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Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature
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The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is
calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-
two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/TF , exhibiting a
maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing
a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and
effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system,
the zero-sound mode may propagate at experimentally attainable temperatures.
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I. INTRODUCTION

The study of ultracold atomic systems has received much
attention in recent years, motivated largely by the prospect
of realizing novel strongly correlated many-body physics.
A series of remarkable experimental breakthroughs have
produced an extremely well-controlled physics playground
[1–3]. The latest breakthrough is the ability to associate
atoms via a Feshbach resonance to form ultracold molecules
in the rovibrational ground state [4,5], and the JILA group
has achieved a nearly degenerate gas of ground-state polar
molecules [6–10]. This is a true milestone in the program, since
strong dipolar interactions between degenerate molecules
in the presence of an external electric field allow for the
design of exotic Hamiltonians [11,12] and are expected to
give rise to exciting phenomena including roton softening
[13–15], supersolidity [16–20], artificial photons [21], bilayer
quantum phase transitions [22], and multilayer self-assembled
chains [23] for bosonic molecules and spontaneous interlayer
superfluidity [24], itinerant ferroelectricity [25], Fermi-liquid
anisotropy [26–28], fractional quantum Hall effects [29],
Wigner crystallization [30], biaxial nematic phases [31],
topological superfluidity [32], and a Z2 topological phase [33]
for fermionic molecules.

Most, if not all, of these novel quantum phases will require
temperatures on the order of 0.1TF or less (with TF the Fermi
temperature), which will require further experimental ad-
vances. Efforts to overcome the current obstacles of collisional
instability and insufficient cooling are already underway,
though, and given the rate of progress in reaching the current
state of the art, the future is bright [34–36]. However, it is
worthwhile to ask what interesting effects one might be able
to observe in the immediate future with the temperature on the
order of TF .

From a condensed matter perspective, the very idea of
having a 1/r3 interaction rather than the usual Coulomb
interaction is intriguing. Such a system has no parallel in
solid state materials, and study of the previously unmotivated
problem of many-body physics in a system interacting via a
1/r3 potential is still in its infancy. Of course, the actual form of
the intermolecular interaction potential is quite complicated,
particularly at short range, and the scattering and stability
of the molecules are sensitive to these details [37]. Further
investigation is required to allow full quantitative comparison

between theory and experiment. For our purposes, though, it
is sufficient to take a 1/r3 interaction with some undetermined
short-range cutoff; the low-energy many-body physics of a
stable, dilute gas should not depend qualitatively on the
short-range details. It is then appropriate to consider what
quantum many-body effects might be calculated for a gas with
1/r3 interactions that could be observed in cold polar molecule
experiments.

In this paper, we calculate the compressibility (or equiva-
lently, the ordinary sound dispersion), zero-sound dispersion,
and effective mass at finite temperatures comparable to those
achieved in current experiments. These quantities should be
readily accessible to experiment, and we present calculations
to include thermal effects, as well as some trap effects.
As these calculations are carried out within a leading order
perturbation approximation in the dipolar coupling constant,
we are working within the standard weak-coupling theory in
the sense of the Landau Fermi-liquid theory. This is the first
theory one must use before one does anything else for the
dipolar systems.

For dipolar interactions, in contrast to the familiar Coulomb
case, the weak-coupling regime corresponds to the low-density
limit. This is fortuitous, since current experiments cannot
achieve high densities without significant loss rates. For all
practical purposes, the leading-order perturbative results are
exact at typical experimental densities. However, lower densi-
ties correspond to higher T/TF , necessitating the calculations
be done for finite temperature. As the density is increased, the
leading-order perturbative results should remain qualitatively
correct as long there is no phase transition to break adiabaticity.
For very high densities one will enter the interesting strong-
coupling regime and the weak-coupling theory will fail in a
systematic way, but this regime is completely inaccessible at
present in dipolar molecular systems.

In two-dimensional semiconductor-based electron systems
and in graphene, studying compressibility experimentally
[38–40] and theoretically [41,42] has been an important tool
for studying quantum many-body effects in Coulomb systems.
In these two-dimensional condensed-matter systems with the
1/r Coulomb interaction, the Hartree-Fock approximation
works remarkably well for understanding compressibility,
even in the strongly interacting regime. This is a general result
of the frequency independence of the compressibility, and not
specific to the Coulomb interaction.
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We allow for different trap geometries by considering
uniform three-dimensional (3D), two-dimensional (2D), and
one-dimensional (1D) gases, as well as a nonuniform 3D gas
in a periodic potential along z. We find that under certain
conditions the compressibility varies nonmonotonically with
temperature. A closely related quantity with the same tem-
perature dependence, dEF /dµ (with EF the Fermi energy
and µ the chemical potential), also varies nonmonotonically
with density, even for temperatures on the order of TF . The
zero-sound speed and effective mass also exhibit nontrivial
dependencies. However, in three dimensions, propagation of
zero sound requires lower temperatures than currently feasible.
In one and dimensions, though, we find that zero sound
propagates undamped even at experimentally realistic tem-
peratures, assuming that the intermolecular potential behaves
like 1/r3 at short enough distances. In the low-dimensional
situations, the geometry with dipoles aligned perpendicular
to their separations is particularly relevant as this is the most
stable configuration conducive to our approximation of a 1/r3

interaction, so we will focus on this case.
The layout of the paper is as follows: In Sec. II we review

the form of the dipolar interaction in momentum space. In
Sec. III we present analytic low-temperature expansions for the
self-energy, compressibility, and effective mass of a uniform
system, as well as numerical results for arbitrary temperature.
We also present numerical results for the zero-sound mode.
In Sec. IV we numerically obtain the compressibility and
low-lying collective modes for the spatially inhomogeneous
case of a 1D periodic external potential dividing the 3D
cloud into multiple quasi-2D layers. In Sec. V, we discuss
experimental observation of quantum many-body effects in the
compressibility, and we conclude in Sec. VI. In the Appendix,
we briefly compare with the case of Coulomb interactions.

II. DIPOLE POTENTIAL IN MOMENTUM SPACE

We consider a gas of one-component fermionic molecules
with number density n, each possessing dipole moment d,
aligned by an external electric field E so that the intermolecular
interaction potential at large separation r is given by

V3D(r) = d2

r3
(1 − 3 cos2 θr ), (1)

where θr is the angle between r and E. We will parametrize
the interaction using the dimensionless ratio λ = d2/r3

0 EF ,
where r0 is the average interparticle distance. For the different
dimensionalities we have

λ3D = md2kF0

3π2h̄2 , λ2D = md2kF0

4π3/2h̄2 , λ1D = 2md2kF0

π3h̄2 , (2)

where kF0 is the noninteracting Fermi wave vector. For
fermionic KRb (d = 0.57 Debye, m = 127 amu) at densities
around 1012 cm−3 [6–8] (or 108 cm−2 or 104 cm−1 in lower
dimensions), λ ∼ 0.1.

