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Controlling phase separation of binary Bose-Einstein condensates via
mixed-spin-channel Feshbach resonance
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We investigate controlled phase separation of a binary Bose-Einstein condensate in the proximity of a mixed-
spin-channel Feshbach resonance in the |F = 1,mF = +1〉 and |F = 2,mF = −1〉 states of 87Rb at a magnetic
field of 9.10 G. Phase separation occurs on the lower-magnetic-field side of the Feshbach resonance while the
two components overlap on the higher-magnetic-field side. The Feshbach resonance curve of the scattering
length is obtained from the shape of the atomic cloud by comparison with the numerical analysis of coupled
Gross-Pitaevskii equations.
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I. INTRODUCTION

Ultracold atomic gases provide an attractive testing ground
for studying dynamics of multicomponent quantum fluids.
It has been shown that dual-species quantum gases [1–3],
two-component Bose-Einstein condensates (BECs) comprised
of two different hyperfine states [4,5], and spinor BECs with
different Zeeman sublevels [6–8] exhibit a rich variety of
dynamics. The controllability of the intra- and intercomponent
interactions via a Feshbach resonance [9] creates numerous
possibilities and enriches the physics of multicomponent
quantum fluids.

Miscibility between different components is crucially im-
portant to the dynamics of multicomponent systems. Phase
separation in immiscible two-component BECs has been
studied in Ref. [10]. Immiscible two-component BECs have
been predicted to have interface instabilities: the Kelvin-
Helmholtz instability in the presence of shear flow [11] and
the Rayleigh-Taylor instability [12]. On the other hand, the
miscibility between different spin components plays a key role
in coherent spin dynamics, such as the Josephson oscillation
[13,14], spin echoes [15], the Ramsey interferometer [5],
spin entanglement [16,17], and determination of the magnetic
ground state of a spinor BEC [18].

Papp et al. [2] recently tuned the miscibility in binary BECs
of 85Rb-87Rb controlling the intracomponent interaction of
85Rb. The present system differs from that in Ref. [2] in that
the miscibility of different spin states of an identical species
is controlled by an intercomponent Feshbach resonance. For a
binary mixture of two different internal states, the populations
of the components can be altered at any stage in an experiment
via spin manipulations. Although the Feshbach resonance has
been reported on different internal states of an identical species
[19–21], control of their miscibility has not been discussed.

The scattering length determines the properties of ultracold
collisions [22]. Spectroscopic methods for determination of
the scattering length by observation of energy shift have been
demonstrated [23–26]. While these methods have advantages
in accuracy, they are applicable only to the states between
which spectroscopic transition is available. In addition, the
spectroscopic methods have a disadvantage for high-density
systems, since an energy shift caused by atomic density lowers
the precision of the estimation.

In this paper, we control phase separation via a Feshbach
resonance between internal spin states, |F = 1,mF = 1〉 ≡
|1〉 and |F = 2,mF = −1〉 ≡ |2〉, of 87Rb. The miscibility
of these two components is found to depend sensitively
on the strength of the applied magnetic field near the
Feshbach resonance. The experimental results are compared
with numerical simulations of coupled Gross-Pitaevskii (GP)
equations. The excellent agreement between the experimental
results and the numerical simulations allows us to estimate the
scattering length between the internal states. The experiments
and simulations for various values of magnetic field yield the
resonance curve of the scattering length near the Feshbach
resonance. Thus observation of phase separation dynamics
can be used as a method to estimate scattering lengths of
multicomponent BECs, which does not rely on spectroscopic
transition and can be used in the high-density regime.

This paper is structured as follows. In Sec. II, we introduce
the mean-field formalism for a binary BEC. In Sec. III,
our experimental apparatus and conditions are described. In
Sec. IV, experimental results are compared with numerical
simulations. Section V is devoted to the conclusions.

II. TWO-COMPONENT CONDENSATES

The dynamics of a binary BEC with inelastic two-body
losses is described by coupled GP equations [4,5,18],

ih̄
∂ψ1

∂t
=

(
−h̄2∇2

2m
+ V + g̃11|ψ1|2 + g̃12|ψ2|2

)
ψ1, (1a)

ih̄
∂ψ2

∂t
=

(
−h̄2∇2

2m
+ V + g̃22|ψ2|2 + g̃12|ψ1|2

)
ψ2, (1b)

where ψi is the macroscopic wave function for the |i〉 state,
m is the mass of 87Rb, and V is the trap potential. The
interaction coefficient is given by g̃ij = gij − ih̄Kij /2 with
gij = 4πh̄2aij /m, where aij is the scattering length and Kij

is the two-body inelastic collision rate between the |i〉 and
|j 〉 states of condensates. The scattering lengths of 87Rb have
almost the same values: a22 = 95.00aB, a11 = 100.4aB, and
a12 = 97.66aB ≡ abg, where aB is the Bohr radius [4]. The
scattering lengths determine the miscibility of the binary BEC.
The phase separation condition in a uniform system is given by
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a2
12 > a11a22. The atom density in two-component condensates

decreases by the two-body inelastic collisions as

∂nm

∂t
= −Kmmn2

m − Kmm′nmnm′ . (2)

