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Phase fluctuations in anisotropic Bose-Einstein condensates: From cigars to rings
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We study the phase-fluctuating condensate regime of ultracold atoms trapped in a ring-shaped trap geometry,
which has been realized in recent experiments. We first consider a simplified box geometry, in which we identify
the conditions to create a state that is dominated by thermal phase fluctuations, and then explore the experimental
ring geometry. In both cases we demonstrate that the requirement for strong phase fluctuations can be expressed
in terms of the total number of atoms and the geometric length scales of the trap only. For the ring-shaped trap
we discuss the zero temperature limit in which a condensate is realized where the phase is fluctuating due to
interactions and quantum fluctuations. We also address possible ways of detecting the phase-fluctuating regime
in ring condensates.
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Since the laboratory realization of Bose-Einstein con-
densates in ultracold atomic systems, their properties in
different dimensions and geometries and the effect of quantum
and thermal fluctuations have been interesting questions. In
Refs. [1,2], it was pointed out that for an elongated, “cigar”-
shaped condensate, a regime of strong thermal fluctuations
can exist. Such a system is three-dimensional (3D) in the
sense that its transverse dimensions are significantly larger
than the healing length and the thermal de Broglie wavelength.
However, the long-range behavior of the single-particle (field-
field) correlation function g1(r) ≡ 〈ψ†(0)ψ(r)〉, with ψ(r)
being the single-particle operator, can be dominated by phase
fluctuations along the longitudinal direction. This leads to
an exponential decay with some correlation length lφ , which
is typical for a one-dimensional system at finite (nonzero)
temperature. Because the many-body state combines these
properties that are characteristic for 3D and one-dimensional
(1D) systems, such a system can be considered to be of mixed
dimensionality. When the correlation length lφ is of the order
of the system size or shorter, the condensate is said to be in
the phase-fluctuating regime. In Refs. [3] and [4] the 1D-3D
crossover was studied. In Ref. [5], a two-step condensation
mechanism for the noninteracting system was pointed out.
The phase-fluctuating regime of elongated condensates was
first experimentally realized in Ref. [6], and then studied
in further detail in Refs. [7–10]. We note that quantum
fluctuations can lead to a phase-fluctuating condensate even at
zero temperature, as we discuss in Sec. II B. However, here the
decay of the correlation function is algebraic, and we find that
the exponent is very small for the parameter regime of interest.
The main focus of this article are thermal phase fluctuations.

In this paper we study the properties of a ring-shaped
phase-fluctuating condensate. One way to create such a system
is by using both a quasi-2D optical dipole trap formed from
a sheet of light (see Ref. [11]), and a Laguerre-Gauss (LG)
beam perpendicular to the plane of the sheet [12]. In such a
setup, the atoms can form a condensate along the ring-shaped
maximum of the combined intensities of the sheet trap and
the LG beam. (A different approach was demonstrated in
Ref. [13].) Other realizations of toroidal traps were reported
in Refs. [14–16]. Here, we study under what circumstances
the regime of thermal phase fluctuations can be reached for a
condensate with a ring geometry.

In Sec. I, we first take the simplified case of a box geometry
with periodic boundary conditions, with different box sizes
along different axes, with one of them much larger than the
others. In Sec. II we study the case of a ring-shaped condensate.
In Sec. III we consider ways in which this state can be seen
experimentally, and in Sec. IV we conclude.

I. BOX GEOMETRY

In this section we consider a condensate in a three-
dimensional box with periodic boundary conditions, and
dimensions X, Y , and Z. Our goal is to study the behavior
of the single-particle correlation function for the dimensional
crossover from three dimensions to one dimension. This cor-
relation function can be used to identify the phase-fluctuating
regime of the condensate.

We consider the regimes Z ≈ X,Y and Z � X,Y , using
the calculational approach that is used in Refs. [1,2]. This
Bogoliubov-de Gennes (BdG) approach is particularly useful
for spatially inhomogeneous systems. However, we apply it to
the box geometry as well, to allow for a clearer comparison
between this case and the results for a ring geometry in Sec. II.
We first calculate the BdG modes, and then consider the
thermal occupation of these modes.

In a qualitative sense, the box geometry with periodic
boundary conditions displays the main features of a Bose-
Einstein condensate in elongated geometries. Because it is
calculationally simpler, it will serve as the main system
to understand the properties of fluctuating condensates. In
Sec. II we derive the analogous properties for the spatially
inhomogeneous case, and compare them to results of this
section.

