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Dynamic structure factor of the normal Fermi gas from the collisionless to the hydrodynamic regime
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The dynamic structure factor of a normal Fermi gas is investigated by using the moment method for the
Boltzmann equation. We determine the spectral function at finite temperatures over the full range of crossover
from the collisionless regime to the hydrodynamic regime. We find that the Brillouin peak in the dynamic structure
factor exhibits a smooth crossover from zero to first sound as functions of temperature and interaction strength.
The dynamic structure factor obtained using the moment method also exhibits a definite Rayleigh peak (ω ∼ 0),
which is a characteristic of the hydrodynamic regime. We compare the dynamic structure factor obtained by the
moment method with that obtained from the hydrodynamic equations.
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I. INTRODUCTION

When discussing collective modes in quantum many-body
systems at finite temperatures, there are two regimes of
interest: the collisionless (or mean-field) regime and the
collisional (or hydrodynamic) regime. The mechanisms for
the occurrence of collective modes in these two regimes differ
critically. One of the collective modes is the first sound in
the collisional regime, which is due to local equilibrium. In
a normal Fermi system, zero sound is a characteristic sound
mode in the collisionless regime. It propagates due to the
mean-field interaction. This zero sound was first predicted by
Landau [1] based on Fermi-liquid theory [2], and it has been
studied in many fields of physics including low-temperature
physics, nuclear physics (hot nuclear matter), and astrophysics
(neutron stars).

Collective modes with time-dependent density disturbances
have been investigated. The crossover between first sound and
zero sound was first observed by Keen et al. in measurements
of the acoustic impedance between liquid 3He and a quartz
crystal [3]. Density fluctuations have been excited in ultracold
atoms by deforming the trapping potential [4,5]. An alternative
way to probe collective excitations is to use scattering of light
or particles. This involves measuring the spectral function of
the system, such as the dynamic structure factor or the density
response function.

In neutron scattering experiments, the roton spectrum of
liquid 4He was observed through the spectral function. In early
experiments on liquid 3He, several problems were encountered
in neutron scattering measurements of the dynamic structure
factor, including a high neutron absorption cross section and
interaction between spins. Nowadays, these problems have
been overcome and neutron scattering experiments on liquid
3He have also been performed [6,7]. The dynamic structure
factor of ultracold atoms has been studied by two-photon
Bragg spectroscopy in a condensed Bose-Einstein gas and
the Bogoliubov spectrum was obtained [8]. This technique has
also been used recently for a Fermi gas [9].
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In 1958, Abrikosov and Khalatnikov conducted the first
theoretical study of the dynamic structure factor of a normal
Fermi liquid [10]. They proposed using light scattering to
observe the zero sound in liquid 3He. The spectral function
has also been studied in connection with evaluating the Landau
parameter by sum rules [11]. Photoabsorption cross sections
of hot nuclear matter have been studied by taking only two
moments: the density and current [12,13]. In the field of the
ultracold quantum gases, the spectral function of normal Fermi
gases has been studied [14,15].

The dynamic structure factor of normal Fermi gases in
both the collisionless and hydrodynamic regimes has been
discussed in detail [16]. By employing the random-phase
approximation, the dynamic structure factor can be discussed
even beyond the phonon regime in the collisionless regime.
However, the hydrodynamic regime cannot be investigated
using the same theoretical framework. In this regime, the hy-
drodynamic equations, which are not valid in the collisionless
regime, can be used to calculate the density response function.

Although the crossover between zero and first sound modes
has been extensively studied for a long time, there has been
no comprehensive study of the dynamic structure factor over
the full crossover range from the collisionless regime to
the collisional regime within a single theoretical framework.
Furthermore, the dynamic structure factor for the crossover
from zero to first sound has not been explicitly calculated and
it is not obvious how it varies as a function of temperature and
interaction strength. It is thus important to study the dynamic
structure factor at finite temperatures from the collisionless
regime to the hydrodynamic regime within a single theoretical
framework.

