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We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices
(OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity,
we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical
potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact
solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form.
The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations,
and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition
relation between nonlinear Bloch waves and solitons.
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I. INTRODUCTION

Analogies between the electron dynamics in perfect crystals
and light propagation in periodic optical media suggest a
variety of physical phenomena and related applications. Bose-
Einstein condensates (BECs) in optical lattices (OLs) not only
represent an ideal tool for investigating fundamental effects,
such as the Landau-Zener tunneling, Josephson oscillations,
dynamical instabilities, and quantum phase transitions be-
tween the superfluidity and the Mott insulator, but also offer
versatile settings for the potential implementation of quantum
computation schemes [1,2].

The mean-field description of the BEC dynamics at zero
temperature is based on the Gross-Pitaevskii equation (GPE),
that is, the nonlinear Schrödinger equation (NLSE) with a
potential term, which is a ubiquitous model with important
realizations in other fields—first of all, in nonlinear optics [3].
Many experimental and theoretical works [4–16] (see also
reviews [1,2,17,18]) have been dealing with matter-wave and
optical solitons in OLs. Usually, these solitons are found in
a numerical form, with their chemical potential falling into
the semi-infinite gap or finite band gaps of the spectrum
induced by the OL potential, in the framework of the corre-
sponding linear Schrödinger equation. A specific issue, which
is relevant to the present work, is the composition relation
between nonlinear Bloch waves (NBWs) and fundamental
solitons, whose main peaks are confined to a single OL
cell [19].

Current experiments with BECs wield a high degree of
control over key parameters of the systems. By means of the
technique of the Feshbach resonance driven by magnetic or
optical fields [20,21], one can adjust almost at will the strength
and sign of the inter-atomic interactions. On the other hand,
available fabrication technologies allow a modulation of the
local nonlinearity in nonlinear optics. Therefore, there has
been increased interest in the study of the nonlinear dynamics
under spatially modulated nonlinearities, in optics and BEC
alike, see original works [22–35] and book [36]. In such
settings, the nonlinear dynamics exhibits novel features, such
as the “anti-Vakhitov-Kolokolov” criterion which controls the

stability of gap solitons in media combining a spatially periodic
nonlinearity and the OL potential [30].

Exact solutions for matter-wave solitons in BECs with OL
potentials are important not only because of their simplicity
and the connection to physical bound states, but also since they
can be used to test various approximate methods and may also
find applications in other fields. The objective of the present
work is to construct one-dimensional (1D) soliton solutions
in physically relevant situations combining the OL potential
and a spatially modulated attractive nonlinearity. In addition to
producing exact soliton solutions in specially devised versions
of such systems and exhibiting their relation to NBWs, we
also find generic numerical solutions, by means the relaxation
method, and investigate their stability. The results may be also
be directly applied to nonlinear optical media with embedded
periodic gratings, which play essentially the same role in
photonics as the OLs in BEC.

II. THE MODEL AND ITS REDUCTION

We consider a condensate of atoms trapped by a com-
bination of a tight cigar-shaped magnetic trap and an OL
potential acting in the longitudinal direction. If the transverse
dimensions are comparable to the healing length, and the
longitudinal dimension is much longer than the transverse
ones, the setting is effectively one dimensional, obeying by
the respective version of the GPE (see, e.g., Refs. [8])

iψt = −ψxx + [2V0 cos(2x) + g(x)|ψ |2]ψ, (1)

where ψ(x,t) is the macroscopic wave function of the
condensate. Here, time t , spatial coordinates x, and the strength
of the OL potential, V0, are normalized, respectively, by
h̄/Er , k, and Er/4, with the recoil energy Er = h̄2k2/2m,
wave number of the optical lattice k, and atomic mass m.
The nonlinearity coefficient is g = 4mωras/h̄k2, where ωr

is the transverse harmonic frequency and as is the s-wave
scattering length of inter-atomic collisions. By means of
the Feshbach-resonance technique controlled by properly
designed configurations of external fields, as may be subject
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to a spatial modulation, hence the corresponding nonlinearity
coefficient g(x) may be a function of x. In this paper, we
focus on the attractive nonlinearity, namely, g(x) < 0, rather
than more general situations with the sign-changing g(x), such
as those considered in some other works (see, in particular,
Refs. [29,30,35]). It is relevant to mention that the cubic
nonlinearity in Eq. (1) is valid if the density is small enough;
otherwise, the reduction of the dimension in the GPE from 3
to 1 leads to a nonpolynomial nonlinearity [37].