We consider an atomic ensemble of bosons of density n =
N/V , where N is the total particle number, and the volume
V is XYZ. These atoms are assumed to be weakly interacting
via a contact interaction with strength g = 4πh̄2a/M , where
a is the scattering length, and M is the atomic mass. We then
apply a BdG approach to describe the condensate and the
excitations. The condensate is described by the well-known
Gross-Pitaevskii (GP) equation, Ref. [17]:

(
−h̄2∇2

2M
+ g|�0|2

)
�0 = µ�0, (1)
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where �0 is the condensate wave function, and µ is the chem-
ical potential. Within the Thomas-Fermi (TF) approximation
(see Ref. [18]), �0 is given by

�0 = √
n0, (2)

where n0 = N0/V is the condensate density, and N0 is the total
number of atoms in the condensate. For the weak interactions
considered here, the quantum depletion is small and N0 ≈ N .
The Bogoliubov-de Gennes (BdG) equations [19] are given by(

−h̄2∇2

2M

)
uν + g|�0|2(2uν − vν) = (µ + Eν)uν, (3)

(
−h̄2∇2

2M

)
vν + g|�0|2(2vν − uν) = (µ − Eν)vν. (4)

The fields uν and vν describe an excitation of energy Eν . We
note that for a phase-fluctuating condensate, this formalism
should be interpreted as an expansion in the density around
a finite value, and in the phase to quadratic order (see
Ref. [20]). We introduce the rescaled quantities: x̄ = x/X,
ȳ = y/Y , z̄ = z/Z, and ζ 2 = h̄2/(2MµL2) where L is defined
as L = (XYZ)1/3. Our objective is to generate a consistent
expansion in ζ . Written in these rescaled quantities, the GP
equation (1) is given by

−ζ 2∇̃2�0 + n̄0�0 = �0, (5)

where ∇̃2 is defined as

∇̃2 = L2

X2

∂2

∂x̄2
+ L2

Y 2

∂2

∂ȳ2
+ L2

Z2

∂2

∂z̄2
. (6)

The reduced density n̄0 is given by n̄0 = g|�0|2/µ. We note
that the TF solution is simply the zeroth order solution in ζ

(i.e., n̄0 = 1). The rescaled BdG equations are

−ζ 2∇̃2uν + n̄0(2uν − vν) = (1 + 2ζ εν)uν (7)

−ζ 2∇̃2vν + n̄0(2vν − uν) = (1 − 2ζ εν)vν, (8)

where 2ζ εν = Eν/µ. We now define the fields f±,ν ≡ uν ± vν .
These fields are related to the phase and density fluctuations
of excitation ν. In terms of these fields, the BdG equations
[Eqs. (7) and (8)] are

−ζ 2∇̃2f+,ν = 2ζ ενf−,ν (9)

−ζ 2∇̃2f−,ν + 2f−,ν = 2ζ ενf+,ν . (10)

The solutions can be written as f±,m = C±,mW (m). Here
we replaced the generic index ν by the vector index m that
appears in the solutions. The prefactors have to be related as
C−,m = ζ εmC+,m, due to the normalization conditions on um
and vm (see Refs. [1,2]). The functions W (m) are plane waves,
W (m) = exp(2πimr̄), where m = (m1,m2,m3), and m1,m2,
and m3 are integers. r̄ is defined as r̄ = (x̄,ȳ,z̄). Eliminating
f−,m from Eqs. (9) and (10), we can obtain the low-momentum
limit of an energy-momentum dispersion relationship:

−∇̃2f+,m = 2ε2
mf+,m. (11)

Written in terms of the original parameters, this gives
Em = h̄c|k|, where the phonon velocity is c = √

gn0/M ,
and k is defined as k = (2πm1/X,2πm2/Y,2πm3/Z). The
normalization of the BdG modes is given by C2

+,m =

2µ/(EmV ). In summary, the solutions of the BdG equations
are

f+,m =
√

2µ

V Em
exp(2πim · r̄), (12)

f−,m =
√

Em

V 2µ
exp(2πim · r̄). (13)

Within the weak interaction expansion used here, we have
µ = gn0.

We now use these modes to calculate the correlation
function of the phase. The phase field φ(r) is related to f+,m

through φ(r) = 1/(2
√

n0)
∑

m f+,ma
†
m + H.c., where a

†
m is

the bosonic creation operator of the f+,m mode. The f−,m
modes, on the other hand, are related to the density fluctuations
of the system. Because the modes f+,m behave as 1/

√
Em,

whereas f−,m scale as
√

Em, one can expect that at long
distances (small k) the phase of the system can be a fluctuating
quantity, whereas the density fluctuations will be suppressed.

The correlation function of the phase is given by

〈δφ(r)2〉 =
∑

m

g

V Em
Nm[2 − 2 cos(2πm · r̄)], (14)

where δφ(r) ≡ φ(0) − φ(r). We assume that the Bogoliubov
modes are occupied according to a Bose-Einstein distribution
of temperature T . Thus, the distribution Nm, which is the
occupation of a state with energy Em, is given by

Nm = 1

exp(Em/kBT ) − 1
+ 1/2, (15)

where the 1/2 accounts for the vacuum fluctuations. For small
energies and at finite temperature, Nm has a divergent behavior,
which is the origin of the phase-fluctuating regime. It behaves
as

Nm ≈ kBT

Em
. (16)

This divergent term dominates over the constant term 1/2,
which we discuss in Sec. II B. We find that it generates an
algebraically decaying correlation function, with an exponent
that is very small for the parameter regime of interest. In
particular, the term does not contribute to the exponential
decay, and will be ignored in this section.

