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Ultracold atoms in a cavity-mediated double-well system
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We study ground-state properties and dynamics of a dilute ultracold atomic gas in a double-well potential.
The Gaussian barrier separating the two wells derives from the interaction between the atoms and a quantized
field of a driven Fabry-Perot cavity. Due to intrinsic atom-field nonlinearity, several interesting phenomena
arise which are the focus of this work. For the ground state, there is a critical pumping amplitude in which
the atoms self-organize and the intra-cavity-field amplitude drastically increases. In the dynamical analysis,
we show that the Josephson oscillations depend strongly on the atomic density and may be greatly suppressed
within certain regimes, reminiscent of self-trapping of Bose-Einstein condensates in double-well setups. This
pseudo-self-trapping effect is studied within a mean-field treatment valid for large atom numbers. For small
numbers of atoms, we consider the analogous many-body problem and demonstrate a collapse-revival structure
in the Josephson oscillations.
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I. INTRODUCTION

Outcomes of nonlinearity have extensive consequences in
various areas of physics leading to phenomena absent in
their linear counterparts. In quantum mechanics, it plays a
crucial role in fields such as nonlinear optics [1] and ultracold
atomic gases [2]. In ultracold atomic gases, or Bose-Einstein
condensates (BECs), the nonlinearity stems from interaction
among the atoms, and causes effects such as insulating states
of cold atoms in optical lattices [3], soliton and vortex
formation [4], collapse-revivals of system evolution [5], or
self-trapping of atoms in optical lattices or double-well (DW)
systems [6]. Moreover, the inherent phase coherence of the
BEC wave function has made it a good candidate for realizing
analogs of the Josephson effect appearing across the bulk of
two attached superconductors [7]. By placing the condensate
in a DW potential, the weak tunneling through the center
barrier brings about oscillations of the BEC between the two
wells mimicking Josephson oscillation in superconductors [8].
Nonlinearity in the BEC DW system induces self-trapping
and collapse-revivals in the Josephson current. Self-trapping
emerges for large nonlinearity and large imbalance of atoms
between the two wells and manifests itself as blocking of the
Josephson oscillations. Collapse revivals characterize deaths
and rebirths of the oscillations and become important in the
quantum regime where fluctuations around the mean-field
condensate order parameter become relevant.

In recent years, nonlinearity has turned out to be an essential
ingredient in two different but highly linked matter-light
quantum systems: optomechanical cavities [9] and BEC-cavity
setups [10,11]. Here we focus on the second type in which
pioneering experiments have demonstrated the square-root
dependence on the number of atoms �Rabi ∼ √

N in the
vacuum Rabi splitting [10]. Since then, most interest, both
theoretical [12] and experimental [11,13], has indeed been
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paid to the intrinsic nonlinearity within the system manifested,
for example, by optical bistability. In these systems, the cavity
field acts as an effective potential for the atoms, but the atoms,
in turn, induce a shift in the index of refraction altering
the cavity field. As the field adjusts accordingly, the field
causes a back action on the atoms, resulting in the nonlinear
atom-field interplay. Apart from studies of bistability, research
has considered also self-organization of ultracold atoms in
optical resonators, either in setups of pumped cavities [14,15]
or pumped atoms [16], as well as most recently simulation of
the Dicke quantum phase transition [17].

In this paper, we focus on different outcomes of the atom-
field nonlinearity compared to earlier works on optical bistabil-
ity. That is, we are not mainly interested in multiple solutions
of the equations of motion, but instead direct our attention to
self-organization, self-trapping, as well as collapse-revivals in
a cavity-mediated DW system. The appearance of additional
solutions in nonlinear, in contrast to linear, systems is a quite
general property. The present work therefore aims at more
specific outcomes of atom-field nonlinearity. We notice that
BEC DW systems coupled to cavity fields have been discussed
previously [18,19], but those works did not analyze the
situation in which the cavity field, and thereby the nonlinearity,
drives the Josephson oscillations. Here, self-organization and
self-trapping are analyzed in the mean-field regime, and our
work goes beyond the two-mode approximations commonly
utilized in DW analysis. We especially show, as for the BEC
DW, that the atomic density affects the strength of nonlinearity,
and thereby there is a critical atomic density at which an effec-
tive self-trapping behavior appears. Self-organization emerges
when the pump amplitude exceeds a critical value. At the
same instant, the intra-cavity-field amplitude greatly increases
similarly to the pump threshold in the theory of laser. Within
the mean-field approach, we also demonstrate how the system
exhibits bistability as a result of nonlinearity. Collapse-revival
structures derive from quantum fluctuations, and to tackle such
effects we consider an effective two-mode many-body model
for the system which indeed predicts such phenomena. We also
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point out that the system setup automatically allows quantum
nondemolition measurements of the atomic dynamics via the
detection of the output cavity field.

II. JOSEPHSON OSCILLATIONS AND
THE MODEL SYSTEM

Before describing the system of the present work, we
briefly summarize the DW system in order to get a deeper
understanding of the dynamics analyzed later on in the paper.