Stationary soliton solutions to Eq. (1) are searched as
ψ(t,x) = φ(x) exp(−iµt), where chemical potential µ is
normalized by the recoil energy, and real function φ(x) obeys
the stationary NLSE,

µφ = −φxx + [2V0 cos(2x) + g(x)φ2]φ, (2)

with boundary conditions φ(x → ±∞) = 0. Up to the rescal-
ing, the number of atoms and energy of the localized state
are

N =
∫ ∞

−∞
φ2 dx, (3)

E =
∫ ∞

−∞

[(
∂φ

∂x

)2

+ 2V0 cos(2x)φ2 + g(x)

2
φ4

]
dx

≡ µN − 1

2

∫ ∞

−∞
g(x)φ4dx. (4)

Following the scheme proposed in Refs. [26,27], exact
soliton solutions can be constructed by casting Eq. (2) into
the form of a solvable stationary NLSE in the free space,

EU = −UXX + g0U
3, (5)

where E and g0 are constants. This reduction may be
implemented by employing the following transformation:

φ(x) = ρ(x)U [X(x)], X(x) ≡
∫ x

0
ρ(s)−2ds, (6)

and requiring

g(x) = g0ρ
−6(x), (7)

where ρ obeys the Ermakov-Pinney equation [26–28,38],

ρxx + [µ − 2V0 cos(2x)]ρ = Eρ−3. (8)

It is commonly known that Eq. (5) possesses exact solutions
in terms of Jacobi’s elliptic functions. Therefore, exact soliton
solutions to Eq. (2) can be constructed as long as exact
solutions of Eq. (8) are known. In fact,

ρ =
√

αϕ2
1 + 2βϕ1ϕ2 + γ ϕ2

2 (9)

solves the Ermakov-Pinney equation, where α, β, and γ are
real constants satisfying E = (αγ − β2), and ϕ1 = C(µ,V0,x)
and ϕ2 = S(µ,V0,x) are two linearly independent Math-
ieu functions (cosine and sine, respectively) that satisfy
the Mathieu equation [39,40] ϕxx + [µ − 2V0 cos(2x)]ϕ = 0.
We here use the notation for solutions to the Mathieu
equation adopted in the MAPLE software package. The
solutions are defined by the following initial conditions:
C(µ,V0,x = 0) = 1, d

dx
C(µ,V0,x)|x=0 = 0, and S(µ,V0,x =

0) = 0, d
dx

S(µ,V0,x)|x=0 = 1. In the general case, these
solutions are quasiperiodic, therefore they cannot be expressed
in terms of the standard set of particular periodic Mathieu
functions, cen and sen, nor through the conjugate nonperiodic
solutions, fen and gen [39].

For the soliton solutions to be physical, from Eq. (7)
it follows that ρ(x) must not change its sign at any point
(a sign-definite function), otherwise the local nonlinearity
would diverge at points of ρ = 0. Therefore, parameters
α, β, γ in Eq. (9) should be chosen so as to secure this
condition.

III. EXACT SOLITON SOLUTIONS WITH
THE ATTRACTIVE NONLINEARITY

For the attractive nonlinearity, g0 < 0, a relevant exact
solution to Eq. (5) is

U (X) =
√

(E − λ2)/g0 cn(λX − X0,q), (10)

where λ and X0 are arbitrary constants, E satisfies −λ2 �
E < λ2, and cn is the Jacobi’s elliptic function with
modulus q =

√
(λ2 − E)/2λ2. When |E| < λ2, Eq. (10)

gives a periodic function of X, with period 4K(q)/|λ|,
where K(q) is the complete elliptic integral of the first
kind. With regard to ρ(x) �= 0, the boundary condition
φ(x → ±∞) = 0 is satisfied when U(X(x → ±∞)) = 0.
The periodicity of function cn imposes condition λ[X(x →
+∞) − X(x → −∞)] = 2nK(q), with integer n. When E =
−λ2, solution (10) goes over into the well-known elemen-
tary one, U (X) = √

2E/g0 sech(
√−EX − X0), where the

boundary condition φ(x → ±∞) = 0 may be satisfied if
X(x → ±∞) = ∞.