A. Correlation function in 1D and 3D

The correlation function for the elongated geometry shows
3D behavior on short length scales r <∼ X,Y , and 1D behavior
for longer scales r >∼ X,Y . In this section we discuss these
limits.

We first calculate the 3D limit by replacing the sums
in Eq. (14) with integrals. The thermal contribution of the
correlation function is

〈δφ(r)2〉
= g

2π2h̄c

(
π2(kBT )2

3h̄2c2
+ 1

r2
− πkBT coth(πrkBT /h̄c)

h̄cr

)
,

(17)
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where r = |r|. For distances r large compared to the healing
length ξ = h̄/(2Mgn0)1/2 and the thermal de Broglie wave-
length λ = h̄/(2πMkBT )1/2, this approaches

〈δφ(r)2〉 ≈ g

2π2h̄c

(
π2(kBT )2

3h̄2c2
− πkBT

h̄cr

)
, (18)

(see, e.g., Ref. [21]). This expression shows the 1/r decay of
the phase correlations of a 3D BEC to a nonzero value, related
to the thermal depletion at T <∼ µ. The thermal depletion is
proportional to ξ/(nλ4). Equation (18) is valid in the elongated
geometry for ξ,λ 	 r <∼ X,Y .

As we approach the 1D limit, for r � X,Y , the modes
with m1 = m2 = 0 produce the dominant contribution to the
correlation function, whereas the excited transverse modes
provide corrections, which we discuss below. We write
the correlation function as 〈δφ(r)2〉 = 〈δφ(r)2〉0 + 〈δφ(r)2〉1,
where 〈δφ(r)2〉0 corresponds to the modes with m1 = m2 = 0,
and 〈δφ(r)2〉1 to the remaining contributions in Eq. (14). For
〈δφ(r)2〉0, with the approximation in Eq. (16), we find

〈δφ(r)2〉0 = gkBT

XY

Z

(h̄c)2
(|z̄| − z̄2). (19)

In this expression, the linear term contains the length scale that
we are interested in, whereas the quadratic term ensures that
the derivative of the function at z̄ = 1/2 is smooth. One might
expect an expression that is purely given by trigonometric
functions of z̄, however, the approximation in Eq. (16) leads to
the expression above. We note that if we take the limit Z → ∞,
the linear term stays fixed, because it is only a function of z,
whereas the quadratic term vanishes, because it scales as 1/Z.

At intermediate distances X,Y 	 r 	 Z (where the peri-
odic boundary conditions are not apparent), the single-particle
correlation function thus approaches

〈ψ†(0)ψ(r)〉 ∼ n0 exp(−Z|z̄|/lφ), (20)

where we used the phase-density representation of the bo-
son operator ψ(r) = √

n(r) exp[iφ(r)] to connect the single-
particle correlation function to the phase-correlation function.
The phase-correlation length lφ is given by

lφ = 2XY (h̄c)2

gkBT
= 2XYh̄2n0

MkBT
= 2h̄2N0

MZkBT
. (21)

We note that the interaction has canceled in this expression
(see, e.g., Refs. [4,22]). This can be understood by writing the
Hamiltonian in the phase-density representation. As discussed
in Ref. [20], the Hamiltonian of a weakly interacting Bose gas
is given to second order by a kinetic term ∼n0(∇φ)2/2M and
a potential term of the form gδn2, where δn are the density
fluctuations around the constant value n0. In the momentum
representation, the spectrum of this Hamiltonian can be seen
to be equivalent to the Bogoliubov spectrum of Eqs. (3) and
(4). The contribution to the partition function made by a given
mode of energy h̄ωk consists of independent phase and density
terms, for a temperature T >∼ h̄ωk/kB . In this limit, the phase
correlations are entirely due to the kinetic term, leading to the
expression in Eq. (21), independent of the interaction strength.