In the present article, we study the dynamic structure factor
of a normal Fermi gas over the full crossover range from
the collisionless regime to the hydrodynamic regime within a
single theoretical framework, namely, the moment method.
The moment method can be used to perform systematic
analysis and it yields important physical insights. Guéry-
Odelin et al. first applied the moment method to study the
collective mode in a trapped classical gas [17]. We recently
used the moment method to study excitation spectra of a
normal Fermi gas in a uniform system [18]; the results for both
frequency and damping of the collective mode clearly show
the crossover from the zero to first sound mode. In the present
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article, we extend the study of Ref. [18] by investigating the
dynamic structure factor over the full crossover range from
zero to first sound.

This article is organized as follows. Section II presents
the moment method for a normal two-component Fermi gas.
Section III examines the dynamic structure factor obtained
using the moment method and discusses the crossover from
the collisionless to the hydrodynamic regime. Section IV
compares the spectral function obtained by the moment
method with that obtained using the hydrodynamic equations.
We focus on the Brillouin peak in the dynamic structure factor,
which is associated with the sound mode, and the Rayleigh
peak, which is associated with the thermal diffusion mode.
We discuss the results in Sec. V. Section VI presents the
conclusions.

II. MOMENT EQUATION AND DYNAMIC
STRUCTURE FACTOR

We start with the following Boltzmann equation:

∂fσ (p,r,t)
∂t

+ p
m

· ∇rfσ (p,r,t)

−∇rUσ (r,t) · ∇pfσ (p,r,t) = Icoll[fσ ], (1)

where the subscript σ = {↑, ↓} represents the spin component.
We consider a normal Fermi gas with two spin components in
the symmetric configuration N↑ = N↓. We also assume that
atoms with different spins collide with an s-wave scattering
length of a. The effective potential Uσ (r,t) is the sum of
the mean-field interaction gn−σ (r,t) and the external field
Uext(r,t), where nσ (r,t) is the local density and g is the
interaction strength, which is given by g = 4πh̄2a/m. In this
study, we consider a spin-independent external field.

We linearize the distribution function around the static equi-
librium [denoted by f 0

σ (p,r)] using fσ (p,r,t) = f 0
σ (p,r) +

δfσ (p,r,t). It is convenient to write fluctuations in the
distribution function around the static equilibrium in terms
of the average additional energy of the particles νσ (p,r,t),
which is defined by δfσ (p,r,t) ≡ (∂f 0

σ /∂ε0
σ )νσ (p,r,t). We

apply a relaxation time approximation to the collision integral
Icoll[fσ ]. Using this approximation, the collision integral can
be reduced to

Icoll[fσ ] = −fσ − f̃σ

τ
= − 1

τ

∂f 0
σ

∂ε0
σ

δνσ , (2)

where τ is the relaxation time, f̃σ is the distribution function
in local equilibrium, and δνσ is given by δνσ = νσ − [Aσ +
B · p + Cp2]. νσ,local ≡ Aσ + B · p + Cp2 is the solution for
the local equilibrium. The coefficients Aσ , B, and C are
determined below using the conservation law. We use the
viscous relaxation time given in Ref. [18] as the relaxation
time τ in Eq. (2).

We now consider an external field with the form
Uext(r,t) = Uext(q,ω)ei(q·r−ωt). This leads to a plane-
wave solution of the linearized Boltzmann equation,
which is represented as νσ (p,r,t) = νσ (p,q,ω)ei(q·r−ωt), and

δnσ (r,t) = δnσ (q,ω)ei(q·r−ωt). The linearized Boltzmann
equation for νσ (p) is now given by

∂f 0
σ

∂ε0
σ

{(
ω − p · q

m

)
νσ (p) + p · q

m
[gδn−σ + Uext(q,ω)]

}

= − 1

τ

∂f 0
σ

∂ε0
σ

[νσ (p) − (Aσ + B · p + Cp2)], (3)

where we omit q and ω in νσ and δnσ for simplicity.
We expand the fluctuation in terms of spherical harmonics

as νσ (p) ≡ ∑∞
l=0

∑l
m=−l ν

m
σ,l(p)P m

l (cos θ )eimφ. Multiplying
Eq. (3) by e−im′φ and integrating it over φ, we obtain the
reduced form of the linearized Boltzmann equation:

∞∑
l=0

∂f 0
σ

∂ε0
σ

[(
ω − pq

m
cos θ

)
νm

σ,lP
m
l (cos θ )

]

+ ∂f 0
σ

∂ε0
σ

(pq

m
cos θ

)
[gδn−σ + Uext(q,ω)]δm,0 = − i

τ

∂f 0
σ

∂ε0
σ

×
[ ∞∑

l=0

νm
σ (p)P m

l (cos θ ) − (Aσ + B · p + Cp2) δm,0

]
.