A. Case of E = 0

For E = 0, Eq. (8) is linear, and its solution can be a linear
combination of the above-mentioned Mathieu functions,

ρ = c1C(µ,V0,x) + c2S(µ,V0,x), (11)

where constants c1 and c2 should be chosen so as to make ρ (x)
sign-definite. We begin by constructing exact symmetric and
antisymmetric soliton solutions for Eq. (2), where the spatial
modulation of the nonlinearity should be represented by an
even function ρ(x). Without the loss of generality, we then set
c1 = 1 and c2 = 0 in Eq. (11), hence ρ is an even function
of x. Since ρ(x) should be a sign-definite function, chemical
potential µ cannot be arbitrary for fixed strength V0 of the OL
potential. It can then be shown that, for given V0, there is a
cutoff value of the chemical potential µco, below which ρ is
sign-definite,

µco ≡ A(0,V0), (12)

which is exactly the minimum energy eigenvalue in the
first Bloch band of the corresponding linear Schrödinger
equation with periodic potential 2V0 cos(2x). Thus, exact
soliton solutions of Eq. (2) exist in the semi-infinite gap.
The cutoff chemical potential is shown in Fig. 1, where the
case V0 < 0 is not shown because µco is an even function
of V0.
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FIG. 1. (a) Cutoff chemical potential, as given by Eq. (12), vs the
strength of the OL potential (solid line). Exact soliton solutions exist
below the solid line. The circle designates µco = −4.2805 at V0 = 4.
(b) Spatially modulated nonlinearity coefficient, as given by Eq. (13),
with µ = −10, V0 = 4, and g0 = −1. (c) Same as in (b), except for
µ = −4.2807.

Now we investigate the properties of the nonlinearity-
modulation pattern and respective solitons. When µ is much
smaller than the cutoff value µco, ρ(x) increases monotonically
and quickly approaches infinity. Therefore, the modulation
function

g(x) = g0

[C(µ,V0,x)]6 (13)

is localized in a very narrow single region [Fig. 1(b)]. Also,
from Eqs. (7) and (8) it follows that the smaller the chemical
potential, the narrower the localization region. On the contrary,
when µ approaches µco, ρ oscillates and slowly approaches
infinity, so that the region of the localization of g(x) is
relatively wide, featuring several layers [Fig. 1(c)], and the
more closely the chemical potential approaches the cutoff
value, the wider the localization region of the nonlinearity
coefficient.

Since the even and sign-definite ρ(x) approaches infinity
at |x| → ∞, it is clear that X(x), defined in Eq. (6), is a
monotonic nondecreasing odd function of x, which has upper
and lower limits. Therefore, to let the exact soliton solutions
meet the boundary condition φ(x → ±∞) = 0, constant λ in
Eq. (10) must be chosen so as to satisfy condition λX(x →
+∞) = nK(

√
2/2), where n = 1,2,3, . . . . At the same time,

constant X0 should be chosen as X0 = 0 for odd integer n,
and X0 = K(

√
2/2) for even integer n. Thus, exact soliton

solutions to Eq. (2), with the modulation pattern taken as per
Eq. (13), are

φn(x) = nK(1/
√

2)√−g0X(+∞)
C(µ,V0,x)

× cn

(
nK(1/

√
2)

X(+∞)
X,

√
2

2

)
, (14)
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FIG. 2. (Color online) Exact symmetric solitons for (a) n = 1 and
(e) n = 3, and an exact antisymmetric soliton for (c) n = 2, where the
corresponding modulation function g(x) is taken as per Fig. 1(b) (i.e.,
with V0 = 4 and g0 = −1). Panels (b), (d), and (f) are the same as (a),
(c), and (e), respectively, except for the corresponding modulation
function, which is taken as in Fig. 1(c). Solid circles in the bottom of
each column show the OL potential.