Next, we estimate the effect of the higher modes, for the case
X = Y . We consider the thermal contribution to the spatially
independent part of the correlation function. We replace the

m3 summation in Eq. (14) by an integral over kz, and expand
the dispersion relation appearing in the exponent in Eq. (15)
to second order in kz. We can then evaluate the kz integral as

〈δφ(r)2〉1 ≈
∑

m1,m2 �=0

∫
dkz

2π

g

πh̄cX
(
m2

1 + m2
2

)1/2 ,

exp

(
−8π2h̄c

(
m2

1 + m2
2

) + h̄cX2k2
z

4πXkBT
(
m2

1 + m2
2

)1/2

)

=
∑

m1,m2 �=0

g

πh̄cX
(
m2

1 + m2
2

)1/4

(
kBT

Xh̄c

)1/2

,

exp

(
−2πh̄c

(
m2

1 + m2
2

)1/2

XkBT

)
. (22)

Next we approximate the sum
∑

m1,m2 �=0 by
∑∞

m=1 2πm, and
(m2

1 + m2
2)1/2 by m. That gives

〈δφ(r)2〉1 ≈
∑
m

2g
√

m

h̄cX

(
kBT

Xh̄c

)1/2

exp

(
−2πh̄cm

XkBT

)

= 2g(kBT )1/2

(h̄cX)3/2
Li− 1

2

[
exp

(
− 2πh̄c

XkBT

)]
, (23)

where Li− 1
2

is the standard polylogarithmic function with
exponent −1/2.

For temperatures large enough to populate transverse modes
(i.e., kBT � 2πh̄c/X), but smaller than or comparable to µ,
Eq. (23) becomes

〈δφ(r)2〉1 ≈ g(kBT )2

23/2π (h̄c)3
. (24)

We therefore approximately recover the 3D thermal depletion,
which we found before in Eq. (18). For kBT 	 2πh̄c/X,
〈δφ(r)2〉1 is exponentially suppressed,

〈δφ(r)2〉1 ≈ 2g

h̄cX

(
kBT

Xh̄c

)1/2

exp

(
− 2πh̄c

XkBT

)
. (25)

In Fig. 1 we show the full thermal contribution to the cor-
relation function, Eq. (14), for box dimensions Z = 100 µm
and X = Y = 5 µm. The temperature is T = 100 nK, and
the atomic mass is M = 23u, with u being the atomic
mass unit. For z <∼ X,Y the correlation function g1(r) closely
resembles the 3D result [see Eq. (17)] (i.e., it falls off on
a short scale to a finite value), which describes the thermal
depletion of the condensate. For sufficiently large z � X,Y ,
the correlation function g1(r) is approximately given by g1(z),
and behaves like the correlation function for a 1D system.
The thermally activated modes where m1,m2 = 0, m3 �= 0
generate an exponentially decaying g1(z). In this 1D-like case,
the correlation function is essentially only a function of the
coordinate z, and independent of x and y. The effect of the
transverse modes is to create a constant thermal depletion, as
in Eq. (24), which is of the order of the 3D result. So the
crossover from 3D to 1D is given by the geometric shape, and
the regimes are z <∼ X,Y for 3D behavior, and z >∼ X,Y for 1D
behavior (see also Ref. [23]).
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FIG. 1. (Color online) Thermal contribution to the correlation
function g1(r) = 〈ψ †(0)ψ(r)〉. We plot ln(〈ψ †(0)ψ(r)〉/n0), which
equals −〈δφ(r)2〉/2. We use a box geometry with Z = 100 µm and
X = Y = 5 µm, and a temperature T = 100 nK. The total atom
number is N0 = 20 000, and M is the sodium mass M = 23u, with
u being the atomic mass unit. We assume that the scattering length
is a = 2.75 nm. The top diagram shows the full correlation function,
the bottom diagram the regime z <∼ X,Y .

B. Phase-fluctuating condensate

In the previous section we found that for an elongated sys-
tem the long-range behavior of the single-particle correlation
function g1(r) shows exponential decay with a correlation
length lφ . We can then define a temperature above which
the system is in the phase-fluctuating regime, based on the
requirement that this length scale is comparable to the system
size (i.e., lφ ≈ Z). This defines the following temperature:

kBTφ = 2h̄2N0

MZ2
. (26)

If this temperature lies below the BEC temperature Tc, a phase-
fluctuating condensate may exist. We estimate that temperature
by using the result for the homogeneous, ideal Bose gas, which
is (e.g., Ref. [24])

kBTc = 2π

ζ (3/2)2/3

h̄2n
2/3
0

M
, (27)

where ζ signifies the Riemann zeta function. To estimate
the regime in which one would observe a phase-fluctuating
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FIG. 2. (Color online) Comparison of Tc (black, solid lines) and
Tφ (red, dashed lines), for different geometric aspect ratios. In (a) we
show these temperatures as a function of density, for the sodium mass
M = 23u, and Z = 100 µm, and for X = Y = 10,7.5,5 µm (I–III).
In (b) we show the same quantities as a function of the total atom
number N0. Tc is purely a function of the density, whereas Tφ is a
function of the total number, for a fixed longitudinal dimension Z.

condensate, we consider the ratio of Tc and Tφ ,

Tc/Tφ = π

ζ (3/2)2/3

1

N
1/3
0

Z4/3

X4/3
, (28)

which we wrote in terms of the total atom number N0, and we
chose X = Y . For a system of fixed dimensions X and Z, no
phase-fluctuating regime exists if the total number of atoms
fulfills

N0 >∼
π3

ζ (3/2)2

Z4

X4
≈ 4.5

Z4

X4
, (29)

demonstrating how sensitively the presence or absence de-
pends on the geometric ratio Z/X. In Fig. 2 we show both
the condensate temperature and Tφ as a function of density,
for different geometric dimensions. The regime above Tφ but
below Tc is the phase-fluctuating condensate regime. We can
again see that the magnitude of this regime is very sensitive to
the ratio Z/X.