In the most simple situation, two wave functions ψL(x) and
ψR(x) are coupled with some strength J . In the symmetric
situation, the ground state and the excited state can be written
as the symmetric and antisymmetric solutions

�0(x) = 1√
N

[ψL(x) + ψR(x)],

(1)

�1(x) = 1√
N

[ψL(x) − ψR(x)],

where N is the proper normalization coefficient. In DW sys-
tems, J represents the tunneling coefficient and ψL,R(x) are the
normalized left well and right well wave functions as depicted
in Fig. 1. In general, we can express the time-dependent
solution �(x,t) = φL(t)ψL(x) + φR(t)ψR(x) leading to a set
of two first-order coupled equations for φL(t) and φR(t). The
corresponding Hamiltonian is

ĤRabi =
[

EL −J

−J ER

]
, (2)

with EL,R the onsite energies of the left and right wells,
and J the tunneling strength. Thus, in the symmetric well,
the detuning δ = EL − ER vanishes. The Rabi frequency,
characterizing the Josephson oscillations, is given by �Rabi =
2
√

J 2 + δ2/h̄, which for the resonant well equals 2J/h̄.
Nonzero detunings imply an increased Josephson period, as
well as causing the amplitude of the inversion

Z ≡ |φR(t)|2 − |φL(t)|2
N

= 1 − 8J 2

δ2 + 4J 2
sin2(�Rabit) (3)

E
R

x

E
L

V(x)

ψ
L
(x) ψ

R
(x)

FIG. 1. Schematic picture of the traditional DW setup. In the
symmetric DW, the two onsite energies EL and ER are equal. The left
and right solutions are marked by ψL(x) and ψR(x), respectively.

to decrease from oscillating between −1 and 1 as in the case of
zero detuning. In deriving (2), we have assumedZ(t = 0) = 1,
i.e., all atoms initially in the right well.

A. Cavity-mediated double-well for cold atoms

In both BEC DW experiments of Ref. [20], the potential
barrier separating the left and right wells is obtained by
dispersive dipole interaction between the atoms and an external
laser beam. The laser has a transverse Gaussian mode shape,
whose width and amplitude are easily adjustable. The large
laser intensity makes the light field approximately classical.
By confining atoms in a resonator, the effective atom-field
coupling can be greatly enhanced and thereby the dynamics of
single atoms can be affected by the field even at average photon
numbers less than unity [21]. For such low intensities, the
light field sustained in the resonator must be treated quantum
mechanically.

As we are dealing with a coupled bipartite quantum system,
the state of the atoms will influence the state of the field and
vice versa. Physically, the atomic-matter wave brings out a
change in the index of refraction, and as the field adjusts
to the new index of refraction, its change will in return
affect the atoms leading to an intrinsic nonlinear atom-field
interaction. For the present system, it implies that the effective
DW potential directly depends on the atomic state.

The system we have in mind is illustrated in Fig. 2. A
harmonic potential traps the atoms in all three dimensions, but
the trap frequencies in the y and z directions are assumed large
enough so that the atoms remain in their lowest vibrational
states in these directions, and we consequently consider motion
restricted to the x direction. Instead of an external laser,
we consider the field of a cavity to constitute the tunneling
barrier. To this end we use a Fabry-Perot cavity with its
longitudinal axis along the y direction. As for a traditional
laser beam, the Fabry-Perot cavity possesses TEM00 modes
having transverse Gaussian profiles. The cavity has a large
enough Q value to guarantee well-separated mode frequencies.
Nonetheless, cavity losses κ are taken into account in all
our derivations. Only a single cavity mode is quasiresonant
with the atomic transition under consideration, and all other
modes are therefore ignored. The cavity is externally driven
with a classical field having amplitude η, and hence, without
atoms present the cavity field would reach a steady state

x

y

FIG. 2. (Color online) System setup. An anisotropic harmonic
trap confines the atoms such that the motion can be considered quasi-
one-dimensional along the x direction. The field of a Fabry-Perot
cavity, aligned along the y direction, intersects the atomic trap. The
TEM00-mode shape of the cavity induces an effective Gaussian barrier
separating the harmonic trap into two wells. Furthermore, the cavity
is laser-driven through one end mirror with an amplitude η. Cavity
losses, with decay rate κ , are marked by a curly arrow.

033606-2



ULTRACOLD ATOMS IN A CAVITY-MEDIATED DOUBLE- . . . PHYSICAL REVIEW A 82, 033606 (2010)

being coherent with an amplitude determined by the balancing
of losses κ and pumping η. The cavity is taken to couple
dispersively to the atoms, and the excited atomic state can
hence be eliminated adiabatically [22]. In a frame rotating
with the pump frequency ωp and assuming ultracold atoms,
the Hamiltonian reads [15]

Ĥaf = −h̄	câ
†â − ih̄η(â − â†) +

∫
dx�̂†(x)

[
− h̄2

2m

∂2

∂x2

+ mω2x2

2
+ U (x)â†â + gN

2
|�̂(x)|2

]
�̂(x), (4)

where 	c = ωp − ωc is the pump-cavity detuning, â† (â)
the photon creation (annihilation) operator obeying standard
boson commutation rules, ω the trap frequency, and

U (x) = h̄U0 e
− x2

	2
x (5)

is the effective dispersive atom-field coupling with U0 =
λ2/	a , where λ is the single-photon atom-field coupling,
	a = ωp − ωa the pump-atom detuning, and 	x is the mode
waist.