Strictly speaking, the Fourier transform of V3D (r) has
ultraviolet and infrared divergences. However, recall that this
potential is not valid for arbitrarily short range and the system
has some finite size. Thus, as in Ref. [28], we introduce a
short-range cutoff, ε, and a long-range cutoff, R. The Fourier

transform can then be performed to obtain

V3D(q) = 8πd2P2(cos θq)

[
j1(qε)

qε
− j1(qR)

qR

]
qε→0,qR→∞−→ 8π

3
d2P2(cos θq)

= 16π3λ3DP2(cos θq)
EF

k3
F0

, (3)

where P2(x) = (3x2 − 1)/2 is the second Legendre polyno-
mial, θq is the angle between q and E, and j1 (x) is the spherical
Bessel function of the first kind.

If there is strong confinement along z, then by assuming a
fixed Gaussian profile in that direction n(kz) = e−k2

z w
2/4, and

integrating Eq. (3) over this momentum profile, the effective
2D interaction is

V2D(q) = 16π5/2λ2D

[
4

3kF0
√

πw
P2(cos θE)

− q

kF0

(
P2(cos θE) − 1

2
sin2 θE cos 2φq

)]
EF

k2
F0

, (4)

where θE is the angle between E and the z axis, φq is the
azimuthal angle between q and the projection of E onto the
x-y plane, and we have taken qw → 0. Alternatively, fixing r
to lie in the x-y plane and taking the 2D Fourier transform of
Eq. (1) with a short-range cutoff, w, as in Ref. [28] yields the
same result with a numerical factor of order unity in front of w.

Similarly, when there is strong confinement and a fixed
Gaussian profile n(k⊥) = e−k2

⊥w2
in the radial direction, inte-

grating out the radial degree of freedom in Eq. (3) yields an
effective 1D interaction

V1D(q) = π3λ1DP2(cos θE)

×
[
− 1

3w2
+ q2eq2w2

�(0,q2w2)

]
EF

k3
F0

qw→0−→ −π3λ1DP2(cos θE)

×
[

1

3w2
+ q2(γ + 2 ln |qw|)

]
EF

k3
F0

, (5)

where θE is again the angle between E and the z axis, �(a,x)
is the incomplete gamma function, and γ ≈ 0.577 is Euler’s
constant. (Here again, performing a 1D Fourier transform
of a 1/z3 potential with a short-distance cutoff w gives a
similar dependence on q and w, although the numerical factors
are different.) Unique to the quasi-1D case, the momentum-
dependent part of the effective interaction is not independent
of the transverse width, even for very strong confinement.

III. UNIFORM SELF-ENERGY, COMPRESSIBILITY, AND
COLLECTIVE MODES AT FINITE TEMPERATURE

To calculate the compressibility, κ = 1
n2

dn
dµ

[43], we first
need to obtain the chemical potential in the presence of
the dipolar interactions. In the uniform case, to first order,
µ = µ0 + 	iso(kF0), where µ0 is the noninteracting chemical
potential and 	iso(kF0) is the isotropic part of the Hartree-Fock
self-energy at the unperturbed Fermi surface,

	(kF0) = 1/(2π )3
∫

d3kn0(k)[V (0) − V (|kF0 − k|)] (6)
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with n0(k) = 1/(e(h̄2k2/2m−µ0)/kBT + 1) the noninteracting
Fermi distribution. The zero-temperature self-energy has
recently been calculated in Ref. [28]. In the following we
extend this to finite temperature and obtain the inverse
compressibility, effective mass, and zero-sound dispersion.

A. 3D case

1. Compressibility and effective mass

Let us begin by considering the 3D case at finite temperature
t ≡ kBT /EF , with µ̃0 ≡ µ0/EF ≈ 1 − π2t2/12,

	3D(k) = λ3D
EF

k3
F0

∫ ∞

0
k′2dk′n0(k′)

∫
4π

d
k′

[
1 − 3(k cos θk − k′ cos θk′)2

k2 + k′2 − 2kk′ (cos θk cos θk′ + sin θk sin θk′ cos φk′)

]
(7)

= 2πλ3DEF

k3

k3
F0

P2(cos θk)
∫ ∞

0

dx

e(x2k2/k2
F0−µ̃0)/t + 1

[
−5

2
x2 + 3

2
x4 + 3

4
x

(
x2 − 1

)2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
]

, (8)

	3D(kF0) = 2πλ3DEF P2(cos θkF0 )

[
5
√

π

8
t3/2Li 3

2
(−eµ̃0/t ) − 9

√
π

16
t5/2Li 5

2
(−eµ̃0/t )

+ 3

4

∫ √
µ̃0

0
xdx(x2 − 1)2 ln

∣∣∣∣x − 1

x + 1

∣∣∣∣ + 3

4

∫ ∞

0

dxsgn(x2 − µ̃0)

e|x2−µ̃0|/t + 1
x(x2 − 1)2 ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
]

(9)

= 2πλ3DEF P2(cos θkF0 )

{
3µ̃0

5/2

10
− 5µ̃0

3/2

6
+ 9π2µ̃0

1/2

48
t2 − 5π2

48µ̃0
1/2 t2 − 2

15

+ π2

16
t2

[
−(1 − µ̃0)

(
1 + 2ζ ′(−1) + 2 ln

4π(√
µ̃0 + 1

)2

)
+ (1 − µ̃0)2

µ̃0 + √
µ̃0

]
+ O(t4) + O((1 − µ̃0)3)

}
(10)

= 4πλ3DEF P2
(
cos θkF0

) [
−1

3
+ π2

16
t2 + O(t4 ln t)

]
, (11)

∂	3D(k)

∂k
|k=kF0 = 1

kF0

(
3 − 2t

∂

∂t
− 2µ̃0

∂

∂µ̃0

)
	3D(kF0) (12)

= −2πλ3D
EF

kF0
P2(cos θk)

[
1 + π2

4
t2 ln t +

(
3

8
+ 3ζ ′(−1) + 1

4
ln π

)
π2t2 + O(t4 ln t)

]
, (13)

where θk is the angle between k and E, Lia(x) is the
polylogarithm function, and ζ ′(x) is the derivative of the
Riemann zeta function.

In this case, the self-energy has a purely d-wave angular
dependence and does not affect the compressibility, which
is given in units of the zero-temperature, noninteracting
compressibility κ0 ≡ 1

n2
dn

dEF
by

κ0

κ
≈ 1 + π2

12
t2. (14)

The temperature-dependent effective masses along the
radial and angular directions can be written to first order as in
the zero-temperature case [28]:

m

m∗
r (k)

= 1 + m

h̄2k

∂	3D(k)

∂k
, (15)

m

m∗
θ (k)

= m

h̄2k2

∂	3D(k)

∂θk
. (16)

For general temperatures we must evaluate Eq. (8) and its
derivative numerically. At low temperatures, though, Eqs. (11)

and (13) give analytic approximations on the Fermi surface.
We have plotted the numerical inverse effective mass results
at the Fermi surface as functions of temperature and density,
as well as the low-temperature expansions, in Fig. 1.