II. RING GEOMETRY

We now turn to the kind of ring-shaped geometry in which
we are interested. As mentioned in Sec. I, we will find that
qualitatively most features of the phase-fluctuating condensate
in a ring can be understood in terms of the simplified box
geometry discussed previously. We note that the elongated
box with periodic boundary condition is very similar to a
ring. In addition, the cigar-shaped condensates discussed in
Refs. [1,2] qualitatively share similar features in the center
of the condensate. In this section, we derive the results
analogous to those of the previous section but for a trapped
(inhomogeneous) ring system and compare them to results of
Sec. I.
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lρ

z = lzz

ρ-R = lρρ

ρ = lρρ

¯

¯

ˆθ

FIG. 3. (Color online) The toroidal shape of the BEC is given by
the radius R, and the Thomas-Fermi radii lz in z direction, and lρ in
radial direction. We use the rescaled z variable z̄ = z/lz, and the two
rescaled radial variables ρ̂ = ρ/lρ and ρ̄ = (ρ − R)/lρ , as indicated
in the figure.

In the treatment here, the trapping potential is approximated
by the harmonic form,

V = 1
2Mω2

zz
2 + 1

2Mω2
ρ(ρ − R)2. (30)

Here, z and ρ are spatial cylindrical coordinates as shown in
Fig. 3, and ωz and ωρ the oscillation frequencies along the
spatial directions, and R is the mean ring radius. We apply the
same formalism as in Sec. I. The GP equation of the system is
given by (

−h̄2∇2

2M
+ V + g|�0|2

)
�0 = µ�0, (31)

the BdG equations are(
−h̄2∇2

2M
+ V

)
uν + g|�0|2(2uν − vν) = (µ + Eν)uν, (32)

(
−h̄2∇2

2M
+ V

)
vν + g|�0|2(2vν − uν) = (µ − Eν)vν. (33)

The Thomas-Fermi (TF) solution of Eq. (31) for z̄2 + ρ̄2 < 1
is

�0 =
√

nmax(1 − z̄2 − ρ̄2). (34)

Here we have rescaled the spatial coordinates z̄ = z/lz and
ρ̄ = (ρ − R)/lρ by the TF radii, given by lz = (2µ/Mω2

z )1/2

and lρ = (2µ/Mω2
ρ)1/2. This rescaling is in analogy to

rescaling the spatial coordinates of the box geometry by
the dimensions of the box. nmax is the maximum value of
the density of the condensate. We write the GP equation
as

−η2∇̃2�0 + z̄2�0 + ρ̄2�0 + n̄0�0 = �0, (35)

where we introduced the operator,

∇̃2 =
[
ω2

ρ

ω̄2

(
∂2

∂ρ̂2
+ 1

ρ̂

∂

∂ρ̂
+ 1

ρ̂2

∂2

∂θ2

)
+ ω2

z

ω̄2

∂2

∂z̄2

]
, (36)

where θ is the azimuthal angle, as shown in Fig. 3,
and ρ̂ = ρ/lρ . The frequency ω̄ = √

ωzωρ , and η2 = h̄ω̄
2µ

[25].
We now introduce a rescaled energy εν = Eν/h̄ω̄ and a

rescaled density n̄0, defined as n̄0 = |�0|2/nmax. With these
parameters, the BdG equations are

−η2∇̃2uν + (z̄2 + ρ̄2)uν + (2uν − vν)n̄0 = (1 + 2ηεν)uν,

(37)

−η2∇̃2vν + (z̄2 + ρ̄2)vν + (2vν − uν)n̄0 = (1 − 2ηεν)vν.

(38)

These equations are analogous to Eqs. (7) and (8), but here
the equations contain a spatially dependent potential and
condensate density n̄0 = n̄0(z̄,ρ̄).