Note that to achieve a DW structure, we restrict the analysis
to positive detunings, 	a > 0, but interesting effects can also
appear for negative detunings when the cavity field induces
a potential “dimple” on the atoms and consequently raises
the local phase-space density. In this work, choosing U (x)
centered around x = 0 we consider the symmetric DW, and
consequently direct-current Josephson effect. The alternating-
current Josephson effect is assessed by spatially shifting either
the cavity or the trapping potential. The last nonlinear term on
the right-hand side of Eq. (4) stems from atom-atom collisions
and is generally proportional to the atomic density and the
s-wave scattering length.

After introducing field losses κ , the corresponding
Heisenberg-Langevin equations become

d

dt
â = −(κ − i	c)â + η − iN

∫
|�̂(x)|2U (x) dx â

+
√

2κâin(t),
(6)

d

dt
�̂(x) =

[
− h̄2

2m

∂2

∂x2
+ mω2x2

2
+ U (x)â†â

+ gN |�̂(x)|2
]

�̂(x).

Here, âin(t) is the Langevin field input noise source being
δ correlated; 〈âin(t)âin(t ′)†〉 = δ(t − t ′), and 〈â†

in(t)âin(t ′)〉 =
〈âin(t)〉 = 0 otherwise [23]. In the present work, the influence
of quantum noise will be assumed small and hereafter
neglected. The effects of such fluctuations in a BEC cavity
system similar to the one we study have been analyzed in
Ref. [24].

In typical experiments, the characteristic time scales for
the field and atoms are substantially different [10]. The field
evolution can be assumed to follow the dynamics of the atoms,
and it is therefore justified to consider the steady-state solutions
of the field. Explicitly, the steady state for the photon number

n̂ = â†â is given by

n̂ss = η2

κ2 + (	c − NŶ )2
, (7)

with the operator Ŷ = ∫ |�̂(x)|2U (x) dx. This equation makes
clear the modification of the detuning 	c induced by the
atoms, i.e., the resonance condition 	c = 0 is shifted to
	c = NŶ . Since the atomic field �̂(x) is coupled to the
atom number n̂, it follows that so is Ŷ , and then Eq. (7) may
render multiple solutions of the photon number. This same
nonlinear effect give rise to quantum optical bistability [12,13],
which can furthermore be shown to be analogous to bistable
optomechanics in certain regimes [11].

The intrinsic atom-field nonlinearity is rather different from
the nonlinearity originating from atom-atom interactions [25].
The number of photons enters in the effective system potential,
and since it depends on the matter state, the effective potential
can be seen as a dynamical variable. In the BEC DW situation,
nonlinearity enters in the atom-atom interaction term, and
within the Thomas-Fermi regime (where kinetic energies can
be neglected) it can be viewed as changing the chemical
potentials in the two wells. Roughly speaking, as an outcome
in the BEC DW, the effective shift due to nonlinearity enters
in the detuning δ; while in the cavity DW, it modifies the field
strength n̂ss and thereby the tunneling coefficient J .

Throughout, we try to use realistic experimental parame-
ters. More explicitly, we consider the cavity decay rate κ from
the experiment of the Esslinger group [13] and express other
rates in terms of this. Length scales as well as atom numbers
are taken to be experimentally realistic.

III. STATIONARY SOLUTIONS

In this and the next section, we discuss the system at a
mean-field level, i.e., replacing the atomic operator �̂(x) by
its mean. The resulting Gross-Pitaevskii equation [26]

i
d

dt
�(x) =

[
− h̄2

2m

∂2

∂x2
+ mω2x2

2
+ nssU (x)

+ gN |�(x)|2
]

�(x) (8)

for the order parameter can be solved for the minimum energy
solution by propagating it in imaginary time and updating the
cavity photon number

nss = η2

κ2 + (	c − NY )2
(9)

during the propagation so that it corresponds to the instanta-
neous steady-state photon number. Here Y is the mean-field
counterpart of the operator Ŷ . The corresponding energy
functional is given by [25]

E[�]

N
=

∫ [(
h̄2

2m

) ∣∣∣∣∂�(x)

∂x

∣∣∣∣
2

+mω2x2

2
|�(x)|2 + gN

2
|�(x)|4

]
dx

− η2

κN
arctan

(
	c − N

∫
U (x)|�(x)|dx

κ

)
. (10)
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In this paper we are not interested in the interaction effects
due to atomic collisions, but wish to focus on the coupling
between the cavity mode and the atoms. Therefore, we chose
g = 0 which can be achieved via Feshbach resonances [27] or
is approximately valid in a sufficiently dilute gas.

While a direct solution of the Gross-Pitaevskii equation is
relatively easily found numerically, we found that in many
instances most of the equilibrium physics (and some of the
dynamics as well) can also be captured by a more transparent
variational ansatz. Our ansatz is a Gaussian ansatz which can
have two peaks, namely,

ψ(x) = C
[
e
− (x+x0)2

2σ2 + e
− (x−x0)2

2σ2
]
, (11)

where the prefactor is set by the normalization
∫

dx|ψ(x)|2 =
1 and is given by

C = 1

π1/4
√

2σ 2
{
1 + exp

[ − (
x0
σ

)2]} . (12)

Substituting this ansatz into the energy functional gives us an
energy functional E(σ,x0) which can be minimized to find the
optimal solution. All integrals are sufficiently easy to solve
analytically, but the resulting expressions are too long to be
given here explicitly.