Note that the deviation of the inverse effective radial mass
from the inverse bare mass is proportional to −P2(cos θk) [with
the integrand in Eq. (8) always being negative], so the effective
radial mass is smaller than the bare mass at the equator and
larger (or negative) at the poles. Also, the effective angular
mass is proportional to csc 2θk. The average effective mass
over the Fermi sphere is thus unchanged by the interaction, but
when the effective radial mass at the poles of the Fermi surface
is negative, the system is unstable. In the low-temperature
limit we have the stability condition λ3D < 1/π , in excellent
agreement with previous numerical results using a variational
approach, which gave λ3D < 0.32 [26]. Extending this result
to finite temperature, we obtain the critical line for KRb in the
n-T plane plotted in Fig. 1(c). However, the system actually
becomes unstable at densities an order of magnitude lower
due to formation of density waves perpendicular to the electric
field [28,44].
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FIG. 1. (Color online) Effective mass at the Fermi surface for KRb in three dimensions vs (a) temperature at fixed density and (b) density
at fixed temperature. (c) Regions of positive and negative radial effective mass are at the poles of the Fermi surface. In all panels, the dotted
lines show the low T/TF approximations.

2. Zero-sound mode

We now turn our attention to the zero-sound mode, which
has recently been calculated in the zero-temperature limit
[28,44]. We anticipate that zero sound will only propagate at
low temperatures, so we assume that the Landau Fermi-liquid
description

δE

V
=

∫
d3k

(2π )3
ε(k)δn(k) +

∫
d3kd3k′

(2π )6
f (k,k′)δn(k)δn(k′)

(17)

remains valid, with the temperature dependence entering
through the single-particle energy, ε(k) = h̄2k2/2m + 	3D(k),
and the Fermi distribution function, n(k) = 1/(e[εk)−µ0]/kBT +
1). The temperature dependence of the Hartree-Fock quasi-
particle interaction, f (k,k′) = V3D(q → 0) − V3D(k − k′), is
negligible since the interaction near the Fermi surface is
independent of the magnitude of the momenta in the limit
|k − k′| 
 kF [45]. Note that, although we have not made the
notation explicit, the interaction depends on the direction of
momentum transfer.

If one neglects collisions, the linearized Boltzmann equa-
tion [46] is

δν(k) = q · ∇kε(k)

ω − q · ∇kε(k)

∂n(k)

∂ε(k)

∫
d3k′

(2π )3
f (k,k′)ν(k′), (18)

where δν(k) is the deviation of the quasiparticle distribution
from the equilibrium anisotropic distribution, n(k). Integrating
out the radial degree of freedom and decomposing into
spherical harmonics, Ylm(
q

k), with the angle in the argument
measured relative to the direction of momentum transfer, q̂,
we can rewrite this as

δνlm =
∑
l′′l′m′

χll′′,mm′ (q,ω)fl′′l′,m′δνl′m′ , (19)

where

δνlm =
∫

d3k

(2π )3
Y ∗

lm

(



q
k

)
δν(k), (20)

f (k,k′) � f (
k,
k′ ) = EF

k3
F0

∑
ll′m

fll′,mY ∗
lm

(



q
k

)
Yl′m

(



q
k′
)
,

(21)

and

χll′,mm′ (q,ω) = EF

k3
F0

∫
d3k

(2π )3 Y ∗
lm

(



q
k

) q · ∇kε (k)

ω − q · ∇kε (k) + i0

∂n (k)

∂ε (k)
Yl′m′

(



q
k

)

= 1

k3
F0

∫
d3k

(2π )3
Y ∗

lm

(



q
k

) e(k2/k2
F0+	0

3D(k)/EF −µ̃0)/t

t
(
e(k2/k2

F0+	0
3D(k)/EF −µ̃0)/t + 1

)2

(
1 −

ω
qvF0

ω
qvF0

− k
kF0

g(k,θq) + i0

)
Yl′m′

(



q
k

)
, (22)

with vF0 = h̄2kF0/m the noninteracting Fermi velocity and

g(k,θq) = q̂ · ∇kε(k)

h̄2k/m
= (cos θk cos θq + sin θk cos φk sin θq)

× m

m∗0
r (k)

− 3

2
(cos θk cos φk sin θq − sin θk cos θq)

× m

m∗0
θ (k)

. (23)

In the preceding we have used the Hartree-Fock single-particle
energy in order to account for the anisotropy and obtain
results consistent with Refs. [28,44]. Since the self-energy
also appears in the Fermi distribution, the integrand is
evaluated in some thermally broadened range of momenta
around the distorted Fermi surface. However, note that in
order to consistently include only first-order corrections to
the noninteracting single-particle energy, the self-energy terms
themselves must be evaluated around the unperturbed Fermi
surface. Hence we added a superscript denoting the subtle
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FIG. 2. (Color online) Zero-sound speed (a) and damping (b) vs angle of propagation for finite temperatures. Dashed lines show the
boundary of the single-particle excitation continuum.

distinction, and for k not too far below the Fermi surface
one can simply take 	0

3D(k) ≡ 	3D(k − kF + kF0), where the
latter is given by Eq. (8) and the three vectors in the argument
are collinear.

We will keep only the coupling between the s-wave and
longitudinal p-wave modes as in Ref. [28], which yields good
agreement with the results of Ref. [44]. The Landau parameters
for the dipolar interaction have previously been calculated
[28,31], and in our notation and choice of basis the relevant
nonzero parameters are

f00,0 = 26π4λ3DP2(cos θk), f11,0 = 3
5 25π4λ3DP2(cos θk).

(24)

The energy, 
, and damping, γ , of the collective modes for a
given momentum, q, are then given by the solutions of det |I −
M(q,
 − iγ )| = 0, where

M(q,ω) =
(

χ00,00(q,ω)f00,0 χ10,00(q,ω)f11,0

χ10,00(q,ω)f00,0 χ11,00(q,ω)f11,0

)
. (25)

We numerically find solutions corresponding to under-
damped zero-sound propagation. In that case, the dispersion is
given by

Re det |I − M(q → 0,
 → v0(θq)q)| = 0 (26)

and the damping, assumed to be small compared to 
, is given
by

γ = Im det |I − M(q → 0,
 → v0(θq)q)|
∂

∂ω
|ω=v0(θq )qRe det |I − M(q → 0,ω)| . (27)

The dispersion and damping for various temperatures are
shown in Figs. 2(a) and 2(b), respectively, with the den-
sity chosen such that λ3D = 1/π2 for comparison with
Refs. [28,44]. For temperatures up to about 0.1TF , the thermal
effect is to increase the axial propagation speed while de-
creasing the range of angles for which zero sound propagates.
As the temperature increases further, the axial propagation
speed decreases. Note that at finite temperature, the mode can
become overdamped long before it enters the single-particle
excitation (SPE) continuum, and Eq. (26) ceases to have a
solution. For temperatures above 0.2TF the damping is large
even at θq = 0, and above ∼0.23TF there is no solution to
Eq. (26) for any θq . Clearly, the assumption of γ 
 
 quickly
breaks down with increasing temperature and propagation off
the z axis.

B. 2D case

1. Compressibility and effective mass

In the remainder of this manuscript our primary focus will
be on dipoles aligned perpendicular to their motional degrees
of freedom, so it will be unnecessary to distinguish between
distorted and undistorted Fermi surfaces, kF and kF0, and we
will drop the extra subscript.