The two-body inelastic collision rates in the F = 2 mani-
fold were measured in Ref. [18], giving K22 = 1.04 ×
10−13 cm3/s. The two-body inelastic loss in the F = 1
manifold is negligible and we assume K11 = 0.

Near the magnetic Feshbach resonance, the intercomponent
interaction g̃12 is changed. The interspecies scattering length in
a complex form can be expressed as a Lorentzian function [27].
Since the imaginary part of the scattering length is incorporated
in K12, we use the effective scattering length between the |1〉
and |2〉 states defined by

aeff
12 ≡ abg + �a(B) = abg

(
1 − �B(B − B0)

(B − B0)2 + (γB/2)2

)
, (3)

where the parameters B0, �B, and γB are determined later.

III. EXPERIMENT

Our experimental apparatus and procedure used to cre-
ate 87Rb condensates are the same as those described in
Refs. [14,18] except for irradiation of a two-photon π/2 pulse
between the hyperfine states. A BEC containing 106 atoms in
the |2,2〉 state is created by evaporative cooling with frequency
sweeping of an rf field for 18 s in a magnetic trap. The BEC is
loaded into a crossed far-off-resonant optical trap (FORT) at a
wavelength of 850 nm and 3 × 105 atoms remain in the FORT.
The potential depth of the crossed FORT is estimated to be
about 1 µK and the radial (axial) trap frequency is measured to
be 141 Hz (21 Hz) using the parametric resonance. After sud-
den inversion of the quantization axis, the |2,−2〉 state is trans-
ferred to the |2,−1〉 ≡ |2〉 state by inducing the Landau-Zenner
transition using rf irradiation with an external magnetic field of
20.5 G. Half the atoms in the |2〉 state are then transferred to the
|1,1〉 ≡ |1〉 state by irradiation of a π/2 pulse of the rf and mi-
crowave field for 5 ms. After time evolution for tev in a precisely
controlled magnetic field Bev, the crossed FORT is turned off.
The magnetic field is kept on for the first 5 ms of the time of
flight (TOF) to maintain the scattering length during expansion
of the atomic cloud. After applying a Stern-Gerlach pulse,
absorption images are obtained. In order to take the image
of each component, we apply a sequence of two short pulses
after TOF times of 15 ms for F = 2 and 18 ms for F = 1 with
repumping to F = 2. The fluctuation in the number of atoms
is estimated to be 10%. The relative population fluctuates
between 0.45 and 0.55 in each run of the experiment [18,28].

The magnetic-field strength of the Feshbach resonance
can be determined by measuring the atomic losses. In our
experimental conditions, atomic losses by one- and three-body
inelastic collisions are negligible compared with that by two-
body inelastic collisions [18]. The total number of atoms in the
|2〉 state decreases rapidly with increasing trap time tev because
of hyperfine-changing inelastic collisions such as |2,−1〉,
|2,−1〉 → |1,mF 〉, |1 or 2,m′

F 〉 and |2,−1〉, |1,−1〉 → |1,mF 〉,
|1,m′

F 〉. For a magnetic field far from the Feshbach resonance,
the two-body inelastic collision rate between the |2〉 and |1〉
states is estimated to be K12 = 0.5 × 10−13 cm3/s, which is
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FIG. 1. (Color online) (a) Magnetic-field dependence of the atom
number for evolution times tev of 25, 50, and 75 ms. (b) Inelastic
collision rate estimated by Eq. (2) at tev = 25 ms. Solid lines are
Lorentzian functions fit to the data with a center at 9.10 G.