The steady-state solutions naturally separate into two
different regimes: one at the low values of the pumping
strength and the other at large pumping strengths. When the
pumping strength is small, the atomic order parameter is
nearly a Gaussian centered around the origin. In this limit,
the atomic density overlaps strongly with the Gaussian cavity
mode function, and if the coupling strength U0 is quite large,
Y can be substantial. Then the steady-state photon number can
be suppressed by the NY term appearing in the denominator
of Eq. (9) if |NY | � 	c. As the pumping is increased, the
photon number increases at first roughly ∝ η2 followed by a
pronounced jump in the cavity photon number at some critical
pump strength.

This jump coincides with a qualitative change in the atomic
order parameter as the atomic density splits into two separate
peaks and develops a minimum at the origin. This transition
is signaled by a rapid increase in the cavity photon number,
since the overlap of the atomic density and the cavity mode
function is rapidly reduced so that the NY contribution in the
steady-state photon number becomes less important. At the
same time, the effective potential experienced by the atoms
becomes a stronger double-well potential, which pushes the
atomic density peaks farther apart and lowers the overlap
with the cavity mode function even more. In a way, as one
increases the pumping, one can move from a regime where
coupling between the atomic order parameter and cavity field
is strong into a regime where it is weak and the cavity field
mainly acts as an independent optical potential acting on the
atoms.

This drastic change in the atomic density of the ground
state is an example of self-organization [16,28]. If the atoms
are externally pumped, rather than the cavity field, the atoms
act as a scatter which transfers photons from the pump into
the resonator. Thereby, there is a direct resemblance between
pumping of the atoms and pumping of the cavity field. The

corresponding phenomenon for pumped atomic systems has
been studied in great detail, and it was found that the transition
is described by a second-order phase transition [29]. The same
behavior reminds us of threshold pumping of lasers. Pumping
of the laser must exceed a critical value in order for lasing
to set off. Again, such a critical structure has been identified
as a second-order phase transition [30]. Moreover, it is worth
pointing out that in a very recent experiment, the same kind of
transition was demonstrated for a driven lossy cavity in circuit
QED [31].

The critical pump strength which separates these two
self-organized regimes occurs roughly when the barrier height
becomes larger than the energy scale of the background
harmonic oscillator i.e., when nssh̄U0 ∼ h̄ω. The resonance in
the photon number occurs when 	c = NY . For the Gaussian
ground state of the noninteracting system (which is accurate at
small pump strengths), this implies NU0/	c = √

1 + σ/	2
x ,

where σ = √
h̄/mω is the width of the noninteracting (Gaus-

sian) atomic wave function. In this paper we mostly use
	x = σ/2.

In Fig. 3, we show an example of the behavior of
the steady-state photon number as a function of pumping,
together with a few examples of the associated atomic order
parameters as obtained from imaginary time propagation of the
Gross-Pitaevskii equation. In this figure, we also compare
the double-peaked Gaussian ansatz with the results from
the Gross-Pitaevskii equation and find the agreement to be
very good. Using the Gaussian ansatz we can, depending
on parameters, find two stationary solutions corresponding
to minima of the energy functional. The upper branch is
the global minimum, while the lower one is locally stable.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

η/κ

n ss

−10 0 10

ψ

η=0.18

−10 0 10

ψ

η=0.58

FIG. 3. The mean-field photon number as a function of η/κ using
a double-peaked Gaussian ansatz (dashed line) and Gross-Pitaevskii
approach (solid line). With some parameters, the Gaussian ansatz
predicts an existence of two stationary solutions corresponding to
local minima. Both of these solutions are indicated in the figure.
Insets show the wave-function amplitude |�(x,t)| using the Gross-
Pitaevskii equation at both smaller and higher pumping strengths. We
used parameters N = 10 000, κ = 2π × 1.3 MHz, 	c = κ , U0 =
κ/100, 	x = 0.5

√
h̄/mω, ω = κ/500, and m = 87u.
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FIG. 4. nss using a double-peaked Gaussian ansatz (dashed line)
and Gross-Pitaevskii approach (solid line). Insets show the wave-
function amplitude |�(x,t)| using the Gross-Pitaevskii equation at
both smaller and higher pumping strengths. We used parameters N =
10 000, κ = 2π × 1.3 MHz, 	c = κ , U0 = √

5κ/N ≈ 0.000224 κ ,
	x = 0.5

√
h̄/mω, ω = κ/500, and m = 87u.

Our Gross-Pitaevskii approach only finds the global min-
imum, and in order to find the other solution, we would
have to impose additional constraints on the imaginary time
propagation.

In agreement with earlier works on atom-light bistability
[12,13], the present model supports two or one stable values
of nss. In addition to these solutions, there exists the “middle”
branch of the hysteresis curve representing an unstable solution
corresponding to a local energetic maximum. We have not
plotted this branch in Fig. 3.