For the 2D case, with µ̃0 = t ln(e1/t − 1), θE the angle
between E and the normal to the plane, and φkF the angle
between the Fermi wave vector and the projection of E
onto the plane, from the isotropic part of the interaction we
obtain

	iso
2D(k) = 4

√
πλ2DP2(cos θE)

EF

k3
F

∫ ∞

0
k′dk′n0(k′)

∫ 2π

0
dφk′

√
k′2 + k2 − 2k′k cos(φk′ − φk) (28)

= 16
√

πλ2DP2 cos θE)EF

∫ ∞

0

xdx

e(x2−µ̃0)/t + 1

(
k

kF

+ x

)
E

(
2
√

xkF /k

1 + xkF /k

)
, (29)

	iso
2D (kF) = 16

√
πλ2DP2(cos θE) EF

{∫ µ̃0

0
xdx (1 + x) E

(
2
√

x

1 + x

)

+
∫ ∞

0

xdx sgn
(
x2 − µ̃0

)
e|x2−µ̃0|/t + 1

[2 − (1 − x) + O((1 − x)2 ln |1 − x|)]
}

(30)
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= 16
√

πλ2DP2(cos θE)EF

(
8

9
+ π2

24
t2 + O[t4 ln t]

)
, (31)

d	iso
2D(k)

dk
|k=kF

= 8
√

πλ2DP2(cos θE)
EF

kF

∫ ∞

0

xdx

e(x2−µ̃0)/t + 1

[
(1 + x)E

(
2
√

x

1 + x

)
+ (1 − x)K

(
2
√

x

1 + x

)]
(32)

= 16
√

πλ2DP2(cos θE)
EF

kF

(
2

3
+ π2

48
t2

(
1 + ln

π

4
+ 12ζ ′(−1)

)
+ π2

48
t2 ln t + O[t4 ln t]

)
, (33)

d	iso
2D(kFt)

dn
= kF

2n

d	iso
2D(k)

dk
|k=kF

+ 16
√

πλ2DP2(cos θE)
EF

n

(
µ̃0 − t

dµ̃0

dt

) ∫ ∞

0
dx

e(x2−µ̃0)/t /t

(e(x2−µ̃0)/t + 1)2
x(1 + x)E

(
2
√

x

1 + x

)
(34)

with K(x) and E(x) the complete elliptic integrals of the first
and second kind [47]. Although we will focus on the most
stable scenario of dipoles aligned perpendicular to the plane,

for completeness we also give the form of the self-energy
arising from the anisotropic part of the interaction:

	ani
2D(k) = −2

√
πλ2D sin2 θE

EF

k3
F

∫ ∞

0

k′dk′

(2π )2
n0(k′)

∫ 2π

0
dφk′

k2 cos 2φk + k′2 cos 2φk′ − 2kk′ cos(φk + φk′)√
k2 + k′2 − 2kk′ cos(φk − φk′)

(35)

= −8
√

π

3
λ2D

EF k3

k3
F

sin2 θE cos 2φk

∫ ∞

0

xdx(1 + x)

e(x2k2/k2
F −µ̃0)/t + 1

[
(2 − x2)E

(
2
√

x

1 + x

)
+ (1 − x)2K

(
2
√

x

1 + x

)]
, (36)

	ani
2D(kF) = −8

√
π

3
λ2DEF sin2 θE cos 2φkF

{∫ µ̃0

0
xdx(1 + x)

[
(2 − x2)E

(
2
√

x

1 + x

)
+ (1 − x)2K

(
2
√

x

1 + x

)]

+
∫ ∞

0
xdx

sgn(x2 − µ̃0)

e|x2−µ̃0|/t + 1

[
1 + 2(1 − x) + O((1 − x)2 ln |1 − x|)]

}
(37)

= −8
√

π

3
λ2DEF sin2 θE cos 2φkF

(
8

5
− π2

8
t2 + O[t4 ln t]

)
, (38)

In Eqs. (30) and (37) we have noted that at low temperature
the integrand in the temperature-dependent term is only
appreciable near x = 1 and expanded the elliptic integrals
about that point, permitting analytic integration. We have
shown the derivative of the self-energy with respect to density
since the inverse compressibility is κ−1 = n2 ∂µ

∂n
. For arbitrary

temperatures, the compressibility is obtained via numerical
integration from Eq. (34). For low temperatures, recognizing
that the Fermi energy, EF , the reduced temperature, t , and
coupling strength, λ, all depend on density, we can obtain
an analytic result by differentiating the self-energy given in
Eq. (31) according to

κ0

κ
= ∂µ0

∂EF

+
(

∂

∂EF

− t

EF

∂

∂t
+ λ

2EF

∂

∂λ

)
	iso(kF) (39)

= 1 + 16
√

πλ2DP2(cos θE)

(
4

3
− π2

48
t2

)
+ O(t4 ln t).

(40)

When the orienting electric field is perpendicular to
the plane (θE = 0), the compressibility is always positive

(assuming the gas is not so dense that the 1/r3 approximation
to the potential breaks down). As shown in Figs. 3(a) and 3(b),
the compressibility is nonmonotonic in temperature for experi-
mentally relevant densities. The nonmonotonicity is due to the
interaction-dependent term, d	iso(kF )/dn, which decreases
quadratically with t before turning over and increasing with
t for fixed density. Since t ∼ mT/n and λ2D ∼ md2√n, both
the temperature at which the peak occurs and the height of
the peak are larger for higher density. In Fig. 3(c), we show
how the compressibility varies as the density is changed. Note
that we do not use the natural unit of κ0 = m

2πh̄2n2 in this plot,
since it is density dependent. In the low-density (high-t) limit,
the compressibility behaves classically, as expected, and is
drastically reduced in the high-density (low-t) limit.

The nonmonotonicity in the compressibility shown in
Figs. 3(a) and 3(b) occurs well below typical experimental
temperatures of ∼200 nK. However, we may also consider
the ratio of the finite-temperature interacting and zero-
temperature noninteracting compressibilities, κ/κ0 ∼ n2κ ∼
dn/dµ, which has the same temperature dependence as the
compressibility. Figures 3(c) and 3(d) show that this quantity
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FIG. 3. Compressibility for KRb in two dimensions for θE = 0,
corresponding to dipoles aligned perpendicular to the plane. (a) and
(b) κ/κ0 vs temperature at fixed density; (c) and (d) κ/κ0 (i.e., dn/dµ)
vs density at fixed temperature; (e) κ vs density at fixed temperature;
(f) contour plot of κ/κ0 vs temperature and density (with lighter being
higher).

also displays a nonmonotonic density dependence. Moreover,
this nonmonotonic behavior is evident even at relatively high
temperature, with T ∼ TF . [For the homogeneous system
considered here, TF = 24 nK (240 nK) for n = 108 cm−2

(109 cm−2).] In this scenario, the peak is not due to nonmono-
tonicity in the interaction-dependent term, d	iso(kF )/dn. Both
d	iso(kF )/dn and dµ0/dn are monotonic in the density, but
while d	iso(kF )/dn increases with density, dµ0/dn decreases.
The competition between the interacting and noninteracting
density dependencies is the source of the nonmonotonicity.

Figure 3(e) gives a sense of how κ/κ0 changes as tem-
perature and density are simultaneously changed in some
manner. Although it is hard to see on the logarithmic scale, the
vertical portions of the lines actually bulge outward slightly,
consistent with the fixed-density results plotted in Figs. 3(a)
and 3(b). Clearly, nonmonotonic behavior is more pronounced
if the measurements are performed at fixed temperature and
variable density than the other way around. We will discuss
measurement in Sec. V.