(4)

We see that only the mode m = 0 is coupled to the external po-
tential, and thus we take the mode m = 0, which corresponds
to the longitudinal wave.

When we take moments corresponding to the number of
particles, the momentum, and the energy, the collision integral
vanishes due to the conservation law. The coefficients Aσ , B,
and C in the relaxation time approximation are determined
from these conservation laws. The resultant equations are
〈νσ,0〉 − AσWσ,0 − CWσ,2 = 0,

∑
σ (〈pνσ,1〉 − BWσ,2) = 0,

and
∑

σ (〈p2νσ,0〉 − AσWσ,2 − CWσ,4) = 0. The function
Wσ,n is defined as

Wσ,n ≡
∫

dp
(2πh̄)3

pn ∂f 0
σ

∂ε0
σ

, (5)

and we assume longitudinal sound (i.e., B ‖ k). We defined
the moment 〈pnνσ,l〉 as

〈pnνσ,l〉 ≡
∫

dp
(2πh̄)3

∂f 0
σ

∂ε0
σ

pnνσ,l(p), (6)

where we used the notation νm=0
σ,l (p) ≡ νσ,n(p).

Multiplying Eq. (4) by pnPl(cos θ ), where P m=0
l (cos θ ) ≡

Pl(cos θ ), and integrating it over p, we obtain the moment
equation, which we summarize as(

ω + i

τ

)
〈pnνσ,l〉 − l

2l − 1

q

m
〈pn+1νσ,l−1〉 (7)

− l + 1

2l + 3

q

m
〈pn+1νσ,l+1〉 + g

q

m
Wn+1〈ν−σ,0〉δl,1

− i

τ

[
Wn

W0
+ 1

�

(
WnW

2
2

W 2
0

− Wn+2W2

W0

)]
〈νσ,0〉δl,0

− i

τ

1

�

(
WnW

2
2

W 2
0

− Wn+2W2

W0

)
〈ν−σ,0〉δl,0

− i

τ

1

�

(
Wn+2 − W2Wn

W0

)
(〈p2ν↑,0〉 + 〈p2ν↓,0〉) δl,0
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− i

τ

Wn+1

2W2
(〈pν↑,1〉 + 〈pν↓,1〉) δl,1

= − q

m
Wn+1δl,1Uext(q,ω), (8)

where we define � ≡ 2(W4 − W 2
2 /W0). We used Wn ≡

Wσ,n = W−σ,n, assuming a population-balanced gas. In the
absence of an external field (Uext = 0), solutions of Eq. (8)
give the frequency (or sound velocity) and damping of normal
modes. Detailed calculations of the normal-mode solutions are
presented in Ref. [18]. From the solution of Eq. (8) including
Uext(q,ω), we can calculate the density δntot = 〈ν0〉, which
can be written in terms of the density response function as
δntot(q,ω) = χ (q,ω)Uext(q,ω).

The density response function χ (q,ω) is related to the
dynamic structure factor S(q,ω) by the dissipation fluc-
tuation theorem [16]. Using the detailed balance condi-
tion S(q,ω) = eβh̄ωS(q, − ω) and the relation Imχ (q,ω) =
−π [S(q,ω) − S(q, − ω)], the dynamic structure factor can be
written as

S(q,ω) = − 1

π

1

1 − e−βh̄ω
Imχ (q,ω). (9)

We now discuss collective modes that use the dynamic
structure factor S(q,ω) calculated from the moment equation.
The present moment method reproduces the excitation only
in the phonon regime q < kF (as discussed in a previous
study [18]), and hence our results are valid for phonon
regimes.