The above discussion is based on a fairly high value
(U0 = κ/100) of atom-field coupling. For a lower value of
U0 the behavior can be quite different. As an example, we
show in Fig. 4 results using the double-peaked Gaussian ansatz
and the Gross-Pitaevskii approach with otherwise the same
parameters, but a much smaller coupling U0 ≈ 0.000224κ .
We chose this value because then 	c − NY = 0 and the
steady-state photon number is on resonance for the ideal gas
Gaussian ground state, when other parameters are kept the
same as in Fig. 3. In this case, the large overlap between
the atomic order parameter and the cavity mode function
enhances the steady-state photon number. This is in contrast to
the behavior at larger couplings, where similar large overlap
implied strong suppression of the cavity photon number. In
this case, we can find no evidence of bistability, and the
double-peaked atomic order parameter appears smoothly as
the pumping strength is increased. At the same time the overlap
between the cavity mode function and the atomic density
decreases smoothly.

IV. MEAN-FIELD DYNAMICS

In this section we give an overview of the typical features
of the system dynamics at the mean-field level. Precise details
naturally vary based on the parameters used, but the basic

100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

n ss

(b)

100 200 300 400 500 600 700 800 900
−1

−0.5

0

0.5

1

t [units of 1/ω]

t [units of 1/ω]

Z
(t

)

(a)

|ψ
|

t=0.0

|ψ
|

t=400.0

|ψ
|

t=1000.0

FIG. 5. Dynamics of the atomic order parameter when the initial
state was localized to the right of the cavity mode barrier. Figure (a)
shows the inversion Z(t) together with few snapshots of the absolute
value |�(x,t)| of the atomic order parameter. Plot (b) displays
the photon number nss. We used parameters N = 10 000, κ =
2π × 1.3 MHz, η = 25 κ , 	c = κ , U0 = κ/200, 	x = 0.5

√
h̄/mω,

ω = κ/500, and m = 87u.

structures and the physical picture behind them is robust with
respect to changes in the parameters.

We can construct wave packets which are localized either
left or right of the barrier by finding the symmetric [ψsym(x)]
and antisymmetric solutions [ψasym(x)] to the Gross-Pitaevskii
equation. Using these solutions, the orthogonal solutions
localized either to the left or right are given by

ψL(x) = [ψsym(x) − ψasym(x)]/
√

2 (13)

and

ψR(x) = [ψsym(x) + ψasym(x)]/
√

2. (14)

In Fig. 5, we present an example of the dynamics for an
initial state which is localized to the right of the barrier.
Since the barrier height in this case is quite high, the overlap
between the mode function and the order parameter is small.
This remains true even in the course of the dynamics, and
the cavity photon number has only weak time dependence.
The atomic order parameter then exhibits Rabi-flopping
from the right localized state to the left localized state
with a period which becomes longer as the barrier gets
higher and/or the cavity mode function wider. Plotted is the
inversion

Z(t) = 1 − 2
∫ 0

−∞
|�(x,t)|2 dx, (15)

and the photon number (9). For the utilized parameters,
t = 100 in dimensionless variables corresponds to
approximately 6 ms.

In Fig. 6, we show another example of the dynamics for
an initial state which is localized to the right of the barrier,
but with a smaller U0 and larger 	c. In this case, the cavity
photon number does have pronounced time dependence, and
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FIG. 6. Dynamics of the atomic order parameter when the initial
state was a Gaussian localized at x0 = 2 to the right of the cavity mode
barrier and having a width σ = 0.8. Figure (a) shows the inversion
Z(t) together with few snapshots of the absolute value |�(x,t)|
of the atomic order parameter, while (b) gives the photon number
nss. We used parameters N = 10 000, κ = 2π × 1.3 MHz, η =
40 κ , 	c = 3κ , U0 = 	c

√
5/N , 	x = 0.5

√
h̄/mω, ω = κ/500, and

m = 87u.

the system cannot be described as a simple Rabi-flopping
anymore. The reason for the dramatically different dynamics
is that with the parameters used in Fig. 6, the initial barrier
height is quite low and proportional to 1/(κ2 + 	2

c) since the
overlap between the atomic density and the cavity mode is low.
This low barrier height enables the wave function to populate
also the barrier region to a greater extent, which increases
the overlap with the cavity mode. However, such increase
lowers the (	c − NY )2 term in the denominator of Eq. (9) and
causes the photon number to increase toward its maximum
value ∝ 1/κ2. This increase in turn increases the barrier height,
which tends to drive the atomic order parameter away from the
region close to the origin. A final result of this complicated
interplay is a pronounced correlated dynamics of the atoms
and the cavity field. The cavity field reaches a maximum when
atoms are, on the average, more closely located to the center
and is a minimum when the order parameter has only a small
overlap with the cavity mode.

It should be noticed that while the results in Fig. 5 can
be analyzed using a two-mode description [6], the results
presented in Fig. 6 cannot be analyzed in that way and a
multimode description is essential. Since the field amplitude
is proportional to the photon number, detection of the output-
cavity-field intensity would directly reveal some properties of
the atom dynamics in the cavity. Moreover, such recording of
the output cavity field is nondestructive. The idea of utilizing
dispersive cavity interaction for nondemolition measurements
has been discussed in terms of BEC DW systems [19] and for
cold atoms trapped in optical lattices [32]. These references,
however, do not consider the cavity field as supplying an
effective potential and thus the systems studied are very
different from the present system.
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FIG. 7. Dynamics of the atomic order parameter when the initial
state was an excited state with a Gaussian profile localized to the
right of the cavity mode barrier. Figure (a) shows the inversion
Z(t) together with a few snapshots of the absolute value |�(x,t)|
of the atomic order parameter. Within the time period of this plot, the
atoms are localized within the right well, i.e., pseudo-self-trapped.
(b) displays the photon number nss. We used parameters N =
10 000, κ = 2π × 1.3 MHz, η = 100κ , 	c = κ , U0 = κ/200, 	x =
0.5

√
h̄/mω, ω = κ/500, and m = 87u.

