated quite easily for
the symmetric Laue case. The component kx being parallel
to the crystal surface is left unchanged when entering or
exiting the crystal. Inside the crystal, kx’s of the reflected and
incident waves differ by the reciprocal lattice vector magnitude
H = 2π/d = 2kxB . Thus kHx = kx − H and the z component

follows from energy conservation, that is, kHz =√
k2−k2

Hx:

�k =
(

kx

kz

)
=

(
kxB + δkx

kz

)
= k

(
sin(θB + δθ )

cos(θB + δθ )

)
, (25)

�kH =
(

kHx

kHz

)
=

(
kx − H

kHz

)
=

(−(kxB − δkx)√
k2 − k2

Hx

)
(26)

≈ k

(− sin(θB − δθ )

cos(θB − δθ )

)
(27)

This brings out an important feature of Laue reflection:
Incidence and exit angles are not equal. For an incidence
angle θB + δθ , the forward diffracted and diffracted beams
exit at angles θ = θB + δθ and θB − δθ, respectively. The
equal and opposite deviations from θB of the two exiting
beams also follow directly from the continuity of the tangential
component of the respective wave vector across the crystal-air
interface [12]. Consequently, the parameters y, δθ, and δkx

change sign after every reflection. We will denote this sign
change by barred symbols: r̄j = rj (−y), t̄ = t(−y), χ̄ =
χ (−δkx). These symbols have to be used whenever the beam
travels in the �kH direction [see Fig. 7(b)].

B. Whole interferometer

Figure 6 shows the whole interferometer with the sam-
ple and auxiliary phase flag. We take a single plane-wave
component exp(i�k · �r) of the incident beam and calculate
the exiting O wave component ψO = ψOI + ψOII , which
consists of contributions from both beam paths. Along each
beam path each crystal blade contributes by a reflection or
transmission factor as described earlier. The sample and phase
flag contribute by phase factors. (We neglect absorption.) After
the first reflection we have to use the barred symbols, after the
second reflection the unbarred terms, etc.:

ψOI = exp(i�k�r)t exp(iϕ+)r2r̄3, (28)

ψOII = exp(i�k�r)r1 exp(iϕ−) exp(iχ̄ )r̄2 exp(iχ )t. (29)

The intensity of the O beam then becomes

IO = |ψOI + ψOII |2 = a[1 + cos(χd − δϕ)]. (30)

In the last step we have used the fact that r2r̄3 = r1r̄2. δϕ =
ϕ+ − ϕ− is the known contribution of the auxiliary phase flag
and χd = χ + χ̄ is the total phase shift of the dual phase shifter
to be measured in the experiment. The symbol a stands for the
O intensity (averaged over the interference fringes) for a given
misset parameter y, that is,

a = 2|tr2r̄3|2 (31)

= 2 sin4(AH

√
1 + y2)

(1 + y2)2
− 2 sin6(AH

√
1 + y2)

(1 + y2)3
, (32)

and is plotted in Fig. 8. The parameter AH determines the
number of intensity oscillations in a given y interval but leaves
the envelope unaffected. It can be shown that the envelope is{

8
27 for |y| � 1/

√
2,

2
(1+y2)2 − 2

(1+y2)3 for |y| > 1/
√

2,
(33)

033626-5



HARTMUT LEMMEL AND APOORVA G. WAGH PHYSICAL REVIEW A 82, 033626 (2010)

1 20
0

0.2

0.4 a

y

FIG. 8. Typical plot of the average O beam intensity versus y for
AH = 100. The distribution is symmetric about y = 0. The dotted
line shows the distribution after averaging the AH oscillations.

with the half-width δy = √
2. With (22) the corresponding

wavelength dispersion reads δkx/kxB = −Xδy and is in the
order of 10−5. We also express the phase shift χ , Eq. (18), in
terms of y:

χ = χB + vy + wy2 + O(Xy)3, (34)

v = χB

X

nx

≈ χB · 10−5, (35)

w = χB

X2

2

(
1

n2
x

+ 1

n3
x

)
≈ χB · 10−10. (36)