obtained by comparing the atom loss in our experiment and
a solution of the GP equation (1). Both the elastic scattering
length and the inelastic collision loss rate are altered in the
vicinity of the Feshbach resonance [9]. Figure 1(a) shows
the total number of atoms after the TOF for evolution times
tev of 25, 50, and 75 ms. For tev = 25 ms, density profiles
were almost the same at both lower and higher-magnetic-field
near the Feshbach resonance. We estimated K12 for tev =
25 ms by solving Eq. (2) numerically with the single-mode
approximation. The uncertainty arises from the fluctuation in
the initial number of atoms. The data are fitted by a Lorentzian
function as shown in Fig. 1(b), which gives a Feshbach
resonance field B0 to be 9.100 G and γB to be 30 mG. The
fluctuation in the magnetic field Bev is estimated to be less than
5 mG by observing the magnetic dipole transitions, and the
residual gradient magnetic field is estimated to be 30 mG/cm
[14]. The magnetic-field strength is calibrated by Rabi spectra
between clock states with the microwave irradiation. The
uncertainty in this calibration is 5 mG. The resonant magnetic
field obtained in our experiment, 9.100(5) G, agrees with the
theoretical prediction [29] within the experimental uncertainty.

IV. RESULTS AND DISCUSSION

The column densities of the binary BEC around the
Feshbach resonance for tev = 75 ms are shown in Fig. 2. At a
magnetic field far from the Feshbach resonance (Bev = 8.30
and 10.05 G), the two components exhibit phase separation
[4,5]. The domain structure of phase separation depends not
only on the scattering lengths but also on the number of
atoms and the relative populations. The scattering lengths
and inelastic collision rates for Bev = 8.30 G and those for
Bev = 10.05 G are almost the same, since their density patterns
are similar. The behaviors of the binary BEC in the vicinity of
the Feshbach resonance at 9.10 G change dramatically in Fig. 2
due to the change in the scattering length and the inelastic
collision rate. The domain structures on the lower-magnetic-
field side near the Feshbach resonance (Bev = 9.05 and 9.08 G)
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FIG. 2. (Color online) Column densities of the |2〉 and |1〉 states obtained by the experiment (upper panels) and the numerical simulation
(lower panels) as a function of magnetic field Bev. The field of the view is 316 (vertical) × 290 µm (horizontal). The two-body inelastic
collision rates K12 (10−13 cm3/s) and the change in the scattering lengths �a used in the numerical simulation are indicated at the bottom.

are quite different from that at Bev = 8.30 G. On the other
hand, the domain structure disappears at higher-magnetic-
fields around the Feshbach resonance. The behavior at 9.15 G
is quite different from that at 9.05 G even though the numbers
of atoms are almost the same. These results indicate that the
scattering length a12 significantly changes at Bev � 9.1 G.
The domain structures depicted in Fig. 2 are reproducible
within the experimental fluctuations in the initial number of
atoms and the relative populations.

We numerically solve coupled GP equations (1) for various
values of �a and K12, and we obtain the column densities
of atomic clouds after the TOF (lower panels of Fig. 2). The
GP equations were solved by the Crank-Nicolson method.
The numerically obtained column densities are smoothed
to account for the spatial resolution (3.2 µm) of the CCD
camera. The values of �a and K12 are determined as follows.
First, we assume �a = 0 and calculate the time evolution
of the number of atoms for various K12 using the coupled
GP equations (1). We then compare the results with the
experimental ones and estimate the value of K12. We confirmed
that the difference between the number of atoms for �a = 0
and that for �a �= 0 is less than 15%, which is comparable
to the fluctuation in the initial number of atoms and does not
affect the estimation of K12. We next calculate the column
densities for various values of �a, compare them with the
experimental results, and estimate the value of �a. For
example, Fig. 3 shows a catalog of the column densities for
K12 = 3 × 10−13 cm3/s, which corresponds to Bev = 9.05 and
9.15 G in Fig. 2. Comparing the experimental column densities
in Fig. 2 with numerical ones in Fig. 3, we can estimate
scattering lengths. We assume that the most probable scat-
tering length minimizes the root-mean-square deviation s =
1/2

∑2
m=1

√∑N
j=1[α(m)

expt(zj ) − α
(m)
calc(zj )]2/N , where α

(m)
expt(z)

and α
(m)
calc(z) are optical densities of the mth component in

an experiment and a calculation at z, respectively. Figure 4
shows integrated optical densities obtained by the experiment
at 9.05 G and numerical calculation at �a = 7.5aB, 8.0aB,
and 8.5aB. We find that the phase-separation dynamics is
sensitive to the change in the scattering length by 0.50aB.