With the radial and angular effective masses, m∗
r and m∗

φ ,
defined as in Eqs. (15) and (16), we have plotted the radial mass
at the Fermi surface for the isotropic case in Fig. 4. We see
that at low temperatures or high densities the effective mass is
diminished by the interaction while at high temperatures or low
densities the effect of the interaction is small and the effective
mass approaches its bare value. The analytic low-temperature
results from Eq. (47) are shown as dotted lines.

2. Zero-sound mode

For dipoles aligned perpendicular to the plane, the 2D
interaction is isotropic in contrast to the 3D case, and we need
not include coupling to higher partial waves when calculating
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FIG. 4. Effective mass at the Fermi surface for KRb in two
dimensions vs (a) temperature at fixed density and (b) density at
fixed temperature. Dotted lines show the low T/TF approximations.

the zero sound. Likewise, since the single-particle energy
is also isotropic, to leading order we can simply use the
bare single-particle energy. The zero-sound dispersion is then
simply given by the solution of 1 − V2D(0)χ (q → 0,ω →
v0q) = 0, where

χ (q → 0,v0q)

=
∫

d2k

(2π )2

∂n(k)

∂ε(k)

q̂ · k
kF

v0
vF

− q̂ · k
kF

+ i0

= k2
F

EF

∫
xdx

2π

−e(x2−µ̃0)/t

t[ex2−µ̃0)/t + 1]2

⎡
⎢⎢⎣1 −

v0
vF√

v2
0

v2
F

− x2 − i0

⎤
⎥⎥⎦ .

(41)

Note from Eq. (4) that the thickness of the monolayer plays
a critical role in determining the zero-sound speed. The
dispersion is plotted in Fig. 5 as a function of temperature
and density for a thickness of w = 10 nm. In the limit
T/TF → 0, one can show that v0/vF =√

2d2m/3
√

πwh̄2 [48],
and we numerically recover this limit to better than 2%. The
damping is negligible, and we have not shown it. The mode
propagates even at quite high temperatures due to the strong
repulsive delta-function core of the effective 2D interaction
(4). In fact, it persists to arbitrarily high temperature for
tight enough confinement. This is an artifact of the ultraviolet
divergence of the 2D Fourier transform of the 1/r3 interaction,
and in experiment this robustness will be limited by the range,
r∗, at which the actual intermolecular potential deviates from
a 1/r3 behavior. However, provided kF r∗ 
 1 and r∗ 
 w,
these results will remain valid and the collective mode will be
robust at experimentally feasible temperature and density.
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C. 1D case

1. Compressibility and effective mass

For the 1D case, µ̃0 ≈ 1 + π2t2/12, and θE is the angle
between E and the trap axis. In this case, recall from Eq. (5)

that the results will depend explicitly on the transverse width
(or short-range interaction cutoff), w. In the limit k2

F w2 
 1,
the Hartree-Fock self-energy is

	1D(k) = π2

2
λ1D

EF

k3
F

P2(cos θE)
∫ ∞

−∞
dk′n0(k′)(k − k′)2(γ + 2 ln |(k − k′)w|), (42)

	1D(kF) = π2

2
λ1DEF P2(cos θE)

[
[γ + 2 ln(kF w)]

(
2 −

√
πt3/2

2
Li 1

2
(−e−µ̃0/t )

)
+ 2

∫ ∞

−∞

dx(1 − x)2

e(x2−µ̃0)/t + 1
ln |1 − x|

]
(43)

= π2

2
λ1DEF P2(cos θE)

[
8

3

(
γ − 2

3
+ 2 ln(2kF w)

)
+ [γ + 1 + 2 ln(2kF w)]

π2

6
t2

]
+ O[t4 ln t]. (44)

Differentiating with respect to density yields

κ0

κ
= 1 − π2

12
t2 + π2

4
λ1DP2(cos θE)

[
8[γ + 2 ln(2kF w))

−(γ − 1 + 2 ln(2kF w)]
π2

6
t2

]
+ O[t4 ln t]. (45)

However, even if we take transverse size w ∼ 100 nm,
corresponding to a very strong optical dipole trap, then at
n ∼ 104 cm−1 although the system is quasi-one-dimensional
(h̄2/mw2 
 kBT ,EF ) for T <∼ 40 nK, kF w is actually of order

unity. This tends to diminish interaction effects since less
repulsive off-axis interactions must be included in the effective
1D interaction. [We did not hesitate to take kF w 
 1 in the
2D case (4) because there the working assumption is that
several independent quasi-2D layers will be formed by an
optical lattice, which can be made considerably tighter than a
dipole trap. In any event, the general treatment of the multilayer
quasi-2D case in Sec. IV includes finite-thickness effects.] For
arbitrary values of kF w, then, a similar calculation without
assuming qw 
 1 in Eq. (5) yields

	1D(kF ) = π2

2
λ1DEF P2(cos θE)

{
4G

2,2
2,3

(
4k2

F w2

∣∣∣∣∣ −1/2,0

0,0, − 3/2

)
+ π2

6
t2

[
−1 + 4k2

F w2e4k2
F w2

�
(
0,4k2

F w2
)

+ 3

2
G

2,2
2,3

(
4k2

F w2

∣∣∣∣∣ −1/2,0

0,0, − 3/2

)
− 4k2

F w2G
2,2
2,3

(
4k2

F w2

∣∣∣∣∣ −3/2, − 1

−1,0, − 5/2

)]}
+ O(t4 ln t), (46)

d	1D(k)

dk

∣∣∣∣
k=kF

= π2

2
λ1D

EF

kF

P2(cos θE)

{
−4e4k2

F w2
�
(
0,k2

F w2
) + π2

12
t2

[
γ − 12

π2
ζ ′(2) + 8k2

F w2 − ln k2
F w2

− (
1 + 20k2

F w2 + 32k4
F w4

)
e4k2

F w2
�

(
0,4k2

F w2
)] − π2

6
t2 ln t + O

(
t4 ln t

)}
, (47)

κ0

κ
= 1 − π2

12
t2 − π2

4
λ1DP2 cos θE)

{
8e4k2

F w2
�

(
0,4k2

F w2) − π2

6
t2

[
−1 − e4k2

F w2
�

(
0,4k2

F w2)(3 + 4k2
F w2 + 32k4

F w4)

+ 8k2
F w2(1 + e4k2

F w2
�

( − 1,4k2
F w2)) + 6G

2,2
2,3

(
4k2

F w2

∣∣∣∣∣ −1/2,0

0,0, − 3/2

)

− 16k2
F w2G

2,2
2,3

(
4k2

F w2

∣∣∣∣∣ −3/2, − 1

−1,0, − 5/2

)]}
+ O(t4 ln t), (48)

where G
2,2
2,3(x| a1,a2

b1,b2,b3
) is a Meijer G function [47]. The

more general Eq. (48) was used for the low-temperature
approximation in Fig. 6. For the second row of plots,

with w = 10 nm corresponding to a tight optical lattice
forming an array of independent quasi-1D tubes, the simpler
initial approach gives the same results except at high densities.

033608-8



COMPRESSIBILITY, ZERO SOUND, AND EFFECTIVE . . . PHYSICAL REVIEW A 82, 033608 (2010)

0 50 100 150 200
1

2

3

4

5

T (nK)

v 0/v
F

n=108 cm−2

(a)

10
8

10
9

10
10

1

2

3

4

5

n (cm−2)

v 0/v
F

T=200 nK

(b)

FIG. 5. Zero-sound speed for a 10-nm-thick monolayer of KRb vs
(a) temperature at fixed density and (b) density at fixed temperature.