For the single phase shifter we obtain a phase dispersion of
δχ/χB ≈ δyX/nx ≈ 10−5, as nx is close to unity. For the dual
phase shifter the total phase shift reads

χd = χ + χ̄ = χ (y) + χ (−y) ≈ 2 χB + 2 wy2. (37)

The sign change of y due to the Laue reflection cancels all
odd terms of the series expansion (34), resulting in a phase
dispersion of δχ/χB ≈ (δyX/nx)2 ≈ 10−10.

C. Contrast

The phase dispersion within the wave packet creates a drop
of interference contrast, which we calculate for the single
and dual phase shifter case, the former already given by
Petrascheck [6]. The contrast is determined by the remaining
amplitude of interference fringes after integrating (30) over
all components of the y distribution. To solve the integral
we first replace the sine oscillations in (32) by their average,
i.e., 〈sin4(·)〉 → 3/8, 〈sin6(·)〉 → 5/16. This is justified as AH

depends on wavelength and Bragg angle and strongly varies
within the beam divergence. Then

〈a〉 = 2〈sin4(·)〉
(1 + y2)2

− 2〈sin6(·)〉
(1 + y2)3

= 1 + 6y2

8(1 + y2)3
. (38)

The phase shift of each y component is given by (34). For
the single phase shifter case we drop the second order and set
χs = χB + vy. The integrated intensity reads

Is =
∫ ∞

−∞

1 + 6y2

8(1+y2)3
[1 + cos(χB +vy−δϕ)]dy (39)

= 9π

64
[1 + cs cos(χB −δϕ)] (40)

with the contrast

cs = ∣∣e−|v| (1 + |v| − 5
9v2

)∣∣ ≈ exp
(− 19

18v2
)
. (41)

The approximation is valid for thermal neutrons where

v = χBX

nx

= π	

	0 tan θB


 1, (42)

meaning that χB 
 nx/X ≈ 105 or that the spatial displace-
ment 	 
 	0. The so-called Pendellösung length 	0 is in the
order of 30 to 50 µm.

In the dual phase shifter case the phase shift is given by (37).
The integral can be solved with MATHEMATICA after expressing
the cosine as the real part of the exponential function:

Id =
∫ ∞

−∞

1 + 6y2

8(1 + y2)3
[1 + cos(2χB + 2wy2 − δϕ)] dy (43)

= Re
∫ ∞

−∞

1 + 6y2

8(1+y2)3
[1 + ei(2χB+2wy2−δϕ)]dy (44)

= Re

{
9π

64

[
1 + f

(√
2w

i

)
ei(2χB−δϕ)

]}
(45)

= 9π

64
[1 + cd cos(2χB + ξd − δϕ)]. (46)

The function

f (x) = 2√
π

(
x + 10

9
x3

)
−

(
28

9
x2 + 20

9
x4 − 1

)
ex2

erfc x

(47)

taken with the complex argument x = √
2w/i = √

2we−iπ/4

gives both contrast cd and phase defect ξd :

cd =
∣∣∣∣f

(√
2w

i

)∣∣∣∣ ≈ exp

(
− 128

9
√

π
|w|3/2

)
, (48)

ξd = arg f

(√
2w

i

)
≈ 38

9
w. (49)

The approximations are again valid for thermal neutrons where
w 
 1.

The results are plotted in Fig. 9. To bring about the same
loss in contrast as a single phase shifter, a dual phase shifter
has to introduce at least five orders of magnitude larger phase.