When the system was prepared in a localized state whose
energy is close to the ground state of the double-well potential,
we found a simple Rabi flopping behavior in Fig. 5. In Fig. 7,
we demonstrate how the state can become effectively localized
to the one side of the double-well system when it is prepared
in a localized excited state. Here we prepared the atoms in
a displaced Gaussian state and let the system evolve with
somewhat higher cavity pumping strength than in Fig. 5. As
the atoms approach the barrier region, the photon numbers
rise, make the barrier higher, and tend to push the atoms back.
In this case, the atoms effectively stay localized in one well,
and the cavity photon number has a regular variation which
reflects the average position of the atoms in a DW system. In
this respect, the localization is reminiscent of self-trapping. In
regular BEC DW systems, increasing the atom number implies
enhanced nonlinearity and a transition between delocalized
to localized states. This pseudo-self-trapping is not perfect;
the tunneling rate becomes very small but it is still finite,
while in BEC DW systems it is rather the detuning that is
affected by the nonlinearity and therefore the oscillations are
never perfect in this case. Note, however, that within typical
experimental time scales, one would expect well-established
localization.

In finding the steady-state solution to the Gross-Pitaevskii
equation using the imaginary time propagation, we converged
to the state corresponding to the upper branch of the Gaussian
ansatz and ignored the other stationary state. However, even if
this state is not the lowest energy state, it can play an important
role in the dynamical behavior of the atoms. We illustrate this
with few examples in Figs. 8 and 9. In Fig. 8 we start from
the steady state at small pumping strengths and then ramp it
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FIG. 8. The pump strength (a), mean-field photon number (b),
and snapshots (insets) of the atomic order parameter |�(x,t)| as a
function of time when the pump strength is swept from low to high
values. After a certain pump strength, the barrier separating the left
and right wells becomes sufficiently large to split the atom density and
simultaneously the photon number makes a drastic change. We used
parameters N = 10 000, κ = 2π × 1.3 MHz, 	c = κ , U0 = κ/200,
	x = 0.5

√
h̄/mω, ω = κ/500, and m = 87u.

up, while in Fig. 9 we do the reverse. Comparing the results
indicates a hysteresis type of behavior.

When the pumping field is ramped up, at first very little
happens either for the atomic order parameter or the cavity
field. There is a broad range of pumping strength above
the critical pumping strength for the transition to a double-
peaked atomic density distribution where the system is still
dynamically, but not thermodynamically, stable. Only when
the pumping strength exceeds some higher threshold does
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FIG. 9. Same as Fig. 8, but when the pump strength is swept from
high to low values. In comparison to Fig. 8, the transition here is much
smoother. .

the system become dynamically unstable. When this happens,
the atomic order parameter quickly splits, the cavity photon
number is suddenly increased, and the energy of the atoms is
increased considerably in this abrupt process.

This behavior is easy to understand, since here we start
with a single-peaked atomic order parameter which has a
substantial overlap with the cavity mode function. This means
that the photon numbers, and hence the barrier height, are
strongly suppressed by the NY term in the denominator. Only
once the pumping strength becomes so strong that the barrier
height is increased sufficiently to split the wave function,
does the picture change. Then the overlap parameter Y is
quickly reduced and the photon number (and the barrier height)
increases. This in turn splits the atomic order parameter even
more and results in the abrupt dynamics we observe.

On the other hand, when the field is ramped down (Fig. 9)
the initial order parameter has only small overlap with
the cavity mode function. Reducing the pumping strength
will then reduce the barrier height smoothly allowing the
order parameter to contracts toward the single peaked order
parameter more smoothly. Eventually the overlap between
the order parameter and the cavity mode becomes so strong
that the NY term in the denominator of Eq. (9) reduces the
photon number more strongly than the simple reduction of the
pumping strength would suggest.

Up to now we considered an atom number N = 100 which
is of the correct order of magnitude with present experiments
[10]. The thermodynamical limit is given by letting N and
the effective mode volume V tend to infinity while keeping
the density ρ = N/V fixed. In the driven cavity QED system,
one has U0 ∝ V −1 and η ∝ √

V [33], and it follows that the
effective potential nssU (x) depends solely on ρ, not N and
V independently. Consequently, the same characteristics are
obtainable for other atom numbers N by suitably choosing η

and U0.

V. DYNAMICS BEYOND MEAN FIELD

Since it is known that often the relevant physics can be
captured by a two-mode model, we consider such an approach
in this section which in particular allows us to explore physics
beyond the mean field. Especially for deep enough DWs, it
is legitimate to assume that the ground state can be written
as in Eq. (1), i.e., �0(x) = 1√

2
[ψL(x) + ψR(x)] with ψL,R(x)

localized states in the left and right wells. As in the previous
sections, the left and right functions ψL,R(x) are taken to be
Gaussian in form. We pick the center of these to coincide with
the minima of the effective potential

Veff(x) = mω2x2

2
+ U (x)nss, (16)

giving

x0 = 	x

√
ln

(
2h̄U0nss

	2
xmω2

)
. (17)

The width, on the other hand, is obtained from minimizing the
corresponding energy functional. In principle, x0 could be kept
a variational parameter, but to simplify the estimations of the
parameters of our two-mode model, we impose this additional
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assumption. Relaxing this constraint is straightforward but
is not expected to change our results in an important way,
especially when the barrier height is large compared to the
energy scale of the harmonic trap.