Figures 6(a) and 6(d) show a maximum in the compress-
ibility at finite temperature as in the 2D case. Now, though,
t ∼ mT/n2, so the temperature at which the peak occurs
increases with density more rapidly than in two dimensions.
For w = 10 nm, we have plotted results for higher densities
and temperatures since these values can be reached while

maintaining low dimensionality. In contrast to the 2D case,
in a tightly confined system at reasonable density, the peak
occurs at higher temperature as shown in Fig. 6(d). However,
it is important to note that in the 1D case this is no longer
a signature of interaction effects since the compressibility
exhibits a maximum even in a noninteracting system due
to the nonmonotonic temperature dependence of ∂µ0/∂n. In
fact, the main effect of interactions is to add a constant shift
to the inverse compressibility, making the peak relatively less
dramatic.

As in the 2D case, we can also look for nonmonotonicity
in the density dependence of κ/κ0 = dEF /dµ ∼ n3κ . In the
2D case, we found a maximum in κ/κ0 in the presence of
interactions. Here there is a weak maximum in the absence of
interactions, due to the nonmonotonicity of µ0. In the presence
of interactions, this feature washes out, but the interactions may
give rise to a more pronounced local maximum. Unlike the 2D
case, here the nonmonotonicity in density is predominantly
due to nonmonotonic behavior of d	(kF )/dn rather than
competition between the interacting and noninteracting terms.
For dipoles perpendicular to the trap axis and w ∼ 100 nm,
the density dependence at fixed temperature above a few
nanokelvins is monotonic as in Fig. 6(c). However, for
tighter radial confinement, the interaction effects become
more pronounced and nonmonotonicity emerges at higher
temperatures, as shown in Fig. 6(f). At high densities, the
effective 1D interaction (5) at the Fermi surface saturates
due to the dependence on the finite transverse size. As a
result, κ/κ0 begins rising again. Actually, for w = 100 nm
(w = 10 nm), one-dimensionality is already beginning to
break down for n > 2 × 104 cm−1 (n > 2 × 105 cm−1), since
there EF ∼ h̄2/mw2.
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FIG. 6. Compressibility for KRb at θE = π/2, corresponding to dipoles aligned perpendicular to the axis in the quasi-1D case. (a) and
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FIG. 7. Effective mass at the Fermi surface for quasi-1D KRb
with w = 10 nm vs (a) temperature at fixed density and (b) density at
fixed temperature. Dotted lines show the low T/TF approximations.

The effective mass is plotted in Fig. 7 as a function
of density and temperature. The effective mass is again
diminished by the interaction and slowly increases toward its
bare value at high temperatures. At low densities, as in the 2D
case, the reduction of the effective mass by the interaction
increases with density. However, as the density increases
further the effective mass eventually returns to its bare value
since the effective 1D interaction saturates while the Fermi
velocity continues to increase. In order to clearly show the
trend, we have included in Fig. 7(b) extremely high densities.
The analytic low-temperature results from Eq. (47) are shown
as dotted lines.

2. Zero-sound mode

As in the 2D case, we consider the zero-sound dispersion
given by 1 − V1D (0) χ (q → 0,ω → v0q) = 0, where

χ (q → 0,c0q) = kF

EF

∫
dx

2π

−e(x2−µ̃0)/t

t[e(x2−µ̃0)/t + 1]2

×
[

1 −
v0
vF

v0
vF

− x + i0

]
. (49)

Once again, the finite transverse size which appears in Eq. (5) is
important in determining the zero-sound speed. The dispersion
is plotted in Fig. 8 as a function of temperature and density
for w = 10 nm and dipoles aligned perpendicular to the axis
of the tube. In the low-temperature limit, one can show that
v0/vF =

√
d2m/6πw2h̄2kF , and we numerically recover this

limit to better than 1%. One cannot obtain this limit by going to
high density instead of low temperature, since, unlike in the 2D
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FIG. 8. Real (solid) and imaginary (dashed) parts of the zero-
sound speed for quasi-1D KRb with transverse size of 10 nm vs
(a) temperature (on a log scale) at fixed density and (b) density at
fixed temperature.

case where χ approaches unity in the high-density limit, here
χ goes to zero like 1/n for v0 �= vF . Thus, at high density the
zero-sound speed decreases to unity. The damping strength,
γ /q, is shown as a dashed line and it is negligible except near
where the mode vanishes. The collective mode is even more
robust than in the 2D case since the 1D Fourier transform of
the interaction is even more divergent. Again, these results will
remain physical until r∗ becomes comparable to either of the
other length scales, k−1

F or w.

IV. 3D MULTILAYER SELF-ENERGY AND
COMPRESSIBILITY AT FINITE TEMPERATURE

A. Compressibility

Now we consider a 3D gas placed in a strong 1D optical
lattice of depth V0 and wavelength λ, resulting in a “stack
of pancakes” configuration. In the limit where V0 and λ

become infinite, this is the same as the strictly 2D monolayer
considered in Sec. III B. Generally, however, we find that the
nonmonotonic behavior discussed in Sec. III B persists in the
presence of multilayer and finite-thickness effects. We will
restrict our discussion to the case of dipoles aligned along the
direction of the optical lattice.

Because of the external periodic potential along z, the effect
of the interaction on the chemical potential to first order, µ =
µ0 + �µ, must now be written in real space:

�µ =
〈 ∫

d3xd3x′φ∗
kF

(x)	(x,x′)φkF (x′)
〉

kF

, (50)
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FIG. 9. (Color online) Compressibility for KRb in a periodic potential along z. (a), (b),(d), and (e) κ/κ0 vs temperature at fixed density;
(c) and (f) κ/κ0 (i.e., dn/dµ) vs density at fixed temperature.

where the angular averaging over the Fermi surface denoted
by the brackets is necessary to separate the shift in chemical
potential from the anisotropic deformation of the Fermi
surface, and

	(x,x′) =
∫

d3x′′
∫

d3k
(2π )3

n0(k)V3D(x − x′′)

× [|φk(x′′)|2δ(x − x′) − φ∗
k(x′)φk(x)δ(x′′ − x′)].

(51)

The unperturbed single-particle wave function can be written
in terms of the reciprocal lattice points, which are integer
multiples of 2π/λ, in the Bloch form

φk(x) = eik·x
N∑

q=−N

uq (kz) e−i2πqxz/λ. (52)

The coefficients uq (k) are easily obtained numerically, as are
the corresponding single-particle energies needed to evaluate
n0 (k). In this equation we have introduced a cutoff, 2Nπ/λ, on
the Bloch momentum in order to perform the sum numerically.
After some algebra, Eq. (50) can be recast as a sum over
momenta,

�µ =
〈 ∫

d3k
(2π )3

n0(k)
2N∑

q=−2N

[
V3D

(
0,

2πq

λ

) q>∑
q ′=q<

uq ′ (kz)u
∗
q ′+q(kz)

q>∑
q ′′=q<

uq ′′ (kFz
)u∗

q ′′+q(kFz
)

−V3D

(
k⊥ − kF⊥ ,kz − kFz

− 2πq

λ

) ∣∣∣∣
q>∑

q ′=q<

uq ′ (kz)u
∗
q ′+q(kFz

)

∣∣∣∣
2]〉


kF

, (53)

where V3D(q⊥,qz) is the 3D Fourier transformed interaction
defined in Eq. (3) and q< ≡ max(−N, − N − q), q> ≡
min(N,N − q). We typically take N ∼ 50, which we find to
be sufficient for the lattice depths treated.