As before, we introduce the fields f±,ν = uν ± vν . In terms
of these, the BdG equations are(

−η2∇̃2 + η2∇̃2�0

�0

)
f+,ν = 2ηενf−,ν , (39)

(
−η2∇̃2 + 2 − 2z̄2 − 2ρ̄2 + 3η2∇̃2�0

�0

)
f−,ν = 2ηενf+,ν

(40)

We write the solutions in the TF approximation as

f+,ν = C+,ν(1 − z̄2 − ρ̄2)1/2Wν(θ ), (41)

f−,ν = C−,ν(1 − z̄2 − ρ̄2)−1/2Wν(θ ), (42)

with the normalization condition C−,ν = ηενC+,ν . The func-
tions Wν(θ ) are simply Wν = exp(imθ ), with m being an
integer. We replace the index ν with m from now on. For these
solutions we assumed that the radius R is much larger than lρ ,
so that we can approximate the term (1/ρ̂2)∂2

θ in Eq. (36) by
(l2

ρ/R
2)∂2

θ .
This set of modes is analogous to the modes with m1 =

m2 = 0 in the previous section. In analogy to Eq. (11), the
dispersion relation can be calculated from

(1 − z̄2 − ρ̄2)

(
−∇̃2 + ∇̃2�0

�0

)
f+,m = 2ε2

mf+,m, (43)

where we need to average over the density profile (see Refs.
[1,26]). This gives Em = h̄c|k|, with c = √

gnmax/2M and k =
m/R. These modes and dispersion relation were also discussed
within a hydrodynamic approach in Ref. [26]. The prefactor
C+,m is given by C2

+,m = 1/(2π2εmηRlzlρ), so f±,m are

f+,m =
√

gn0(z,ρ)

π2RlzlρEm

exp(imθ ), (44)

f−,m =
√

Em

4π2Rlzlρgn0(z,ρ)
exp(imθ ). (45)

These expressions are analogous to Eqs. (12) and (13). The
“Thomas-Fermi” volume V in Eqs. (12) and (13) corresponds
to 2π2Rlzlρ , which is the volume of the torus. The chemical
potential µ is replaced by gn0(ρ,z).

Next, we calculate the correlation function of the phase,

〈δφ(θ )2〉 =
∑
m

gNm

2π2RlzlρEm

[2 − 2 cos(mθ )], (46)

where Nm is given in Eq. (15). In analogy with δφ(r) in the
previous section, we have defined δφ(θ ) = φ(0) − φ(θ ). Using
Eq. (16), we find

〈δφ(θ )2〉 = gkBT

π2lzlρ

R

(h̄c)2
(−θ2/2 + π |θ |), (47)
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in analogy to Eq. (19). So for intermediate distances lρ,lz 	
Rθ 	 R we have 〈ψ†(θ )ψ(θ ′)〉 ∼ exp(−R|�θ |/lφ), with

lφ = πlzlρh̄
2nmax

MkBT
= h̄2N0

πMRkBT
, (48)

in analogy to Eq. (20). Here we used the relationship between
the density maximum nmax and the total atom number N0,
N0 = nmaxπ

2lzlρR. Again we find that the interaction does not
affect lφ . We note that this expression is of the same form as
the expression for the box geometry, Eq. (21), up to numerical
prefactors.

A. Phase-fluctuating regime

As in Sec. I, the phase-fluctuating regime is reached when
the phase-correlation length is of the order of the system size.
From lφ ≈ πR we can define the temperature,

kBTφ = h̄2N0

π2MR2
. (49)

We calculate the condensation temperature for a cylinder of
length 2πR and with harmonic confinement with frequencies
ωz and ωρ ,

kBTc =
(

3N0h̄
3ωzωρ

4�(α)ζ (α)(2m)1/2R

)2/5

, (50)

where ζ (α) is again the Riemann function at α = 5/2, and
�(α) is the usual Gamma function.

As discussed in Ref. [27], at this critical temperature
the density at the potential minimum reaches the critical
value of the homogeneous system, within a semiclassical
approximation.

The ratio Tc/Tφ can be written as

Tc

Tφ

=
(

3π5

4
√

2�(α)ζ (α)

)2/5 1

N
3/5
0

(
R2

azaρ

)4/5

, (51)

where az = √
h̄/mωz and aρ = √

h̄/mωρ are the oscillator
lengths of the confining potential. For the total atom number
this leads to the inequality,

N0 >∼
(

3π5

4
√

2�(α)ζ (α)

)2/3(
R2

azaρ

)4/3

(52)

≈ 20.2

(
R2

azaρ

)4/3

, (53)

for which there is no phase-fluctuating condensate for any
temperature. This conclusion is valid if the estimate of the
condensate temperature in Eq. (50) is accurate, and under the
weak interaction conditions of the BdG approach.

In Fig. 4 we show Tφ and Tc as a function of the total
atom number N0, and for different confining frequencies ωz

and ωρ . For a given N0 and trap radius R, Tφ is fixed.
The condensation temperature, however, is affected by the
transverse confinement through ωz and ωρ . By increasing their
value, a large regime of a phase-fluctuating condensate can be
created. On the other hand, for sufficiently weak transverse
confinement, one can avoid the phase fluctuating regime for
all temperatures.