Thus, the width σ is found by minimizing the system’s
energy functional. This results in a set of coupled nonlinear
equations for σ and nss which must be solved self-consistently.
In particular, multiple solutions of the equations may ex-
ist in certain parameter regimes. Introducing the overlap
integrals

E0 = − h̄2

2m

∫
ψ∗

i (x)

(
d2

dx2

)
ψi(x) dx,

E1 = − h̄2

2m

∫
ψ∗

L(x)

(
d2

dx2

)
ψR(x) dx,

J0 =
∫

|ψi(x)|2e−x2/	2
x dx,

(18)
J1 =

∫
ψ∗

L(x)ψR(x)e−x2/	2
x dx,

S0 = mω2

2

∫
|ψi(x)|2x2 dx,

S1 = mω2

2

∫
ψ∗

L(x)ψR(x)x2 dx,

the ground-state energy within the present ansatz takes the
form [25]

E

N
= E0 + E1 + S0 + S1

− η2

κN
arctan

(
	c − U0N (J0 + J1)

κ

)
. (19)

We artificially impose orthogonality of the left and right
well wave functions [

∫
ψ∗

L(x)ψR(x) dx = 0] in order to avoid
unphysical contributions, and then we get

E0 = h̄2

4mσ 2
, E1 = h̄2

4mσ 2
e
− x2

0
σ2 ,

J0 = 	x√
	2

x + σ 2
e
− x2

0
	2

x+σ2 , J1 = 	x√
	2

x + σ 2
e
− x2

0
σ2 , (20)

S0 = mω2

2

(
x2

0 + σ 2

2

)
, S1 = mω2

2

σ 2

2
e
− x2

0
σ2 .

As pointed out, in order to analyze effects beyond mean
field, we assume the system parameters to be such that we
can impose a two-mode approximation. Thus, we expand
the atomic operators as �̂(x) = b̂LψL(x) + b̂RψR(x), where

b̂L,R ( b̂
†
L,R) annihilates (creates) an atom in well L,R, and

ψL,R(x) are determined as above. The two functions ψL,R(x)
are operator valued, since they depend on the cavity-field
amplitude. As an outcome, in deriving equations of motion
or an effective Hamiltonian for the atoms when the cavity field
is eliminated, one has to take ordering between noncommuting
operators into account [15]. To do so, we will assume J0 � J1

and leave out the J1 cross term in Ŷ for the steady-state photon
number of Eq. (7). For the present potential U (x), this is not
always justified, but nevertheless it holds in large-parameter
regimes. In this work, we will not present the full derivation

of the effective Hamiltonian, but the reader can refer to
Ref. [15] for details. To order 1/N2, we find a second quantized
Hamiltonian for the atoms

ĤBH = (E0 + S0)N̂ + f (N̂) − t(N̂)B̂, (21)

where

N̂ = n̂R + n̂L = b̂
†
R b̂R + b̂

†
L b̂L,

B̂ = b̂
†
R b̂L + b̂

†
L b̂R,

(22)

t(N̂) = −E1 − S1 − h̄η2U0J1

κ2 + (	c − U0J0N̂ )2
,

f (N̂ ) = h̄η2

κ
arctan

(
	c − U0J0N̂

κ

)
,

and the coefficients are given in Eq. (20).
Transforming the operators as[

b̂+
b̂−

]
= 1√

2

[
1 1

1 −1

] [
b̂L

b̂R

]
(23)

the Hamiltonian is diagonalized

ĤBH = (E0 + S0)N̂ + f (N̂) − t(N̂)(n̂+ − n̂−), (24)

with the new number operators n̂+ = b̂
†
+ b̂+ and n̂− = b̂

†
− b̂−.

For given atom number N , there are N + 1 equidistant
energy levels separated by t(N ). In this case, we recover
perfect Josephson oscillations with an oscillation frequency
�Rabi(N ) = 2|t(N )|/h̄. For atomic states with an uncertain
number of atoms, the various N ’s will induce a collapse in the
Josephson oscillations as the contributing terms move out of
phase. Such a collapse was discussed for the regular BEC DW
in Ref. [5], where it derives from the atom-atom interaction
term. For moderate or large atom numbers, it is appropriate to
assume an initial coherent atomic state

|ψ〉 = e−N̄/2
∑

n

N̄n/2

√
n!

|n,0〉. (25)

Here, N̄ = 〈N̂〉 is the average number of atoms and the state
|n,m〉 gives the number n of atoms in the left well and m atoms
in the right well. For N̄ → ∞, the relative uncertainty δN =
	N/N̄ , where 	N = 〈(N̂ − N̄ )2〉, goes to zero representing
the “classical” (mean-field) limit. Depending on the particular
N dependence of t(N ), the different Josephson oscillation
terms may return in phase causing the system to revive [5].
The revival time Tr can be estimated as the time it takes
for consecutive terms to build up a 2π phase difference
Tr [ωJ (N̄ + 1) − ωJ (N̄)] = 2π giving