To facilitate comparison with the strictly 2D case, we
measure density in terms of the 2D density per layer, n2D =
n3Dλ, and compressibility in units of κ0 ≡ 1

n2
2D

dn2D
dE2D

, where
E2D = h̄24πn2D/2m. By first analytically performing the az-
imuthal integration in Eq. (53) and differentiating with respect
to density, then numerically summing over reciprocal lattice

points, averaging over the Fermi surface, and performing the
remaining two-dimensional integral, the compressibility can
be efficiently obtained. In Fig. 9 we show the compressibility
for KRb in a deep optical lattice [where the recoil energy is
ER = h̄2 (2π/λ)2 /2m]. For strong lattices, the compressibility
behaves similarly versus temperature to the 2D results of Fig. 3,
with a maximum at nearly the same temperature. For weak
lattices, the effect is less pronounced.

As density is varied, the ratio κ/κ0 behaves as in the 2D
case for low densities, with nonmonotonicity evident even
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FIG. 10. (Color online) Zero-sound speed vs density for KRb in
a periodic potential along the z axis.

for T ∼ TF , but at high density E2D becomes larger than the
lattice bandgap and quasi-two-dimensionality breaks down.
Here the compressibility exhibits discontinuous jumps as the
chemical potential enters higher bands, reminiscent of the
effect seen in Ref. [49]. At very large densities, the recoil
energy is negligible compared to the kinetic energy of the
gas, and κ/κ0 should increase with density as in the 3D case
rather than decreasing with density as in the 2D case.1 So, in
addition to the interaction-induced local maximum analogous
to the 2D case, there can also be a local minimum as the system
crosses over to three-dimensional behavior. This is similar to
the finite-confinement effect seen in the 1D case we looked at
earlier.

B. Collective modes

For the 3D multilayer system just described we now
calculate the low-lying collective modes at finite temperature,

neglecting coupling between partial waves. In the limit of
a large bandgap, such couplings should be suppressed, and
outside this limit the description should still be qualitatively
valid. However, because of the spatial inhomogeneity, the
3D polarizability can no longer be written as a scalar
function of the momentum transfer. In terms of the Bloch
wave functions defined in Eq. (52), the interaction and
the zeroth-order polarizability can be written in momentum
space as

Vk,k′ =
∫

d3xd3x′φ∗
k(x)V (x − x′)φk′(x′), (54)

χk,k′ (ω) =
∑
k1,k2

a
k1,k2∗
k a

k1,k2
k′

n0(k1) − n0(k2)

ω − ε0(k1) + ε0(k2) + i0
, (55)

where ε0(k) is the bare single-particle energy associated with
φk, and

a
k1,k2
k =

∫
d3xd3x′φ∗

k1
(x)φk2 (x)φk(x). (56)

The collective modes are given by the zeros of the determinant
det |1 − M(ω)| = 0, where Mk,k′(ω) = [V χ (ω)]k,k′ . Conser-
vation of momentum in the x-y plane and of quasimomentum
along z reduces M to a matrix function of the momentum trans-
fer, Mm,n(q,ω), where m is an integer denoting a reciprocal
lattice vector Km = 2πm/λ and qz is in the first Brillouin zone.
Some algebra results in a computationally feasible expression
for the matrix elements,

Mm,n(q,ω) =
3N−m∑

Q=−3N−m

∫
d3k

(2π )3

n0 (k⊥ − q⊥,kz − qz + 2πQ/λ) − n0 (k⊥,kz)

ω − ε (k⊥ − q⊥,kz − qz + 2πQ/λ) + ε(k⊥,kz) + i0

×
[∑

m′n′
u∗

Q+m+m′−n′

(
kz − qz + 2πQ

λ

)
um′ (kz)u

∗
n′

(
qz + 2πm

λ

)]

×
[∑

m′n′
uQ+n+m′−n′

(
kz − qz + 2πQ

λ

)
u∗

m′ (kz)un′

(
qz + 2πn

λ

)
V3D

(
q⊥,qz + 2π (n − n′)

λ

)]
. (57)

The matrix elements can be evaluated numerically for a given
frequency and momentum. To proceed, one must obviously
truncate the matrix at some finite reciprocal lattice vector,
and we have used a 17 × 17 matrix, as this seems to include
the dominant terms for large potential depth, V0. As V0 is
decreased, the off-diagonal terms of the matrix vanish while
the number of nonnegligible diagonal elements increases.

In Fig. 10 we plot the lowest-lying underdamped collective
modes for long-wavelength, in-plane momentum transfer,

1In the 3D case, κ/κ0 goes to unity as n goes to infinity. However,
since we have defined κ0 in this section in terms of the 2D energy
scale E2D ∝ n rather than the 3D energy scale E3D ∝ n2/3, the ratio
plotted in Fig. 9(c) should not go to unity, but should go like n1/3 as
n goes to infinity.

qz = 0,q⊥ → 0. The zero-sound speed is shown in units of
the 2D Fermi speed, vF = h̄2√4πn2D/m. In addition to the
Landau damping due to single-particle excitations in the lowest
band for v0 < vF , there are also regions of damping due to
single-particle excitations in excited bands which occur for
v0 > vF . The boundaries of these regions are shown in dotted
lines. The modes plotted are weakly thermally damped.

It is instructive to first consider the 20-nK curve in
Fig. 10(a), where one can identify three distinct regions. At
densities below ∼109 cm−2, the thermal energy is comparable
to the 2D energy scale, E2D = h̄24πn2D/2m. For higher
densities, one might expect to see a density-independent speed,
as in Sec. III B2 and the zero-temperature calculation of
Ref. [48]. This appears to be the case for an intermediate
region, with the value v0 > vF ∼ 1.4 in qualitative agreement
with the value ∼1.6 obtained using the multilayer result of
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FIG. 11. (Color online) Sloshing frequency vs density for KRb
in a periodic potential along the z axis.

Ref. [48] and inserting an estimate for the transverse size
in the effective 2D interaction (4) based on the harmonic
approximation to the local wells of the optical lattice. However,
for even higher densities the speed abruptly drops toward the
continuum. This begins happening where E2D becomes com-
parable to the bandgap, signaling a transition to 3D behavior.
As we have seen in Sec. III A2, the mode with momentum
transfer perpendicular to the electric field must vanish in three
dimensions. In this region, the behavior is roughly independent
of T , since the reduced temperature T/TF is effectively zero.

For T = 200 nK, the mode does not propagate except
at high densities, and we cannot reach the low-temperature
limit without increasing the density into the 3D transition.
For the weaker lattice in Fig. 10(b), even at T = 20 nK the
intermediate plateau has vanished because higher bands are
already becoming active as we increase the density out of
the large T/TF regime. In Fig. 10(b) we see multiple modes
entering the continuum, although only one is stable at low
density. Also, at high density, faster zero-sound modes appear
above the first excited SPE band.