As opposed to the single phase shifter case, the contrast
drop of the dual phase shifter is governed primarily by large
y components. Their intensity is small (cf. Fig. 8) but their
impact on the contrast is large as their phase contribution is
proportional to y2. In real-life experiments, however, large y

components may not at all be presented to the interferometer
crystal, depending on the monochromator in use. We take
that into account by multiplying the integrand in (43) with
a Gaussian envelope exp[−y2/(2σ 2)]/

√
2πσ 2. The contrast

and phase defect then read

cd =
∣∣∣∣∣∣
f

(√
2w
i

+ 1
2σ 2

)
f

(√
1

2σ 2

)
∣∣∣∣∣∣ (50)

≈ exp

⎧⎨
⎩−16

3
w2

⎡
⎣

√(
143

27

)2

+ 8σ 2

π
− 143

27

⎤
⎦

⎫⎬
⎭ , (51)

ξd = arg
f

(√
2w
i

+ 1
2σ 2

)
f

(√
1

2σ 2

) ≈ 38

9
w exp

(
− 2

σ

)
. (52)

The contrast is plotted for different values of σ in the lower
part of Fig. 9. For a finite σ , the contrast loss exhibits a w2

proportionality for small phase shifts in accordance with the
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FIG. 9. Contrast of single (cs) and dual (cd ) phase shifters versus
phase shift in linear (top) and logarithmic view (bottom). The gray-
shaded regions show variations with the index of refraction nx ranging
between 0.8 and 1.25. The dotted lines indicate single and dual phase
shifts for our experimental parameters (18-mm-thick silicon and 220
silicon interferometer). The dependence of cd on the width of the
kx distribution incident on the interferometer is illustrated by four
different Gaussian widths σ (in units of the y parameter).

approximation (51), but beyond a sufficiently large phase shift,
it switches to the curve (48) with w3/2 dependence. The regime
of thermal neutron experiments is in the region of the dotted
lines in Fig. 9. The lines indicate the single and dual phase
shifts of an 18-mm-thick silicon sample with a 220 silicon
interferometer, used in our experiment (cf. next section). The
contrast drop amounts to 5 × 10−5 for the single phase shifter
and—depending on the monochromator—10−11 to 10−15 for
the dual one. Much larger variations may however be observed
with larger interferometers (giving room for thicker phase
shifters) or interferometers for cold neutrons [14] when they
become available.

The second-order calculation for the dual phase shifter
yields a phase defect ξd by which the measured phase differs
from the desired phase 2χB [cf. (46)]. The second-order terms
in the χ distribution (34) are equal for positive and negative
y components and add together. The single phase shifter
shows a similar phase defect if the second-order term is taken
into account. As we have verified by numerical calculations,
the relative phase defect ξ/χ is equal for single and dual
phase shifter in the regime of thermal neutrons and can be
approximated as

ξs

χs

≈ ξd

χd

≈ 19

9
X2 =

{
0.50 × 10−10 for Si 220,

3.6 × 10−10 for Si 111.
(53)

It is many orders of magnitude below current limits of
measurement accuracy and can be neglected.

D. Interpretation

In the dual phase shifter configuration, components of the
kx distribution which are faster than average (δkx > 0) on their
first pass of the phase shifter are slower than average (δkx < 0)
by the same amount on their second pass. That is why the dual
phase shifter is nondispersive in two respects. In addition to
being independent of the kz component (which is already the
case for the single phase shifter), the phase shift is also, to first
order, constant for all components of the kx distribution. The
interfering wave packets have not only the same position but
also the same shape.

Being truly nondispersive and nondefocusing the config-
uration resembles topological phase measurements like the
Aharonov-Bohm phase [10] and can likewise accept a large
wavelength spread of incident neutrons [9]. The acceptable
wavelength spread is only constrained by the range of Bragg
angles the interferometer can accommodate and at which
neutrons can traverse the entire sample depth.