The differences between experiments and calculations are
expressed by s values as shown in Fig. 5. The value of �a

that minimizes the value of the root-mean-square deviation
smin is �a = 8.0aB for Bev = 9.05 G. In the range of �a >

8.0aB, fluctuation of s is expected to be larger than that
in �a < 8.0aB. This is because the density distribution of
each component forms complex structures at �a > 8.0aB

while it shows simple domain structure in �a < 8.0aB. The
phase-separation dynamics can thus be used as a probe for
estimating the scattering length in a binary BEC.

The density patterns are sensitive to the differences in
the scattering length for positive �a. The accuracy of the
estimated scattering lengths is therefore typically ±1aB for
�a >∼ 3aB. However, in the close vicinity of the Feshbach
resonance, the domain structure becomes moderate since
the number of atoms decreases considerably, which makes
accurate estimation of �a difficult. For −7aB <∼ �a < 0 in
Fig. 3, an inhomogeneous density distribution is formed, even
though the phase-separation condition is not satisfied; we
can estimate �a = −6.5aB at smin for Bev = 9.15 G. This is
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FIG. 3. (Color online) Numerically obtained column density
distributions for various scattering lengths at an evolution time of
75 ms with K12 = 3 × 10−13 cm3/s. The relative scattering length
�a in units of aB is indicated in the top row.
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FIG. 4. (Color online) Comparison between the experimentally
observed density distributions at Bev = 9.05 G (dashed lines) and
numerical ones (solid lines) obtained for (a) �a = 7.5aB, (b) 8.0aB,
and (c) 8.5aB.

because the number of |2〉 atoms decreases rapidly, giving
rise to a nonequilibrium density distribution. Clear phase
separation is necessary for precise estimation of the scattering
length between |1〉 and |2〉. In our experiment, tev < 25 ms
is insufficient for observing the phase separation. For tev >

100 ms, the number of atoms in the |2〉 state becomes too
small to estimate �a. The evolution time of tev = 75 ms is the
most suitable to estimate the scattering length.

For a uniform system, the Bogoliubov excitation spectrum
has the form [30]

(h̄ω)2 = ε
[
ε + g11n1 + g22n2

±
√

(g11n1 − g22n2)2 + 4n1n2g
2
12

]
, (4)

where nj = |ψj |2 is the atom density and ε = h̄2k2/(2m)
with k being the excitation wave number. When g2

12 > g11g22,
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FIG. 5. (Color online) Root-mean-square deviation between ex-
periments and calculations at 9.05 G with K12 = 3 × 10−13 cm3/s.
The dashed line shows 1.3smin, which is defined as a threshold for
determination of the error bar of the scattering length.
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FIG. 6. (Color online) Estimated value of the change in the
scattering length between the |1〉 and |2〉 states for a magnetic field
around the Feshbach resonance. The scattering lengths at smin are
shown as filled squares and fitted by Eq. (3) (solid curve). The open
squares correspond to s below the threshold value of 1.3smin. The
theoretical prediction in Ref. [29] is indicated by the dashed curve.

ω is imaginary for ε < [(g11n1 − g22n2)2 + 4n1n2g
2
12]1/2 −

(g11n1 + g22n2) and the system becomes dynamically unstable
against phase separation. The exponential growth of the
unstable mode is approximately given by

exp

(∫
dt Imω(t)

)
, (5)

where ω(t) depends on time since n1 and n2 decrease
with time. The wavelength that maximizes Eq. (5) is most
unstable; for example, it is estimated to be 8.9 µm for
K12 = 1 × 10−13 cm3/s and �a = 1.0aB, corresponding to
9.00 G, and 4.9 µm for K12 = 3 × 10−13 cm3/s and �a =
8.0aB, corresponding to 9.05 G in Fig. 2, respectively. These
estimations of the most unstable wavelengths are in good
agreement with the numerical solutions of Eq. (1) before the
TOF. By the TOF expansion, the wavelengths in the density
pattern become a few times larger.

Figure 6 depicts the normalized scattering length �a. The
theoretical prediction in Ref. [29] is shown as the dashed curve.
The scattering lengths are obtained by the method in Fig. 5. The
filled squares correspond to smin and the open squares show
accuracy ranges below 1.3smin of the threshold. They are best
fitted by Eq. (3) (solid line) with B0 = 9.104 G (γB = 13 mG,
�B = 3 mG). The value of �B is in good agreement with that
of the theoretical prediction and other experiments [19–21,29].
The discrepancy in γB may be caused by uncertainties near the
resonance field.