In Fig. 11 we show the lowest underdamped collective
excitation for momentum transfer along the z axis in units
of the frequency of the local harmonic well approximation
to the optical lattice. In a harmonic trap this is the Kohn (or
sloshing) mode [50], and it is independent of the interaction
and the momentum. Here the density dependence is due to an-
harmonicity of the potential. The curve shown is independent
of temperature and momentum. For V0 = 25ER , we do not
find this mode.

So, although one can observe a Kohn-like collective mode
along the direction of the optical lattice at currently attainable
temperatures and densities, the observation of zero sound in a
reasonably strong optical lattice with standard site separation
on the order of a micrometer requires an order-of-magnitude
improvement in the attainable temperature or density. Based
on the 2D calculations of Sec. III B2, it is reasonable to expect
this requirement could be eased by using a more tightly spaced
lattice.

V. EXPERIMENTAL DETECTION OF COMPRESSIBILITY

We have shown that a quasi-low-dimensional experiment
may be able to observe an interaction-induced maximum in
the ratio of the finite-temperature interacting compressibil-
ity and the zero-temperature noninteracting compressibility,
particularly if the measurement is performed with variable

density. Now, the results we have shown are for homogeneous
systems, but there is always a global confining potential in
experiments. However, if we incorporate a weak harmonic
trap through a simple local density approximation (LDA),
µ(r) ≈ µ(0) − mω2r2/2, where one can think of a local
compressibility, κ (r) = 1

n2(r)
∂n(r)
∂µ(r) = − 1

n2(r)mω2r

∂n(r)
∂r

, then the
trap can be beneficial in that precise in situ measurement
of the density profile automatically allows the simultaneous
measurement of compressibility across a wide range of
densities. This technique has recently been used to measure
local compressibility in an optical lattice [51]. The ratio
κ(r)/κ0(r) ∼ dk2

F (r)/dµ(r) is similarly accessible. In Fig. 12
we have shown the ratio as a function of radial distance
in the LDA, and the associated density profile, for KRb at
reasonable temperature and peak density. A Gaussian profile
with the same peak density and number of molecules as
the calculated profile is shown in Figs. 12(b) and 12(d) for
reference. The 2D results shown are generated from the strictly
2D calculations of Sec. III B, rather than the more complicated
multilayer case.

If the strictly 2D case is realized by applying intense
counterpropagating beams of wavelength ∼1 µm along the
axis of a cigar-shaped cloud that contains ∼105 molecules
and is ∼600 µm in length, with radius ∼10 µm [8,52], then
a typical 2D plane will contain ∼100 molecules. As shown
in Fig. 12(a), to reach suitably large densities with such a
small number requires the in-plane trapping frequency to be
strong enough that the spatial extent of the cloud is rather
small. This may preclude in situ measurement of the profile,
so for that specific method it is preferable to apply the lattice
perpendicular to the axis of the dipole trap in order to deal
with larger clouds. Rather than a cigar-shaped dipole trap, one
might instead apply a pancake-shaped trap as in Ref. [10], but
it would be rather difficult to reach the 2D regime without
using an optical lattice.

If the 1D case is realized by applying two orthogonal pairs
of counterpropagating beams perpendicular to the axis of the
initial cigar-shaped trap, then a typical quasi-1D tube may
contain ∼1000 molecules. This case is shown in Figs. 12(c)
and 12(d). In addition to the interaction-induced maximum,
there is a local minimum for sufficiently high densities, as
discussed earlier. For those higher trap frequencies, the density
decreases more rapidly and the features are correspondingly
narrowed.

However, there is the possible complication that, in the
presence of a trap, the Hartree term is no longer just a constant.
Due to the long-range interactions, one may need to explicitly
take the nonuniformity into account in a self-consistent manner
with a spatially dependent Hartree term, as was done, for
example, in Refs. [25,53]. It is not clear how important this
effect is, although one may estimate that it will be negligible
if the interaction energy, d2/�3

t , at distances on the order of
the characteristic length scale of the trap, �t , is very small
compared to the local Fermi energy. Since we have already
assumed the local Fermi energy is much larger than h2/2m�2

t

by taking the LDA, this implies 2md2/h2 
 �t is a sufficient
condition for neglecting spatial variation of the Hartree term.
For KRb, 2md2/h2 ∼ 30 nm, so it is reasonable to treat the
system the way we have as a first step. Further investigation is
required, though, to fully resolve the issue.
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trap center, using LDA. (b) and (d) Density profile, using LDA, with a Gaussian profile shown for reference.

VI. CONCLUSIONS

In this work, our goal has been to propose well-defined
experiments which can reveal quantum many-body effects in
a stable, ultracold gas of dipolar molecules at finite temper-
ature. Our work is admittedly a leading-order approximate
calculation; however, it should be generally valid qualitatively
and, for the coupling strengths accessible to experiment,
essentially exact. Our results indicate that the compressibility
of a quasi-low-dimensional gas should exhibit a nonmonotonic
temperature dependence for low temperatures. (Note that a
similar maximum in the Hartree-Fock compressibility occurs
in an electron gas with 1/r interactions, although there it is
due to a t2 ln t term in the self-energy [54]; see the Appendix.)
Furthermore, the closely related quantity dEF /dµ, which is
the ratio of the finite-temperature interacting compressibil-
ity and the zero-temperature noninteracting compressibility,
should also exhibit a quantum many-body effect, namely a
nonmonotonic density dependence, which persists for T ∼ TF .

We have also considered the finite-temperature behavior
of the effective mass and zero-sound dispersion. In the 3D
case, the zero sound shows a nonmonotonic temperature
dependence, in addition to angular anisotropy. However, as
expected, we have seen that the damping increases rapidly
with temperature, so that the mode does not propagate at
currently feasible temperatures and densities. However, in
quasi-low-dimensional scenarios, the mode is far more robust,
propagating at relatively high temperatures for tight transverse
confinement, provided the length scale at which the interaction
deviates from 1/r3 behavior is assumed to be small compared
to the transverse size.

We have performed a numerical calculation for a 3D
dipolar gas in a 1D periodic potential, and in addition to
finding similar behavior as in the 2D case in the presence

of multilayer effects, we observe effects of excited bands at
high density and the breakdown of two-dimensionality. In
particular, at moderate lattice depths we see discontinuous
jumps in the compressibility and interesting collective mode
structure.

Finally, we have discussed a method for experimentally
observing the characteristic nonmonotonicity of the compress-
ibility in the presence of a global confining potential via
high-resolution in situ imaging.
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APPENDIX

In this Appendix we briefly compare the results given here
for a spinless 2D dipolar gas to results similarly derived for a
2D spinless Coulomb gas with V (r) = e2/r . In the latter case,
the low-temperature behavior within Hartree-Fock is [54]

κ0

κ
≈ 1 + rs

π

(
−1 + 0.13t2 + π2

32
t2 ln t

)
, (A1)

where rs = 1/aB

√
πn, with aB the Bohr radius. The t2 ln t

term is not an artifact of the dimensionality, as a similar result
has also been obtained for the 3D Coulomb gas [54]. Here
again, the compressibility behaves nonmonotonically, due to
the interaction-dependent term first decreasing, then increasing
with temperature. However, in contrast to the dipolar gas,
this nonmonotonicity is evident already at leading order
in t .
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