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Thermodynamics and coherence of a trapped dipolar Fermi gas
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We develop a mean-field treatment of a polarized trapped Fermi gas with dipole-dipole interactions.
Our approach is based on self-consistent semiclassical Hartree-Fock theory that accounts for direct and
exchange interactions. We discuss our procedure for numerically implementing the calculation. We study the
thermodynamic and the first- and second-order correlation properties of the system. We find that the system
entropy depends on the trap geometry, allowing the system to be cooled as the trap aspect ratio is increased,
and that exchange interactions cause the correlation functions to be anisotropic in the low-temperature regime.
We also find that many uniform gas thermodynamic predictions, for which direct interaction effects vanish,
are qualitatively unreliable for trapped systems, most notably for oblate traps. We develop a simplified Hartree
formalism that is applicable to anisotropic harmonic traps.
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I. INTRODUCTION

There has been phenomenal recent progress toward produc-
ing a quantum degenerate Fermi gas of polar molecules [1–3].
The long-range nature of the dipolar interaction and the strong
dipole moments of ground-state heteronuclear molecules have
opened the door to an exciting array of new physics [4–11].
Of particular interest is the superconducting regime of this
system, first considered in Ref. [12] and developed in [13–15].

Here we are concerned with a Hartree-Fock description
of the trapped normal system in the semiclassical approx-
imation. Such a formalism has been the workhorse theory
for computing thermodynamic properties in ultra-cold gases
with contact interactions; however, it is considerably more
difficult to evaluate in systems with long-range interactions.
We begin by briefly surveying previous work in this area.
Initial work for the zero-temperature case by Góral et al. [16]
used a Thomas-Fermi ansatz. In that approach an isotropic
momentum distribution was assumed, causing the exchange
(Fock) term to vanish; nevertheless the retention of the direct
(Hartree) interaction was observed to distort the system density
distribution from the aspect ratio of the trapping potential. A
variational treatment by Miyakawa et al. [17] extended the
Thomas-Fermi ansatz to allow for an ellipsoidal momentum
distribution and showed that exchange effects tended to
distort the momentum distribution of the system. Beyond
the variational approximation, Zhang and Yi [18] solved the
full semiclassical theory for the case of a cylindrical trap
by minimizing the energy function of the system using a
Monte Carlo method. Lin et al. [19] have presented a similar
formalism but in terms of a self-consistent calculation of
the phase-space distribution (Wigner function). We also note
analytical results by Chan et al. [20] developed for a Fermi-
liquid description of the dipolar Fermi gas (also see [4]) and
work in the zero-temperature regime on dynamic properties
such as collective modes and expansion dynamics [21–24]
and sound propagation [25]. There have also been some
studies using time-dependent Hartree-Fock theory for this
system [26,27].

For the finite-temperature regime, Endo et al. [28] have
developed a variational approach, formally valid in the
nondegenerate regime, which allowed them to assess the

effect of temperature on the position- and momentum-space
distortions. Zhang and Yi [29] have also presented results of
a full semiclassical Hartree-Fock calculation, which they have
used to explore the system deformation and stability.

In this paper we present the results of a fully self-consistent
Hartree-Fock treatment of the trapped gas similar to the
approach employed in Ref. [29]. As was revealed in [18], for
many system properties (particularly stability) this level of the-
ory provides large corrections over the variational predictions.
Furthermore, in the (finite-temperature) degenerate regime
T � T 0

F , there are currently no valid variational theories. This
regime is urgently in need of quantitative theoretical analysis
as experiments with polar molecules are now approaching
degeneracy.

The outline of the paper is as follows. After introducing the
basic Hartree-Fock formalism we compare our results against
others in the literature for the distortion of the system position
and momentum distributions. We then calculate a wide range
of thermodynamic quantities of the system, including the
first calculations for entropy and heat capacity of the trapped
gas. Using these results we show that adiabatic mechanical
deformation of the trapping potential can be used to change the
temperature of the gas, in particular that compressing the trap
in the polarization direction will lower the gas temperature. We
then discuss how to define and calculate correlation functions
for the system. Our results show that exchange interaction
effects cause the correlation functions to be anisotropic in the
low-temperature regime. We introduce a simplified Hartree
theory in which exchange effects are neglected, and we present
results demonstrating the accuracy and applicability of this
theory. We give a full account of our numerical method and
the techniques we employ to make the calculations tractable
and accurate in the Appendix.