The accuracy of �a in our method is comparable to that
in the method using the Ramsey fringe [21]. At Bev > B0 in
the high-density regime, the accuracy of �a in our method is
improved at large �a because the phase-separation dynamics
is sensitive to �a. On the other hand, the accuracy in the
Ramsey fringe method at large �a becomes worse owing to
density inhomogeneity caused by dramatic phase separation.
We note that the discrepancies in the scattering length between
experimental estimation and theoretical prediction may be
caused by entangled spin states or molecular states near the
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Feshbach resonance [16,17]. If these effects are taken into
account, the accuracy of the method may be improved.

V. CONCLUSIONS

In conclusion, we observed the time evolution of binary
87Rb condensates in the |2,−1〉 and |1,1〉 hyperfine states
around the Feshbach resonance at 9.10 G. In the vicinity of
the Feshbach resonance, the miscibility of the two components
is tuned to be both immiscible and miscible. Phase separation
occurs on the lower-field side of the Feshbach resonance, while
miscible behavior is observed on the higher-field side. We
performed numerical simulations using coupled GP equations
and proposed a method for determination of the scattering
length. We estimated the values of �a and K12 by comparing
the experimental and numerical density distributions of the
atomic cloud. From systematic experiments and simulations,
we obtained the resonance curve of scattering length around
the Feshbach resonance.

Our method for determination of the scattering length can
be used for not only spectroscopic states but also nonspectro-
scopic states, and it is powerful technique for the high-density

regime in both identical and different isotopes. Miscibility
control via a mixed-spin-channel Feshbach resonance will
open up new possibilities for multicomponent quantum fluids,
such as controlled quantum phase transition between miscible
and immiscible phases with precise tuned scattering lengths.
In addition, this technique can be applied for a precise
measurement of a magnetic field below submilligauss range in
cases when the scattering length curves are well known.
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[27] T. Köhler, K. Goral, and P. S. Julienne, Rev. Mod. Phys. 78,

1311 (2006); J. M. Hutson, New J. Phys. 9, 152 (2007).
[28] S. Tojo, A. Tomiyama, M. Iwata, T. Kuwamoto, and T. Hirano,

Appl. Phys. B 93, 403 (2008).
[29] A. M. Kaufman, R. P. Anderson, T. M. Hanna, E. Tiesinga, P. S.

Julienne, and D. S. Hall, Phys. Rev. A 80, 050701(R) (2009).
[30] C. J. Pethick and H. Smith, Bose-Einstein Condensation in

Dilute Gases (Cambridge University Press, Cambridge, 2002),
Sec. 12.

033609-5

http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.97.120403
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.99.190402
http://dx.doi.org/10.1103/PhysRevA.80.023603
http://dx.doi.org/10.1103/PhysRevA.80.023603
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1103/PhysRevLett.82.2228
http://dx.doi.org/10.1103/PhysRevLett.83.661
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.77.3276
http://dx.doi.org/10.1103/PhysRevLett.78.3594
http://dx.doi.org/10.1103/PhysRevLett.78.3594
http://dx.doi.org/10.1103/PhysRevLett.81.5718
http://dx.doi.org/10.1103/PhysRevLett.80.1130
http://dx.doi.org/10.1103/PhysRevB.81.094517
http://dx.doi.org/10.1103/PhysRevA.80.063611
http://dx.doi.org/10.1103/PhysRevA.80.063611
http://dx.doi.org/10.1103/PhysRevA.81.053616
http://dx.doi.org/10.1103/PhysRevA.81.053616
http://dx.doi.org/10.1038/nphys153
http://dx.doi.org/10.1103/PhysRevA.69.063604
http://dx.doi.org/10.1103/PhysRevA.69.063604
http://dx.doi.org/10.1103/PhysRevLett.101.220401
http://dx.doi.org/10.1103/PhysRevLett.101.220401
http://dx.doi.org/10.1209/0295-5075/78/10009
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1103/PhysRevA.80.042704
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://dx.doi.org/10.1103/PhysRevA.69.032705
http://dx.doi.org/10.1103/PhysRevLett.92.160406
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/PhysRevLett.81.5109
http://dx.doi.org/10.1103/PhysRevLett.85.728
http://dx.doi.org/10.1103/PhysRevA.66.053616
http://dx.doi.org/10.1103/PhysRevLett.90.230404
http://dx.doi.org/10.1088/1367-2630/8/8/152
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1103/RevModPhys.78.1311
http://dx.doi.org/10.1088/1367-2630/9/5/152
http://dx.doi.org/10.1007/s00340-008-3224-y
http://dx.doi.org/10.1103/PhysRevA.80.050701