III. DYNAMIC STRUCTURE FACTOR FROM THE
COLLISIONLESS TO HYDRODYNAMIC REGIME

A. Strong coupling case

Figure 1 shows the spectral function in a strongly coupled
system as a function of ω and T . We used the renormalized
frequency and temperature ω/(vFq) and T/TF, where vF =
(h̄/m)(3π2Ntot/V )1/3 is the Fermi velocity and TF = EF/kB

is the Fermi temperature. EF is the Fermi energy, which is
given by EF ≡ mv2

F/2, Ntot is the total number of particles,
which is given by Ntot ≡ N↑ + N↓, and V is the volume. The
dynamic structure factor is normalized as follows: S̃(ω,T ) ≡
S(ω,T )V εF/Ntot. We choose the parameters q = 0.05kF and
α = 15, where α ≡ gNtot/(V εF) [19], and take moments

S̃
(ω
,T

)

0

4

8

12

ω/(qvF)

2.14 2.1 2.06 2.02 1.98

T/TF

0

0.02

0.04

FIG. 1. The dynamic structure factor S(ω,T ) as a function of ω

and T , calculated by the moment method. In the ω-T plane, the solid
line denotes the phase velocity calculated by the moment method [18],
the dashed line gives the phase velocity of zero sound, and the dotted
line gives that of first sound.

S̃
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,α

)
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α

30
25
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10
5
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FIG. 2. The dynamic structure factor S(ω,α) as a function of
ω and α, calculated by the moment method. The sound velocity
calculated by the moment method (solid line) [18] is in the ω-α
plane. The sound velocities of zero sound (dashed line) and first
sound (dotted line) are also plotted.

up to l = n = 30. Figure 1 also shows the sound velocity
calculated by the moment method (solid line), the zero
sound (dashed line), and the first sound (dotted line) in the
ω-T plane.

It shows that there is a smooth crossover between zero and
first sound in the structure factor. As in Ref. [18], the sound
eigenmode exhibits a crossover between zero and first sound.
Correspondingly, the peak in the structure factor associated
with the sound mode (the Brillouin peak) transitions smoothly
from the zero sound mode to the first sound mode with
increasing temperature. As expected, the Brillouin peaks are
quite sharp in both the collisionless and the collisional regimes,
where the damping rate is small. The peak in the crossover
regime from zero to first sound is quite broad, reflecting a
short lifetime. The peak width in the hydrodynamic mode is
discussed in Sec. IV.

Figure 2 shows the spectral function as a function of
frequency ω and coupling constant α. We set the parameters
as q = 0.05kF and T = 0.025TF and take moments up to
l = n = 31. The peaks in the collisionless and collisional
regimes are quite sharp. The Brillouin peak becomes broader
in the crossover regime from zero to first sound. The zero
and first sound modes have very similar velocities in the
strong-coupling regime, which makes it difficult to distin-
guish between the two regimes solely based on the mode
frequency. However, the reduction in the intensity of the
dynamic structure factor with increasing coupling strength
α is a clear indicator of a crossover between zero and first
sound.

B. Weak-coupling case

The situation is more complicated for a weakly coupled
system. It is difficult to distinguish collective modes from other
excitations when the moment method is used to determine the
eigenvalues of a normal Fermi system because the eigenvalue
for coherent oscillation overlaps with those for the particle-
hole continuum. Because of this complication, Ref. [18]
omitted detailed discussion of the collective mode in a weakly
coupled system with changing temperature. We now study
collective excitations in a weakly coupled system in terms

033622-3



SHOHEI WATABE AND TETSURO NIKUNI PHYSICAL REVIEW A 82, 033622 (2010)
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FIG. 3. The dynamic structure factor S(ω,T ) calculated by the
moment method as a function of ω and T for the weakly coupling
case α = 1. The dashed line shows the phase velocity of zero sound
and the dotted line shows that of first sound in the ω-T plane.

of the dynamic structure factor. Figure 3 shows a plot of the
spectral function of a weakly coupled system. We choose the
parameters as q = 0.01kF and α = 1 and take moments up
to l = n = 31. For reference, the zero sound (dashed line)
and first sound (dotted line) frequencies are plotted in the
ω-T plane.