for n = 1,3,5, . . . , while for n = 2,4,6, . . . , the exact solu-
tions are

φn(x) = nK(1/
√

2)√−g0X(+∞)
C(µ,V0,x)

× cn

[
nK(1/

√
2)

X(+∞)
X − K

(√
2

2

)
,

√
2

2

]
, (15)

where we define X(x) = ∫ x

0 C(µ,V0,s)−2 ds.

It follows from Eqs. (6), (13)–(15) that, once the chemical
potential (µ < µco), constant g0, and the strength of the OL
potential, V0, are fixed, there exists an infinite number of
exact solitons sharing the same chemical potential. Note that
expression (14) is an even function of x, hence the soliton is
symmetric. On the contrary, expression (15) is an odd function
of x, which varies ∼x at x → 0, yielding an antisymmetric
soliton. In either case, the matter-wave densities are even
functions of x. The exact soliton solution, φn, possesses n − 1
density nodes (see Figs. 2 and 3), and from Eq. (4) it can
be concluded that the larger the n, the larger the energy
of the corresponding BEC state. Thus one may conclude
that φ1 corresponds to the ground state, φn corresponding to
the (n − 1)th excited states. By comparing the exact soliton
solution φ1 to the ground-state solution of the same GPE,
obtained in a numerical form by means of the imaginary-time
method, we find that φ1 is identical to the ground state when
V0 < 0. However, φ1 is not always the ground state when
V0 > 0 (for instance, φ1 remains the ground-state solution at
µ < −9 for V0 = 4). On the other hand, for the 1D linear
Schrödinger equation, it is well known that localized states
with different energy eigenvalues are orthogonal. Here we
find that the localized states of the nonlinear GPE are not
orthogonal.

From Figs. 1 and 2 it can be found that the widths
of solitons are proportional to the widths of the respective
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FIG. 3. (Color online) Exact symmetric and antisymmetric soli-
tons with chemical potential µ = −10. The parameters are V0 = −4,
g0 = −1. Solid circles show the OL potential.

nonlinearity-modulation profiles g(x). This is understandable
because both the widths of the solitons and g(x) profiles are
determined by ρ(x), see Eqs. (6) and (7). That is, the more
rapidly ρ(x) approaches infinity, the narrower the solitons
and g(x) distributions are. Further, it can be shown that the
widths of the exact solitons are always larger than those of
the respective modulation profiles. To analyze this point in a
simple form, we here take the case of V0 = 0. In this case,
µ < µco = 0, ρ ∼ exp(

√−µx), so that g ∼ exp(−6
√−µx)

and X ∼ 1 − exp(−2
√−µx) at x > 0; thus the width of

the soliton is about three times larger than that of the
ρ(x) modulation. Since exact solitons in the left column of
Fig. 2 are confined mainly to a single OL cell, they may be
called fundamental solitons [19], whereas the right column
displays broader modes similar to the gap waves reported in
Refs. [41].

Another noteworthy point is that, although the cutoff chem-
ical potential µco is an even function of V0, the nonlinearity-
modulation function is not. From Eqs. (8) and (13), it follows
that the width of g(x) corresponding to V0 > 0 is smaller than
that for −V0 when the chemical potential is fixed; see a typical
example of the comparison in the inset to Fig. 3. Thus, the
effective nonlinearity in the case of −V0 < 0 is stronger than
for V0 > 0, at the same g0. On the other hand, the effective
potential is attractive (repulsive) for negative (positive) V0

for fundamental solitons. For these reasons, the number of
atoms in the exact fundamental solitons with V0 < 0 is smaller
than for V0 > 0, as can be seen from the comparison of
Figs. 2 and 3.

Similarly, exact asymmetric solitons to Eq. (2) can be
constructed if we let c1c2 �= 0 in Eq. (11). For ρ to be
sign-definite in this case, we again need µ < µco, and c1,c2

should be chosen properly. As a generic example, we take
µ = −5, V0 = 4, and c2 = g0 = −c1 = −1. In such a case,
ρ(x) = C(−5,4,x) − S(−5,4,x), the asymmetric modulation
profile of g(x) is given by Eq. (7), and X(x) = ∫ x

0 ρ−2(s) ds.
To meet the boundary conditions φ(x → ±∞) = 0, constants
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n , where Nn is the respective norm (scaled number of atoms).