V. MEASUREMENTS

We made a proof-of-the-principle bc measurement with a
nondispersive silicon dual phase shifter [Fig. 2(a)] of the S18
neutron interferometer setup of the Institut Laue Langevin
in Grenoble [15]. A symmetric 220 LLL interferometer was
operated with 2.36 Å neutrons at a Bragg angle of 38◦,
allowing a 25-mm-thick single phase shifter in the first
gap. However, the beam broadening on passing the mirror
blade over the Borrmann fan reduced the maximum sample
thickness usable in the second gap to 18 mm. A monolithic
18-mm-thick and 93-mm-long silicon dual phase shifter was
hence fabricated with a 6-mm-wide groove in the middle to
accommodate the mirror blade. Thus the dual shifter phase
was only 1.44 (instead of the theoretical 2) times the single
shifter phase. An auxiliary 4-mm-thick aluminium phase flag
(cf. Fig. 6) was used to record the interference fringes. On
placing the sample on one path, the interference contrast was
reduced to about 96% of the empty interferometer contrast.
We attribute this drop of contrast to incoherent scattering as
the total diagonal flight path through silicon sample amounts
to 58 mm. The intrinsic drop of contrast accompanying the
large phase shift of about 1.6 × 105 deg is practically zero
(cf. Fig. 9).

The phases extracted from interferograms acquired at
several rotations ε and tilts γ of the sample were fitted to
parabolic curves (Fig. 10). The sample was then set to the
correct orientation (ε and γ = 0) where the phase magnitude
exhibited a minimum.

A large number of successive sample-in and- out interfer-
ometric scan pairs were then recorded alternately for paths
I and II. It took half a day for the phase shift to stabilize
to a constant value (cf. Fig. 11). A typical path I–path II
interferogram pair is depicted in Fig. 12. An average over
13 pairs of stable interference patterns yielded a II–I phase
shift = −(456 × 720 − 256.7) ± 0.30 deg. The interference
order (456) was deduced from previous bc measurements for
Si [4].

The Si bc value of 4.1 479 ± 0.0 023 fm was thus arrived
at after adding a correction of 0.009137 fm for air, the major
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FIG. 10. Measured phase of the dual phase shifter in beam path II
versus alignment angles ε and γ . Each curve has been acquired with
the other angle set to its optimal value. The given errors contain the
statistical part only. The curves have random offset since there was
no need to subtract the sample-out phase for alignment purposes.
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part of the bc error arising from the metrologically observed
variation of 10 µm in the sample thickness. The correction
of −1.01 × 10−5 fm to bc due to refraction at the air-sample
interfaces is too small in comparison.

If the interference order ν is not known from previous
measurements one can in principle deduce it from the curvature
of the parabola scans. Writing the theoretical alignment
curve (9) in degree units

χd = χd0

[
1 +

(
cot2 θ + 1

2

) (
π

180

)2

(ε − ε0)2

]

×
[

1 + 1

2

(
π

180

)2

(γ − γ0)2

]
− ν360◦ (54)

and comparing it with the fit functions χd (ε) = a + bε(ε −
ε0)2 and χd (γ ) = a + bγ (γ − γ0)2 we identify

a = χd0 − ν360, (55)

bε = χd0

(
cot2 θ + 1

2

)(
π

180

)2

, (56)

bγ = χd0
1

2

(
π

180

)2

, (57)

ν = �χd0/360◦�. (58)

The curvatures bε,γ contain the full phase shift χd0 and not just
χd0 modulo 360◦. If the curvatures can be determined with
sufficient accuracy they directly yield the interference order.
Due to slightly curved sample surfaces and thermal instabilities
we observed some variations in the curvatures and could
determine the interference order only as ν = 466 ± 27 by
averaging over 25 measurements. For a precise determination
one would need to reduce the systematic errors and/or use
thinner samples. Nevertheless, the result agrees with the
expected interference order of 456 and confirms that the dual
phase shifter doubles the single phase shift.

VI. CONCLUSION

Rauch et al.’s [2] nondispersive phase shifter configuration
afforded precise interferometric determination of neutron
coherent scattering lengths. Ioffe and Vrana [3] and Ioffe
et al. [4] improved the precision further by an order of
magnitude by alternating the phase shifter between the two
paths of the interferometer.