The collective modes in the collisionless and collisional
regimes are easily found from the spectral intensity peak.
The first sound mode clearly has a single broad peak at high
temperature. Zero sound can be also identified as it has a
narrow, high-intensity peak slightly above the Fermi velocity
at low temperature. However, in the crossover regime from
zero to first sound, the intensity is low and it is affected by
other modes.

Thus, it is difficult to distinguish the collective mode
in the crossover regime from zero to first sound from the
structure factor in a weakly interacting system; this aspect
differs from the strong coupling case. Detailed behavior of the
spectral intensity in the crossover and collisionless regimes
below ω < qvF (the region corresponding to the particle-hole
continuum) is affected by the number of moments that we take
for numerical calculations. However, the main results noted
previously remain the same.

C. Rayleigh peak

In classical hydrodynamics, the response function also
includes a peak due to the thermal diffusion mode at ω = 0
[16,20,21], which is known as the Rayleigh peak [20]. An
explicit expression for the hydrodynamic response function
is given in Refs. [20,21]; it is discussed in the next section
in the context of the moment method. As discussed in
Ref. [18], the normal mode solutions in our moment method
include the thermal diffusion mode. The dynamic structure
factor calculated for Eq. (4) involves the associated Rayleigh
peak. Figure 4 shows a plot of the spectral function over
a wide range in the ω-T plane using the same parameters
as those in Fig. 1. The Rayleigh peak appears at ω = 0
in the hydrodynamic regime, and it appears with increasing
temperature. We compare this result with the hydrodynamic
response function in the next section.

S̃
(ω
,T

)

0

0.2

0.4

0.6

0.8

ω/(qvF)
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0.05

0.1
0.15

0.2

FIG. 4. The dynamic structure factor S(ω,T ) calculated by the
moment method as a function of ω and T using the same parameters
as those for Fig. 1. The solid line in the ω-T plane represents the
phase velocities of the sound. There are two peaks: the Brillouin peak
at high velocity and the Rayleigh peak near a velocity of zero.

IV. DYNAMIC STRUCTURE FACTOR IN
HYDRODYNAMIC REGIME

In this section, we briefly review the density response
function in the hydrodynamic regime and we compare this
result with the dynamic structure factor obtained using the
moment equation. The average additional energy of particles
in the local equilibrium νσ,local is given by νσ,local = Aσ +
B · q + Cp2, as mentioned in Sec. II. Neglecting the departure
from local equilibrium δνσ ≡ νσ − νσ,local on the left-hand side
of Eq. (3) and also Uext, we obtain

δνσ = iτ

{(
ω − p · q

m

)
[Aσ + B · p + Cp2]

+ p · q
m

g[A−σW−σ,0 + CW−σ,2]

}
. (10)

Substituting νσ = νσ,local + δνσ in Eq. (3) and taking the
zeroth, first, and second moments of the linearized Boltzmann
equation, we obtain the hydrodynamic equations given by

ω[AσWσ,0 + CWσ,2] = B · q
3m

Wσ,2, (11)

∑
σ

{
ωBWσ,2 − Aσ

Wσ,2

m
q − C

Wσ,4

m
q

+ g
Wσ,2

m
[A−σW−σ,0 + CW−σ,2]q

}

− i4ηq2B + q
m

(W↑,2 + W↓,2)Uext = 0, (12)

ω[A↑W↑,2 + A↓W↓,2 + C(W↑,4 + W↓,4)]

− B · q
3m

(W↑,4 + W↓,4) − 4iκm2CT q2 = 0, (13)

where the collision integral is zero in the hydrodynamic
regime because of the conservation law. κ is the thermal
conductivity κ = −kBβτ (W6 − W 2

4 /W2)/(6m4), and η is the
shear viscosity η = −2τW4/(15m2). Detailed derivations are
given in Ref. [18].

The preceding equations can be written in terms of fluctua-
tions in the total density δntot ≡ ∑

σ [AσWσ,0 + CWσ,2], veloc-
ity v ≡ −B, and energy δE = ∑

σ [AσWσ,2 + CWσ,2]/(2m).