Inset: the corresponding asymmetric nonlinearity-modulation profile.
Here, we set g0 = −1, with other parameters given in the text. Solid
circles show the OL potential.

λ and X0 in Eq. (10) should satisfy

λ[X(+∞) − X(−∞)] = 2nK(
√

2/2),
(16)

X0 = λX(−∞) + K(
√

2/2),

where n = 1,2,3, . . . .

Exact asymmetric solitons can be found when substituting
values (16) into Eqs. (6) and (10). The representative profiles
of the solitons, together with the corresponding asymmetric
nonlinearity-modulation profile, are displayed in Fig. 4.
Similar to the exact symmetric and antisymmetric solutions,
different solitons with the same chemical potential are not
orthogonal.

B. Case of E > 0

The exact solution to Eq. (5) with E > 0 is given by
Eq. (10). To construct exact localized solutions, ρ(x) should
approach infinity as |x| → ∞, so that the function X(x)
is bounded; it can be shown that such a requirement may
be realized when chemical potential µ falls into the band
gaps of the spectrum induced by the OL potential of the
corresponding linear Schrödinger equation. The exact solution
for ρ is given by Eq. (9). Due to the nonzero value of
the corresponding Wronskian, ϕ1

′ϕ2 − ϕ1ϕ2
′ = −1, ϕ1(x) and

ϕ2(x) cannot vanish at the same position, and ρ is always
sign-definite. However, if µ does not belong to the semi-infinite
gap, there exist several points where ρ is very close to zero,
making the strength of the nonlinearity very large [this region
is very narrow, and g(x) looks like the δ function], which we
do not consider here. We are rather interested in the case of
µ < µco.

To meet the boundary condition, we need λ[X(∞) −
X(−∞)] = 2nK(q), n = 1,2,3, . . . . Because λ >

√
E, an

inequality ensues from here,

nK

(
λ2 − E

2λ2

)
>

X(∞) − X(−∞)

2

√
E. (17)
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From Eq. (17) it follows that n > nmax ≡ [X(∞) −
X(−∞)]

√
E/π . Thus, unlike the case of E = 0, where all

values n = 1,2,3, . . . give rise to solitons, here the first several
values of n may disappear. For example, if nmax = 2.5, then
actual values which give rise to the solitons are n = 3,4,5, . . . .

However, in the semi-infinite gap, we find nmax < 1, regardless
of values of E, α, β, and γ . That is to say, there is still an infinite
number of exact solitons sharing the same chemical potential.
The exact soliton solutions are given by Eqs. (6), (9), and (10),
with the nonlinearity given by Eq. (7).

C. Case of E < 0

In this case, the sign-definite ρ exists when the chemical
potential is in the semi-infinite gap, that is, µ < µco, and the
real constants α, β, and γ should be carefully chosen. To
meet the boundary condition, we need λ[X(∞) − X(−∞)] =
2nK(q), n = 1,2,3, . . . . Unlike the case of E > 0, where
inequality (17) must be satisfied, here there is no restriction on
n, hence there still exists an infinite number of exact solitons
sharing the same chemical potential.

D. Discussion

Thus far, we have demonstrated that an infinite number
of exact soliton solutions, which share common values of
the chemical potential, can be constructed in the model with
the OL potential. These solutions exist in the semi-infinite
gap, in accordance with the fact that soliton families [n in
Eqs. (14) and (15) denotes the family’s index] can be found
in the semi-infinite gap when the attractive nonlinearity is
spatially uniform [19,42]. The same model also supports gap
solitons in finite band gaps; we are not going to discuss exact
solitons in those band gaps because (i) the exact spatially
modulated nonlinearity mimics an array of δ functions,
which may be hard to realize in experiments, and (ii) the
corresponding profile of exact solitons are irregular.