II. THEORY

A. Formalism

We consider a gas of spin-polarized fermions that interact
by a long-range dipole-dipole interaction of the form

Udd (x) = Cdd

4π

1 − 3 cos2 θ

|x|3 , (1)
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where Cdd = d2/ε0, with d the electric dipole moment
and with θ the angle between the position vector and the
polarization axis, which we take to be the z direction. The
atoms are confined within a cylindrically symmetric harmonic
trap,

U (x) = m

2

[
ω2

ρ(x2 + y2) + ω2
zz

2], (2)

with aspect ratio λ = ωz/ωρ .
In the semiclassical approach the system at temperature T

is described by the Wigner function

W (x,k) = 1

exp{[ε(x,k) − µ]/kBT } + 1
, (3)

where µ is the chemical potential and the Hartree-Fock
dispersion relation is

ε(x,k) = h̄2k2

2m
+ U (x) + �D(x) − �E(x,k), (4)

with

�D(x) =
∫

dx′dk′

(2π )3
Udd (x − x′)W (x′,k′), (5)

�E(x,k) =
∫

dk′

(2π )3
Ũdd (k − k′)W (x,k′), (6)

the direct and exchange interaction terms, respectively. In
Eq. (6) Ũdd is the Fourier transform of the dipole-dipole
interaction, given by

Ũdd (k) = Cdd

3
[3 cos2 θk − 1], (7)

where θk is the angle between k and kz.
To find equilibrium solutions Eqs. (3)–(6) must be solved

self-consistently subject to the additional constraint of atom
number, that is,

N =
∫

dxdk
(2π )3

W (x,k), (8)

fixed by adjusting the chemical potential.
We note that the Hartree-Fock dispersion relation (4) can

be derived by minimizing the free energy (e.g., see [30]) for
which the total energy is given by [16]

E =
∫

dxdk
(2π )3

[
h̄2k2

2m
+ U (x) + �D(x)

2
− �E(x,k)

2

]
W (x,k).

(9)

B. Numerical treatment

The semiclassical approach has seen extensive application
to ultra-cold Bose and Fermi gases with contact interactions
and has become the de facto standard theory for providing
thermodynamic information. The numerical solution of the
semiclassical theory for the dipolar gas is rather more difficult,
with the following main challenges:

(i) Interactions are nonlocal, requiring careful choice of
numerical grids and techniques to deal with the required
convolutions.

(ii) The exchange interaction term (�E) depends on both
position and momentum variables.

In regard to point (i), extensive work on dipolar Bose and
Fermi gases (e.g., see [31–33]) has seen the development of
numerical tools for dealing with the direct potential (�D),
such as the use of Hankel transforms for exploiting the
cylindrical symmetry and allowing convolutions to be per-
formed in Fourier space efficiently (e.g., see [34]). However,
point (ii) remains a considerable challenge and demands a
self-consistent solution of W (x,k) in full x and k space for
the trapped case. In contrast, for the case of fermions or
bosons with local interactions, �E(x,k) → �E(x) and the
momentum dependence of the excitations is only through the
kinetic energy term. Since this momentum dependence is of
a simple (isotropic) form it can be integrated out to provide
a description only dependent on the density (see Sec. III C).
Thus, the full Wigner function does not need to be constructed
to obtain a self-consistent solution. Furthermore, with local
interactions the density is only a function of the local value
of the external potential and the calculation can be mapped
to a single scalar variable, avoiding the need for a full spatial
representation.

In the dipolar gas, symmetry is broken by the polarization
direction of the dipoles and in general the most symmetry
the system can exhibit (even in an isotropic harmonic trap)
is cylindrical. Because the symmetry axis of the trap we
consider (2) coincides with the polarization direction we can
exploit this symmetry to simplify the Wigner function to
a function of four variables {ρ,z,kρ,kz}, that is, cylindrical
coordinates in x and k space.

In implementing our numerical algorithm we make con-
siderable use of Fourier transform techniques and quadrature
based on discrete cosine and Bessel functions. Extensive
details of the numerical algorithm are given in the Appendix.

III. RESULTS

In this section we present our results for the thermodynamic
properties of a trapped dipolar Fermi gas. Following the
standard convention (e.g., see [29]) we characterize our
interaction strength in terms of dimensionless parameter
Dt = N1/6Cdd/4πh̄ωa3

ho, where ω is the geometric mean trap
frequency and aho = √

h̄/mω. Another energy scale we use
is the ideal Fermi temperature T 0

F = h̄ω(6N )1/3/kB for the
harmonically trapped gas. By parametrizing the interaction in
terms of Dt , the temperature in units of T 0

F , and lengths in units
of N1/3aho, it is easy to show that the analysis is independent
of N (see [16]).

The interplay between trapping geometry and interactions
is of central importance in the dipolar gas. To explore this
relationship we present results for the cases of prolate (λ =
0.1), spherical (λ = 1), and oblate (λ = 10) trapping. As the
dipolar interaction has an attractive component, the system
is not stable for all parameter regimes, as has been studied
extensively (e.g., see [16–18]). In general, oblate trapping
allows the largest values of Dt before the onset of collapse, as
this geometry enhances the repulsive aspect of the long-range
interactions. It has also been shown that thermal fluctuations
tend to stabilize the system somewhat against collapse [29],
so that the strictest condition on stability occurs at T = 0. For
values of Dt � 1, all three trapping geometries we consider
are stable at T = 0. For Dt = 2 only the oblate configuration
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of λ = 10 is stable at T = 0, while the λ = 1 and λ = 0.1
cases become stable at about 0.3T 0

F − 0.5T 0
F .