033622-4



DYNAMIC STRUCTURE FACTOR OF THE NORMAL FERMI . . . PHYSICAL REVIEW A 82, 033622 (2010)

The resultant hydrodynamic equations can be expressed in
matrix form:

K

⎛
⎜⎝

δntot

q · v

δE

⎞
⎟⎠ =

⎛
⎜⎝

0
q2

m
Uext

0

⎞
⎟⎠ , (14)

where the 3 × 3 matrix K is given by

K ≡

⎛
⎜⎜⎜⎝

ω 2W2
3m

0

− gq2

2m
ω − i

2ηq2

W2

q2

W2

−i
�κγW2

2mW0

W4
3m2 ω + i�κγ

⎞
⎟⎟⎟⎠ . (15)

The parameter γ is defined by

γ ≡ W0
(
W4 − gW 2

2

)
W 2

2 (1 − gW0)
, (16)

and the rate �κ is given by

�κ ≡ − 2κT m2q2W 2
2 (1 − gW0)(

W4 − gW 2
2

)(
W4W0 − W 2

2

) . (17)

Solving the matrix equation (14) for δntot, we obtain

δntot = 1

detK
(K13K32 − K12K33)

q2

m
Uext (18)

= −2W2

3m2
q2 ω + i�κγ

detK
Uext. (19)

We neglect the second-order terms in the transport coefficients
κ and η since they are small in the hydrodynamic regime.
This allows the determinant of the matrix K to be reduced to
detK = (ω2 − �2)(ω + i�κ ) + 2i�ω2, where

� ≡
√

W4 − gW 2
2

3W2

q

m
≡ cq (20)

and

� = −ηq2

W2
− κT q2m2(

W4 − gW 2
2

) . (21)

Taking this determinant to be zero, we obtain the eigenmodes
of the hydrodynamic modes (to first order in κ and η): ω =
±� − i� and ω = −i�κ [18]. � is the frequency of the sound
mode and � is its damping rate. c in Eq. (20) is the sound
velocity. The damping rate �κ is that of the heat diffusion
mode.

Using the preceding approximations for the zeros of detK ,
we can explicitly derive the density disturbance induced by the
external field in terms of the frequency and damping rates of the
eigenmodes. This is given as δntot(q,ω) = χ (q,ω)Uext(q,ω),
where the resultant density response function χ (q,ω) is given
by

χ (q,ω) = −2W2

3m2
q2 ω + i�κγ

(ω − � + i�)(ω + � + i�)(ω + i�κ )
.

(22)

S̃
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,T

)
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0.8

ω/(qvF)

3 2.5 2 1.5 1 0.5 0 T/TF0
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FIG. 5. The dynamic structure factor S(ω,T ) obtained from the
hydrodynamic equations given in Eq. (23), using the same parameters
as those for Fig. 1.

The absorptive susceptibility can be reduced to

Imχ (q,ω) = 2W2

3m2c2

[
ω(γ − 1)�κ

ω2 + �2
κ

+ 2ω��2

(ω2 − �2)2 + (2ω�)2

− ω�κ (γ − 1)(ω2 − �2)

(ω2 − �2)2 + (2ω�)2

]
, (23)

where we used � � �κ and also � � �. This absorptive
susceptibility has two peaks: the Rayleigh peak at ω = 0 and
the Brillouin peak at ω = �.

Figure 5 plots the dynamic structure factor obtained from
the hydrodynamic equations as a function of ω and T . We
used the same parameter set as that in Fig. 1. Comparing
Fig. 5 with Fig. 4 shows that the structure factor calculated
using the hydrodynamic equations differs from that obtained
by the moment method in the crossover and collisionless
regimes, as expected. The spectral intensity decreases in those
regimes because of the high damping rates of hydrodynamic
modes. In contrast, Fig. 4 clearly shows that the moment
method can correctly describe the dynamic structure factor
in both the crossover and collisionless regimes, whereas the
hydrodynamic equations cannot.

To evaluate how effective the moment method is in the
collisional regime, we perform a more quantitative comparison
between the results obtained using the moment method and
those obtained using the hydrodynamic equations. Figure 6
shows a plot of Rayleigh peaks for several temperatures as
a function of ω. The solid, dashed, dotted, and dot-dashed
lines represent results for T/TF = 0.2, 0.1608, 0.1216, and
8.24 × 10−2, respectively. The thick lines are the results
obtained using the moment method and the thin lines are those
obtained using the hydrodynamic equations. It is not possible
to distinguish between them since they exhibit identical
behavior in the hydrodynamic regime. At lower temperatures,
the Rayleigh peak becomes too weak to distinguish the two
results.