We did not analyze in detail properties of exact solitons
when E �= 0, because they are similar to what was described
above for E = 0. For example, when E �= 0, exact symmetric
and antisymmetric solutions can be constructed by choosing
β = 0 and β �= 0, respectively, in Eq. (9).

We did not consider the repulsive nonlinearity either. The
reason is that for repulsive nonlinearities (g0 > 0), a nontrivial
solution to Eq. (5) is U (x) =

√
2(E − λ2)/g0 sn(λX − X0,√

E/λ2 − 1), where λ2 < E < 2λ2. To meet the boundary
condition in this case, we must demand λ[X(∞) − X(−∞)] =
2nK(

√
E/λ2 − 1), n = 1,2,3, . . . , from which it follows that

n < nmax ≡ [X(∞) − X(−∞)]
√

E/π . On the other hand, we
have nmax < 1 for the chemical potential falling into the
semi-infinite gap. Therefore, there are no exact solitons in
the semi-infinite gap for the spatially modulated repulsive
nonlinearity, just as in the case of the spatially uniform
repulsive nonlinearity [1].

IV. NUMERICALLY FOUND SOLITONS
AND THEIR STABILITY

In Sec. III, we were able to find only discrete sets of
particular exact soliton solutions for the given nonlinearity.

Here we consider more general matter-wave solitons with
different values of the chemical potential in the OL potential,
when the localized nonlinearity-modulation profile is fixed.
That is, we aim to find solitons in the framework of the
equation

µφ = −φxx + 2V0 cos(2x)φ − [C(µ0,V0,x)]−6 φ3, (18)

with µ0 < µco and, generally speaking, µ �= µ0, where µco is
given by Eq. (12). We focus here only on symmetric soliton
solutions in the semi-infinite gap, that is, at µ < µco.

Exact solutions to Eq. (18) have been found above for µ =
µ0. Using these exact solutions as an an initial guess, one
can find more general solitons by means of the numerical
relaxation method. There are two different cases, which we
define as I and II, with g(x) localized, respectively, around a
peak or bottom of the OL potential, for positive or negative
V0, respectively. In either case, solitons can be found in the
semi-infinite gap, regardless of the value of µ0. In case II,
the number of atoms is a monotonously decreasing function
of µ, just like in the case of the NLSE with the spatially
uniform attractive nonlinearity. However, the situation is quite
different in case I. For the first family of solitons (n = 1),
we find that the number of atoms at first decreases and then
increases with the increase of µ, see Fig. 5(b), whereas for
other soliton families, the atom number is a monotonously
increasing function of µ, see Fig. 5(d). These types of the
dependences have obvious implications for soliton stability, as
per the Vakhitov-Kolokolov criterion [43], see below. For all
soliton families in case I, when µ approaches the cutoff value,
most atoms are located in wells of the OL potential adjacent
to the region where the nonlinearity is concentrated. In other
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FIG. 5. (Color online) (a) First family of numerically found
solitons. Solid (red), dashed (green), and dotted (blue) lines represent
the solitons with chemical potentials µ = −10, µ = −5, and µ =
−4.5, respectively. The dashed-dotted line shows the nonlinearity-
modulation profile, with µ0 = −10 and V0 = 4, see Eq. (18) (this
corresponds to what is defined as case I in the text). Chains of
open circles show the OL potential. (b) The number of atoms vs
the chemical potential. Panels (c) and (d): The same as (a) and (b),
except that the solitons are from the second family.
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FIG. 6. (Color online) Same as Fig. 5, except for V0 = −4 (which
corresponds to case II, as defined in the text). Note that in (c), the
solitons of µ = −5 and µ = −4.5 are almost indistinguishable.

words, the solitons are confined to one or two OL cells in case I,
while in case II they are trapped in a single cell (see Fig. 6).

To investigate the stability of solitons, we first employ the
linear-stability analysis. Substituting a perturbed solution,
ψ(x,t) = [φ(x) + u(x) exp(it) + v∗(x) exp(−i∗t)] exp
(−iµt), into Eq. (1) and linearizing it around the unperturbed
one, φ(x), we arrive at an eigenvalue problem,(

L −gφ2

gφ2 −L

)(
u

v

)
= 

(
u

v

)
, (19)

with operator L = d2/dx2 + µ − 2V0 cos(2x) − 2gφ2, and
g = −[C(µ0,V0,x)]−6. The soliton is unstable if any eigen-
value  has an imaginary part.