25 000 50 000 75 000

100

50

150

N0

T
 [

nK
] Tφ

III

II

I

FIG. 4. (Color online) Tφ (red, dashed line) as a function of the
total atom number, for M = 23u and R = 40 µm, and Tc (black,
solid lines) for ωz = ωρ = 2π × 200,2π × 100,2π × 50 Hz (I–III).

B. Zero temperature

While one might expect that in 3D a condensate would have
perfect phase coherence at zero temperature, we find that the
phase-fluctuating character of an elongated system persists
even at zero temperature, as for a truly 1D system [28]. At
zero temperature, the single-particle correlation function of
our ring-shaped condensate decays algebraically:

〈ψ†(r1)ψ(r2)〉 ∼
(

(Rθ )2

r2
c

)−1/4K

, (54)

where r1 and r2 both are at the minimum of the trapping
potential, with |r1| = |r2| = R, and θ is the angle between
them. Equation (54) is valid for lz,lρ,rc 	 |Rθ | 	 R, where
rc is a short-range cutoff which should be chosen to be of the
order of the healing length lh = h̄√

mµ
, see [29].

The scaling exponent K is given by

K = h̄N
3/4
0

21/4R3/4M3/4

π1/2

g1/4(ωzωρ)1/4
. (55)

For typical parameters, K is very large. For example, for R =
40 µm, M = 23u, a = 2.75 nm, ωz = ωρ = 2π × 1000 Hz,
and N0 = 20 000, we have K = 242.4. Since the algebraically
decaying correlation function reaches, say, the value 1/e

at a distance rce
2K , which vastly exceeds the size of the

system, the decay of the correlation function across the
system is very small. So although the system in princi-
ple forms a quasicondensate, for typical parameters it will
behave essentially like a true condensate.

III. EXPERIMENTAL SIGNATURES

In this section we consider possible experimental signatures
of the phase-fluctuating regime. The defining feature of this
regime is the loss of phase coherence over the ring-shaped
condensate. One way of testing this would be to use the
interference technique demonstrated in Ref. [11].

In Ref. [6] the signature of the phase-fluctuating regime in
time-of-flight images was studied. In Ref. [7] an interferomet-
ric approach measuring the second-order correlation function
was reported. In Ref. [9] Bragg spectroscopy was used to
measure the momentum distribution in the axial direction,
which was calculated in Ref. [8]. Matter wave interferometry
was used in Ref. [10] to measure the phase-coherence
length.
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A consequence of the ring geometry is that during a time-
of-flight (TOF) expansion of the phase-fluctuating condensate,
the contrast of matter-wave interference should be reduced
compared to a true condensate. In particular, due to the
ring-shaped geometry of the system one can expect that
the constructive interference that can emerge at the center
of the ring during expansion will be reduced.

We now discuss the interference of atoms released from a
ring trap. For this purpose we use a Green’s function approach
which conveniently relates the density after time of flight to the
two-field correlation function prior to release. Assuming freely
expanding atoms, the time-dependent bosonic single-particle
annihilation operator is given by

ψ(x,t) =
∫

dx1w(x − x1,t)ψ(x1). (56)

Here, ψ(x,t) is the bosonic single-particle annihilation oper-
ator at time t , and ψ(x1) is the initial single-particle operator.
The Green’s function of free propagation w(x,t) is given by

w(x,t) =
(

M

2πih̄t

)3/2

exp(iMx2/2h̄t). (57)

The expectation of the density at time t is, therefore,

n(x,t) =
∫ ∫

dx1dx2w
∗(x̄1,t)w(x̄2,t)〈ψ†(x1)ψ(x2)〉, (58)

with x̄1 = x − x1 and x̄2 = x − x2. We are interested in the
density integrated over the z direction, and we switch to
cylindrical coordinates:

n(ρ,t) =
∫

dz n(ρ,z,t). (59)

Using Eq. (58), and integrating over z, we find

n(ρ,t) =
(

M

2πh̄t

)3
h̄t

M

∫
dz1ρ1 dρ1ρ2 dρ2 dθ1 dθ2,

exp
{
iM[ρ(ρ1 cos θ1 − ρ2 cos θ2)]/h̄t

− iM
(
ρ2

1 − ρ2
2

)/
2h̄t

}√
n(ρ1,z1)n(ρ2,z1),

exp{−R/lφ[|�θ | − (�θ )2/2π ]}. (60)

Here we assumed that the single-particle correlation function
is of the form,

〈ψ†(ρ1,z1,θ1)ψ(ρ2,z2,θ2)〉
=

√
n(ρ1,z1)n(ρ2,z1) exp

[
R

lφ

(
�θ2

2π
− |�θ |

)]
, (61)

with �θ = θ1 − θ2. Here we have ignored the condensate
depletion due to thermal activation of transverse modes.