Figure 7 shows a plot of Brillouin peaks for several
temperatures as a function of ω. The solid, dashed, and dotted
lines represent the results for T/TF = 5 × 10−2, 4.02 × 10−2,
and 3.04 × 10−2, respectively. The thick lines show the
results obtained using the moment method and the thin lines
show the results obtained using the hydrodynamic equations.
As the temperature decreases and the system approaches
the crossover regime, the difference between the dynamic
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FIG. 6. Rayleigh peaks for several temperatures as a function of
ω. Solid, dashed, dotted, and dot-dashed lines represent results for
T/TF = 0.2, 0.1608, 0.1216, and 8.24 × 10−2, respectively.

structure factor obtained by the moment method and that
obtained from the hydrodynamic equations increases. In both
Figs. 6 and 7, we used the same parameters as in Fig. 1. We
conclude that our moment method can reproduce the dynamic
structure factor in the hydrodynamic regime reasonably well.

We comment on the Landau-Placzek ratio in our formula-
tion. Comparing Eq. (23) with the formula for the absorptive
susceptibility in terms of the thermodynamic quantities in
Eq. (4.44a) in Ref. [20] (also Eq. (87a) in Ref. [21]), we
find that Cp/Cv is equal to γ , where Cp and Cv are the
specific heats at constant pressure and volume, respectively.
We used ntot = 2nσ = −2W2/(3m) and the relation mc2 =
(∂p/∂ntot)|S = (Cp/Cv)(∂p/∂ntot)|T , where p is the pressure
and S is the entropy. The Landau-Placzek ratio εLP, defined as
the ratio of half the area under the Rayleigh peak to that under

S̃
(ω
,T

)

0

2

4

6

8

ω/(qvF)

1.95 2 2.05 2.1

FIG. 7. Brillouin peaks for several temperatures as a function
of ω. Solid, dashed, and dotted lines represent results for T/TF =
5 × 10−2, 4.02 × 10−2, and 3.04 × 10−2, respectively. Thick lines
are the results obtained by the moment method and the thin lines are
the results obtained from the hydrodynamic equations.
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FIG. 8. The Landau-Placzek ratio εLP obtained from our formal-
ism as a function of temperature.

one Brillouin peak [20], is given by εLP ≡ (Cp/Cv) − 1 [22];
hence, the Landau-Placzek ratio can be obtained as

εLP = γ − 1 (24)

= W0W4 − W 2
2

W 2
2 (1 − gW0)

. (25)

At T = 0, we have χn,σ = −3Ntotp
n
F/(4V εF), and hence the

Landau-Placzek ratio εLP becomes zero. Figure 8 shows that
the temperature dependence of the Landau-Placzek ratio for
α = 15. As mentioned earlier, this ratio approaches zero
at T = 0 and it is a monotonically increasing function of
temperature. To derive the Landau-Placzek ratio, it is usually
necessary to calculate the specific heats at constant pressure
and volume Cp and Cv . However, in our formalism it can
simply be obtained from the function Wn.

V. DISCUSSION

In experiments of ultracold atomic gases, two-photon Bragg
scattering is a well-developed tool for studying the dynamic
structure factor [9]. This type of study is analogous to
the classic work by Abrikosov and Khalatnikov [10], who
proposed using light scattering to observe zero sound in
liquid 3He. With the recent dramatic progress in experimental
techniques for ultracold atomic gases, the coupling strength α

can also be controlled because of the Feshbach resonance. The
results in the present article should be observable in principle.