Tr ≈ πh̄

(
∂t(N )

∂N

∣∣∣∣
N=N̄

)−1

. (26)

The N dependence of t(N ) is supposedly weak in the large
atom limit implying Tr → ∞ as N → ∞, as expected in
the classical limit. Collapse-revival patterns are a widespread
phenomena in physics and have especially been studied in the
vibrational dynamics of molecules [34] and in cavity QED
[33], as direct proofs of quantization of either the molecular
vibrations or the electromagnetic field. In the BEC DW system,
the collapse-revivals derive from the squared atom number
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FIG. 10. Time evolution of the inversion Z(t) for an initial
coherent state in the right well with N̄ = 50 (a) and N̄ = 100 (b).
The common parameters are κ = 2π × 1.3 MHz, 	c = κ , η = 2κ ,
U0 = κ/5, 	x ≈ 0.1 µm, and ω = κ/500.

operators, n̂2
L,R , while in standard cavity QED it is typically

an outcome of a square-root dependence of photon numbers
in the Jaynes-Cummings model [35],

√
n̂. Here, the atom

number dependence of t(N ) is presumably more complex,
and one thereby expects a less pronounced collapse-revival
structure.

In Fig. 10, we display the time evolution of the many-body
inversion

Zmb = 〈n̂R〉 − 〈n̂R〉
N̄

(27)

for an initial coherent atomic state in the right well with
N̄ = 50 (a) and N̄ = 100 (b). At short times, t < 0.3, a few
Josephson oscillations persist before the collapse. The collapse
time is approximately the same for both examples, which is
a general property [33]. The first collapse period lasts until
t ∼ 2.7 for N̄ = 50 and until t ∼ 3.2 for N̄ = 100. The N̄

dependence in the revival times is as well a general feature as
argued above; large N̄ values imply long revival times [33].
In plot (a), a sequence of collapse-revivals appears; however,
they are less clear as time progresses. For t plot (b), on the
other hand, only a single collapse period is visible. When
the time spans of revivals begin to overlap, which starts to
happen after roughly 1 ms in (a) and already after the first
revival in (b), super-revivals may occur due to higher order
interferences [36]. Slight signatures of super-revivals can be
seen in (b) in the modulated oscillations after t ∼ 10. We note
that for the present results, the time spans are of the same
order as those for single Josephson oscillations in Fig. 10,
this derives from the much weaker pump amplitude η in these
examples giving a lower barrier between the two wells, i.e.,
shorter tunneling times.

As pointed out in the mean-field section, we have neglected
effects arising from atom-atom nonlinearities by letting g = 0.
The quadratic terms in atom numbers are known to render
collapse-revivals [5,34], and with both nonlinearities present
(atom-atom and atom-field interactions) one would see a

competition between the two mechanisms. In general, revivals
become less frequent, since they are only possible when both
effects simultaneously support revivals. We have verified these
conclusions numerically by including atom-atom interactions
into our calculations.

The analysis of this section relies on a static assumption,
i.e., the effective potential is considered independent of time.
The collapse-revival structure is solely an outcome of the
uncertainty of atom number and not of the instantaneous state
of the atoms. The full time-dependent many-body problem
is certainly interesting, but in this work we focus on general
interesting phenomena inherent in the atom-field nonlinearity.
Even though the results of these sections have been derived
within some assumptions, we believe that the general structure
survives also in more rigorous analyses. Such approaches
would, for example, reveal how the steady-state photon
number nss = 〈n̂ss〉 evolves in time. Nevertheless, it is believed
that nss encodes the properties of the atomic evolutions
exactly as it did in the previous section studying mean-field
dynamics. That is, one would expectedly find a similar
collapse-revival pattern in nss as the one found in the atomic
inversion.

It is important to note that the collapse-revival phenomenon
is a pure quantum effect. By adding fluctuations around the
means �(x) of the previous two sections, one would typically
encounter a collapse in the oscillations. However, the revivals
depend strongly on the particular N dependence of t(N ), and
therefore random fluctuations around �(x) would not predict
revivals. In other words, capturing the revival structure from
some perturbed mean-field approach is only possible if one
could carefully choose the perturbing fluctuations.

VI. CONCLUSIONS

Nonlinear Josephson oscillations have been studied in a
DW system of ultracold bosonic atoms. Contrary to regular
nonlinearity, arising from atom-atom interaction in these types
of systems, the nonlinearity we considered derives from
intrinsic interaction between the atoms and a quantized cavity
field. In particular, we demonstrated the appearance of pseudo-
self-trapping, self-organization, as well as collapse-revivals.
In other words, the present work shows that these phenomena
are rather general and not restricted to only certain kinds of
nonlinearities.

The system parameters were chosen in agreement with
current experiments, indicating that the phenomena should be
experimentally realizable. We furthermore showed or argued
that the output cavity field, proportional to nss, provides a
direct handle of the atomic dynamics. Since the output field
is regarded as losses, measurement of it is nondemolition by
nature. Hence, the various evolution regimes can be traced
down without standard destructive measurements such as
time-of-flight or fluorescence detection.
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