We have presented here a dual nondispersive phase shifter
which is more nondispersive than the single “nondispersive”
phase shifter by several orders of magnitude. This advantage
will be especially interesting for cold neutron interferometry.
Even for thermal neutrons the dual phase shifter generates
double the phase with a null wave-packet displacement and
substantially simplifies the angular alignment. One may en-
visage an interferometer setup dedicated to bc measurements,
operating at a large Bragg angle and with a mirror blade cut to
accommodate a nongrooved dual phase shifter or a container
cell for liquid and gaseous materials.

ACKNOWLEDGMENTS

Fruitful discussions with Gerald Badurek, Erwin Jericha,
and Helmut Rauch are gratefully acknowledged. We thank

033626-8



PHASE SHIFTS AND WAVE-PACKET DISPLACEMENTS IN . . . PHYSICAL REVIEW A 82, 033626 (2010)

Rudolf Loidl and Helmut Rauch for participation in the
interferometric experiment with the Si dual phase shifter and
Sohrab Abbas for partaking in its analysis. The work has been
supported by the project P18943 of the Austrian Science Fund

(FWF). One of us (AGW) is thankful to DST (Department
of Science and Technology), India, for partially funding
his short visit to ILL during which the present work was
initiated.

[1] H. Rauch and S. A. Werner, Neutron Interferometry (Clarendon,
Oxford, 2000).

[2] H. Rauch, E. Seidl, D. Tuppinger, D. Petrascheck, and
R. Scherm, Z. Phys. B 69, 313 (1987).

[3] A. Ioffe and M. Vrana, Phys. Lett. A 231, 319 (1997).
[4] A. Ioffe, D. L. Jacobson, M. Arif, M. Vrana, S. A. Werner,

P. Fischer, G. L. Greene, and F. Mezei, Phys. Rev. A 58, 1475
(1998).

[5] A. G. Wagh and S. Abbas, J. Res. Natl. Inst. Stand. Technol.
110, 237 (2005).

[6] D. Petrascheck, Phys. Rev. B 35, 6549 (1987).
[7] D. Petrascheck and R. Folk, Phys. Status Solidi A 36, 147 (1976).
[8] H. Rauch, H. Wölwitsch, H. Kaiser, R. Clothier, and S. A.

Werner, Phys. Rev. A 53, 902 (1996).

[9] G. Badurek, H. Weinfurter, R. Gähler, A. Kollmar, S. Wehinger,
and A. Zeilinger, Phys. Rev. Lett. 71, 307 (1993).

[10] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[11] U. Bonse and W. Graeff, X-Ray Optics (Springer-Verlag,

Heidelberg, 1977), pp. 93–123.
[12] A. G. Wagh and V. C. Rakhecha, Prog. Part. Nucl. Phys. 37, 485

(1996).
[13] H. Lemmel, Phys. Rev. B 76, 144305 (2007).
[14] C. Pruner, M. Fally, R. A. Rupp, R. P. May, and

J. Vollbrandt, Nucl. Instrum. Methods Phys. Res. A 560, 598
(2006).

[15] A. G. Wagh, S. Abbas, H. Rauch, H. Lemmel, and R. Loidl,
Experimental Report 3-15-58, Institut Laue Langevin, 2009
(to be published).

033626-9

http://dx.doi.org/10.1007/BF01307290
http://dx.doi.org/10.1016/S0375-9601(97)00334-4
http://dx.doi.org/10.1103/PhysRevA.58.1475
http://dx.doi.org/10.1103/PhysRevA.58.1475
http://dx.doi.org/10.1103/PhysRevB.35.6549
http://dx.doi.org/10.1002/pssa.2210360116
http://dx.doi.org/10.1103/PhysRevA.53.902
http://dx.doi.org/10.1103/PhysRevLett.71.307
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1016/0146-6410(96)00056-7
http://dx.doi.org/10.1016/0146-6410(96)00056-7
http://dx.doi.org/10.1103/PhysRevB.76.144305
http://dx.doi.org/10.1016/j.nima.2005.12.240
http://dx.doi.org/10.1016/j.nima.2005.12.240