Results of numerical calculations, displayed in Fig. 7 (the
largest instability growth rate δ is the maximum absolute
value of the imaginary part of ), reveal that, in case II, the
first and second families of solitons are stable against small
perturbations, while higher-order soliton families are unstable.
On the other hand, for case I, stable solitons emerge only in
the first family, when the chemical potential is small enough,
so that the solitons are very narrow, and the nonlinearity
is strong enough to sustain solitons in the presence of the
locally repulsive OL potential. Similar conclusions concerning
the stability of solitons supported by the competing (locally
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FIG. 7. (Color online) Largest instability growth rate δ vs the
chemical potential. Solid lines, circles, and squares pertain to the first,
second, and third families of the solitons, respectively. The parameters
in (a) and (b) are the same as in Figs. 5 and 6, respectively.

FIG. 8. (Color online) Example of the evolution of an unstable
soliton. The nonlinearity-modulation function and OL potential are
the same as in Fig. 5(a). The initial condition is taken as per the
numerically calculated solution [the dashed (green) line in Fig. 5(a)],
mixed with a random (white-noise) perturbation.

attractive or repulsive) linear and nonlinear potentials were
reported in Ref. [35]. Comparing the data displayed in Fig. 7
with panels (b) and (d) in Figs. 5 and 6, we conclude that the
Vakhitov-Kolokolov criterion (dN/dµ < 0, which is known
as the necessary criterion for the stability of solitons supported
by the attractive nonlinearity [43]) holds in the present model.
We have also checked the stability of exact soliton solutions.
The results are in qualitative agreement with those shown in
Fig. 7.

The stability of the solitons was further checked by
direct numerical simulations of Eq. (1), producing results
complying with the predictions of the linear-stability analysis.
In particular, the solitons from the first family in the unstable
region originally exhibit a quasistable evolution and then
decay, with a larger part of the atom number located in a
neighboring well of the OL, see Fig. 8, while unstable solitons
from other families quickly decay into noise.

Although we have displayed here the results of the stability
investigation only for two examples of the nonlinearity-
modulation profile, similar conclusions hold for other values
of µ0 and V0 as well. The asymmetric solitons too demonstrate
a similar behavior.

V. COMPOSITION RELATION BETWEEN SOLITONS
AND NONLINEAR BLOCH WAVES

Figure 6 suggests that, in many cases, the solitons and
corresponding g(x) modulation profiles are confined to a single
cell. Then, it may be interesting to form a spatially periodic
nonlinearity pattern, by placing the same local profiles of g(x)
into other wells of the OL potential. In such a case, the system
may admit not only the solitons, but also NBWs. For the NLSE
with the spatially uniform nonlinearity, the intuitive concept
of the NBWs built as chains of fundamental solitons has been
recently justified in Ref. [19], which produced a composition
relation between NBWs and fundamental solitons, although
the relation cannot be expressed in a simple mathematical
form.
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In this section, we demonstrate that the composition relation
is also numerically valid in the GPE with the spatially periodic
nonlinearity. To this end, we consider the following periodic
nonlinearity-modulation pattern:

gp(x) =
∑
m

g0 [C(µ0,V0,x − mπ )]−6 , (20)

where m = 0,±1,±2, . . . , and the summation is performed
over cells of the OL potential.

For many values of µ, the single-peak modulation profile
for g(x) given by Eq. (13), and the respective soliton given by
Eqs. (14) and (15), are confined to a single OL cell (here we
focus on the symmetric case). For instance, g(x) and the soliton
solution for µ = µ0 = −25 at V0 = −4 meet this condition. In
such cases, adjacent solitons practically do not overlap, hence
forces of the interaction between them in the periodic con-
figuration are negligible. Therefore, one may try to represent
NBWs supported by the modulation pattern (20) as chains of
fundamental solitons with identical or alternating signs:

(φNBW)1 =
∑
m

φn(x − mπ ), (21)