We perform the integral of Eq. (60) using shifted coordi-
nates ρ̃1 and ρ̃2, defined by ρ1 = R + ρ̃1 and ρ2 = R + ρ̃2.
Ignoring quadratic terms in ρ̃1,2 in the exponent we obtain

n(ρ,t) ≈ nmax

4

∫
dz1 dθ1dθ2A

∗(θ1)A(θ2),

exp[iMρR(cos θ1 − cos θ2)/h̄t],

exp{−R/lφ[|�θ | − (�θ )2/2π ]}, (62)
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FIG. 5. (Color online) Expectation value of the density, integrated
over the z direction, after time-of-flight expansion of an atomic
ensemble of N0 = 30 000 atoms of mass M = 23u, in a ring
with radius R = 40 µm, and ωz = 2π × 1000 Hz and ωρ = 2π ×
200 Hz. (a)–(c) The TOF interference for T = 20 nK, at times
t = 10,20,30 ms. (d)–(f) TOF interference for T = 170 nK at the
same times.

where A(θ ) is given by

A(θ ) = 1

(R − ρ cos θ )

×
{

R

√
1 − z2

1

/
l2
z ,J1

[
Mlρ

√
1 − z2

1

/
l2
z (R − ρ cos θ )

h̄t

]

+ ilρ
(
1 − z2

1

/
l2
z

)
,

J2

[
Mlρ

√
1 − z2

1

/
l2
z (R − ρ cos θ )

h̄t

]}
. (63)

We evaluate Eq. (62) numerically, for R = 40 nm, N0 =
30 000, ωz = 2π × 1000 Hz, and ωρ = 2π × 200 Hz. We
assume M to be the sodium mass, M = 23u, where u is the
atomic mass unit, and a = 2.75 nm. We note again that in this
example the interactions are taken into account for the initial
state, whereas the time-of-flight expansion is ballistic. The
initial velocity distribution is given by the TF wave function
in the transverse direction and by the thermal distribution of
the phononic modes along the longitudinal direction.
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In Figs. 5(a)–5(c) we show the case of T = 20 nK, at times
t = 10,20,30 ms, in Figs. 5(d)–5(f) the case of T = 170 nK for
the same times. The latter is in the phase-fluctuating regime
and the contrast of the expectation value of the density is
visibly reduced. In particular, the density at the center varies
with time as

n(0,t) ≈ πnmax

2
F (lφ)

∫ lz

−lz

dz
(
1 − z2

/
l2
z

)
,

J 2
1

(
Mlρ

√
1 − z2

/
l2
zR/h̄t

)
, (64)

where

F (lφ) = π

√
2lφ

R
exp(−πR/2lφ)erfi(

√
πR/2lφ) (65)

is a measure of phase coherence around the ring.
For small lφ/R, F (lφ) behaves as F (lφ) ≈ 2lφ/R. For large

values of lφ/R, it saturates to F (lφ) = 2π . This behavior of
the overall scale of the interference directly reflects the phase
coherence of the BEC. The more coherent the system is, the
higher the interference contrast of the time-of-flight image.

At short times n(0,t) shows a linear behavior in time, when
time averaged over the fast oscillatory behavior:

n(0,t) ≈ πnmax

2
F (lφ)

h̄t lz

2MlρR
. (66)

At long times n(0,t) falls off as ∼ 1/t2:

n(0,t) ≈ πnmax

2
F (lφ)

(
MlρR

h̄t

)2 4lz

15
. (67)

By comparing Eqs. (66) and (67) we can see that the time
at which the center density is maximum scales as tmax ∼
R/[h̄/(lρM)]. The radius R is the distance traveled, and
h̄/(lρM) is the scale of the velocity distribution in radial
direction.

We note that the expansion of a repulsively interacting gas
should be faster than that of a noninteracting one, because the
potential energy of the initial state is transformed into kinetic
energy. The main observation, however, that a phase-coherent
sample would show constructive interference at the center of
the ring, whereas an incoherent sample would not, should still
apply. However, the increased atomic velocity would lead to
smaller fringe spacings making optical resolution of the narrow
central peak more difficult. For sufficiently small interactions
and for high enough optical resolution, this method could
nevertheless constitute a method to detect the phase-fluctuating
regime.

IV. CONCLUSIONS

We have studied the phase-fluctuating regime of conden-
sates in a ring-shaped trap. We first considered a simplified
box geometry in Sec. I, and calculated the properties of the
phase-correlation function. We then turned to a realistic ring
geometry in Sec. II. The main results are the estimates of the
Tφ in Eq. (49), and of Tc in Eq. (50). With these expressions,
one can determine whether the phase-fluctuating regime can
be reached, as shown in Fig. 4. We present a simple condition,
depending only on atom number and trap aspect ratio, that
guarantees avoidance of the phase fluctuating regime for all
temperature below Tc. We also discussed observing the regime
of phase fluctuations in time-of-flight images.
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