Hu et al. recently discussed the density response function in
superfluid gases in the two-fluid hydrodynamic regime [23].
They showed that the first and second sound have different
relative weights in the dynamic structure factor S(q,ω) and
the density response function Imχ (q,ω) [23]. This is clearly
seen in the relation between both functions shown in Eq. (9).
When ω/(kBT ) � 1, S(q,ω)  −kBT Imχ (q,ω)/(πh̄ω). Hu
et al. pointed out that the extra factor 1/ω leads to a large
enhancement of the peak associated with the low-frequency
second sound in S(q,ω) [23]. This is also true for the Rayleigh
peak in the present study. Figure 9 plots the imaginary part
of the density response function −Imχ (ω,T ) as a function
of ω and T using the same parameters as for Fig. 1.
The density response function is normalized by χ̃(ω,T ) ≡
χ (ω,T )V εF/Ntot. Due to the absence of the factor 1/ω,
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FIG. 9. The imaginary part of the density response function
−Imχ (ω,T ) as a function of ω and T using the same parameters
as for Fig. 1. The solid line in the ω-T plane shows the phase velocity
of the sound obtained by the moment method. Only the Brillouin
peak is visible at high velocity. The Rayleigh peak near zero velocity
is not visible.

the Rayleigh peak near ω = 0 cannot be observed. Thus, the
Rayleigh peak can be observed through the dynamic structure
factor, whereas it has a negligibly small weight in the density
response function. A localized potential that turns off after
a short duration, which is used in experimental studies of
ultracold atomic gases, will also be useful for studying the
Rayleigh peak because the excitation of density pulses is
proportional to Imχ (q,ω)/ω [23,24].

The moment method can be applied to other systems, such
as transverse zero sound and a collective mode in a Fermi gas
with dipole interaction. The spectral function of a polarized
normal Fermi gas at the unitarity limit has recently been
studied at T = 0 [15]. The method described in the present
article can also be used to determine the density response of a
polarized normal Fermi gas with a strong interaction at finite
temperatures. We intend to apply the moment method to these
systems in the future.

In the present article, we applied the moment method to
the Boltzmann equation with a simple mean-field interaction
and calculated the dynamic structure factor in the crossover
regime between the collisionless regime and the hydrodynamic
regime. Our method provides a controlled calculational tool as
long as the perturbative control of the interaction is possible.
In the case of a normal Fermi gas near the unitarity limit,
the Boltzmann equation (1) will be modified by replacing
the mean-field interaction Uσ = gn−σ (with g = 4πh̄2a/m)
with the real part of self-energy [25] associated with the
many-body T matrix T , which is calculated through the
ladder approximation [26,27]. For the collision integral in

the Boltzmann equation, the scattering cross section dσ/d�

is also given in terms of the many-body T matrix T through
dσ/d� = m2|T |2/(4πh̄2)2 [27–29].

The preceding approach involves difficulty when one solves
this Boltzmann equation directly; but, one can still apply the
moment method if one uses the so-called unitarized vacuum
scattering matrix, that is, the T matrix neglecting the effects
of the medium given by T = g/(1 + iap/h̄), where p is
the relative momentum of the scattering particles [27–31].
This approach using the vacuum scattering is valid for the
high-temperature regime (T − Tc)/Tc >∼ 1 [29]. The effects
of the medium becomes significant at lower temperatures
(T − Tc)/Tc <∼ 1 [28,29] because of the phase transition
associated with the Cooper instability [28]. We note that the
regime T <∼ 2Tc near the unitarity limit corresponds to the
pseudogap regime [28,29,32]. As a result, the moment method
will be applicable for the normal Fermi gas near the unitarity
limit at higher temperature than that for the pseudogap regime.
Outside the perturbative regime, the results may be trusted
qualitatively but only to the same extent that one can trust
qualitative descriptions of the mean-field theory for static
equilibrium properties.

VI. CONCLUSION

We studied the spectral function of a normal Fermi system at
finite temperatures from the collisionless to the hydrodynamic
regime. We solved the Boltzmann equation accurately using
the moment method and we determined the dynamic structure
factor in the crossover and collisionless regimes as well as in
the hydrodynamic regime as a function of the temperature and
coupling strength. We compared the results obtained by the
moment method with those obtained using the hydrodynamic
equations in terms of the Rayleigh and Brillouin peaks. We
also briefly commented on the Landau-Placzek ratio.

It has been generally difficult to study the dynamic structure
factor in the crossover regime between the collisionless and
hydrodynamic regimes because of its complexity. This study
describes a powerful method for calculating the dynamic
structure factor over the whole crossover range, from the
collisionless to the hydrodynamic regime, within a single
framework.
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