(φNBW)2 =
∑
m

(−1)mφn(x − mπ ), (22)

where φn is given by Eq. (14) or (15). The NBW corresponding
to Eq. (21) is located at the center of the respective Brillouin
zone, while the “staggered” one, represented by Eq. (22), is
at its edge. The conjectured composition relation between the
NBW and fundamental solitons was checked numerically for
the first and second soliton families, as shown in Fig. 9. For
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FIG. 9. (Color online) Composition relation between NBWs and
fundamental solitons. Chains of open circles in (a) and (b) represent
fundamental solitons from the first family, while in (c) and (d) the
circles denote fundamental solitons from the second family. Solid
lines in (a) and (c) are NBWs found at the center of the Brillouin
zone, while in (b) and (d) they depict the NBWs at the edge of
the Brillouin zone. Profiles of the numerically computed NBWs
completely overlap with the expressions given by Eqs. (21) and (22).
The periodic nonlinearity-modulation profile is given by Eq. (20),
with g0 = −1, µ = µ0 = −25, and V0 = −4. Chains of solid circles
show the OL potential.

0

2

4

6

−1

φ

(a)

−6 −4 −2 0 2 4 6
0

5

10

15

20

x

φ

(b)

FIG. 10. (Color online) Examples of situations when the com-
position relation between NBWs and fundamental solitons holds
(a) and does not hold (b). Dashed lines: individual fundamen-
tal solitons, belonging to the first soliton family, of which the
NBWs are built. Solid lines: numerically obtained NBWs at the
center of Brillouin zone. Chains of open circles: NBWs given by
Eq. (21). The periodic nonlinearity-modulation profile, depicted by
the dashed-dotted (green) line in (a), is given by Eq. (20) with
g0 = −1, V0 = 4, and µ0 = −6. The chemical potentials of the
solitons and NBWs in (a) and (b) are, respectively, µ = −6 and
µ = −4.4.

other families of solitons, the composition relation also holds,
in the same sense.

When the soliton’s width exceeds the period of the
underlying OL, the composition relation between NBWs and
fundamental solitons, as given by Eqs. (21) and (22), still
holds if the width of the soliton remains smaller than two
OL periods; see a typical example in Fig. 10(a). Actually,
the composition relation holds because the underlying GPE is
almost linear in regions between adjacent solitons. Numerical
computations also demonstrate that, in addition to the periodic
NBWs, one can build confined extended states as chains of
several fundamental solitons, with arbitrary combination of
the signs, see Refs. [19,42].

However, the composition method no longer applies as
the soliton widths grow too large, see Fig. 10(b). Therefore,
the final conclusion is that the numerically tested composite
relation remains valid as long as the width of the individual
soliton does not exceed two OL periods. On the other hand,
if the nonlinearity is spatially uniform (unmodulated), the
composite relation is numerically correct provided that the
width of the individual soliton does not exceed one OL period,
as conjectured and verified in another context in Ref. [19]).
Thus, the use of the nonlinearity modulation helps to expand
the validity of the composition method.

VI. CONCLUSIONS

We have constructed an infinite number of exact soliton
solutions, both symmetric and asymmetric, in the model of
the BEC with the OL potential and specially devised profiles
of the spatial modulation of the local attractive nonlinearity.
The chemical potential of the exact solutions falls into the
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semi-infinite gap. These solitons may coexist, with different
energies, at common values of the chemical potential.

Based on the set of particular exact solutions, we have
also found generic soliton families in the numerical form,
fixing the nonlinearity-modulation profile. The stability of the
numerically found solitons has been checked by means of the
linear-stability analysis and by using direct simulations.

Finally, we have discussed the composition relation be-
tween nonlinear Bloch waves and the fundamental solitons. We
have demonstrated numerically that the composition relation

is virtually exact when widths of the solitons do not exceed
the double period of the OL.
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[26] J. Belmonte-Beitia, V. M. Pérez-Garcı́a, V. Vekslerchik, and
P. J. Torres, Phys. Rev. Lett. 98, 064102 (2007).

[27] J. Belmonte-Beitia, V. M. Pérez-Garcı́a, V. Vekslerchik, and
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