A. Thermal properties of a trapped dipolar Fermi gas

1. Position- and momentum-space distortions

The anisotropy of the dipole-dipole interaction is reflected
in the equilibrium distribution of the system. This is conve-
niently characterized by two simple parameters (see [29])

α ≡
√〈

k2
x

〉
〈
k2
z

〉 , (10)

β ≡ 1

λ

√
〈x2〉
〈z2〉 , (11)

quantifying the momentum- and position-space distortions of
the system, respectively, where

〈x2〉 ≡
∫

dxdk
(2π )3

x2W (x,k) (12)

is the x variance, etc. The trap anisotropy appears in the
definition of β so that in the absence of interactions, where
the position density has the anisotropy imposed by the trap,
we have β = 1. In contrast the noninteracting momentum
distribution is spherically symmetric.

In Fig. 1 we show our results for the deformation parameters
for the same parameter regime considered in Fig. 5 of Ref. [29].
We find our results are visually identical to their results and
a quantitative comparison of data reveals a maximum relative
difference of 0.11%. Our results show that thermal fluctuations
almost completely wash out the interaction-induced deforma-
tions as the Fermi temperature is approached. We also find
good agreement with the variation predictions for deformation
by Miyakawa et al. [17] at T = 0 and by Endo et al. [28]
near T = T 0

F (shown in Fig. 1). As the finite-temperature
variational result is based on a Boltzmann description it is only
valid in the high-temperature regime T � T 0

F and provides a
useful check of the asymptotic behavior. We note that, at the
variational minimum in [28], the kinetic energy is always equal
to the high-temperature limit, 3NkBT/2, which may affect the
accuracy of predictions for α.

2. Direct and exchange energy

For many of the results presented in this paper we observe
an appreciable difference in the behavior of thermodynamic
parameters of the trapped system from the uniform gas
(see [29]). The underlying reason is the rather different role
of interactions in the two systems: For the uniform system
the direct interaction term vanishes because the spatial density
is uniform. In contrast, in the trapped system both direct and
exchange terms contribute. To demonstrate their importance it
is useful to define their individual contributions to the system
energy as [see Eq. (9)]

ED = 1

2

∫
dxdk
(2π )3

�D(x)W (x,k), (13)

EE = −1

2

∫
dxdk
(2π )3

�E(x,k)W (x,k), (14)
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FIG. 1. (Color online) Deformation of (a) momentum and (b)
position density distributions. Calculation parameters λ = 0.1 [blue
(dark gray) lines], 1 [green (light gray) lines], and 10 [red (gray)
lines]. The dimensionless interaction strength is Dt = 1. Thin curves
for T > 0.4T 0

F use the variational approach of [28] and crosses at
T = 0 use the variational approach of [17].

which we shall refer to as the direct and exchange energies,
respectively.

We present results for these energies in Fig 2. We observe
that the direct interaction energy is strongly affected by the trap
geometry, is significantly increased in magnitude in highly
anisotropic traps, and can be both positive and negative.
The exchange interaction energy is only slightly affected by
the trap geometry and is always negative. Except for nearly
spherical traps, the magnitude of EE tends to be much smaller
than ED .

To explain these observations we begin by considering
the direct energy. The sign and strength of this quantity is
controlled by the trap geometry, through its influence on the
system spatial density profile: A prolate spatial density causes
the attractive component of Udd [i.e., interactions with dipoles
in a head-to-tail configuration; see Fig. 3(a)] to dominate and
ED is negative and increasing in magnitude as the system
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FIG. 2. (Color online) Direct energy ED (solid line) and exchange
energy EE (dashed line) versus temperature for a dipolar Fermi gas.
Aspect ratios are λ = 0.1 [blue (dark gray) lines], 1 [green (light
gray) lines], and 10 [red (gray) lines]. The interaction parameter is
Dt = 1. Note that the ED and EE results for the λ = 1 case are almost
indistinguishable.

becomes more prolate. An oblate spatial density causes the
repulsive component of Udd [i.e., interactions with dipoles in
a side-by-side configuration; see Fig. 3(c)] to dominate and
ED is positive and increasing as the system becomes more
oblate. Note that the spatial density profile has a geometry that
is usually close to the trap aspect ratio λ; however, interactions
cause additional distortion (as has already characterized
by the parameter β). For example, in the spherical trap
interactions will cause the spatial density to deform to be
slightly prolate and ED will be slightly negative, as we see in
Fig 2.

A rather similar geometric argument can be applied to
the exchange interaction, but now for the momentum-space
distribution: It is energetically favorable for the momentum
distribution to compress along kρ and expand along kz.
Interestingly for bosons, where the negative sign does not
accompany the exchange term, the opposite momentum
behavior would be expected. However, any anisotropy in the
momentum density arises solely from the dipole interaction
itself in all cases we consider1 and |EE| tends to be much
smaller than |ED|, except in nearly spherical traps.

3. Chemical potential

We present results for the low-temperature chemical poten-
tial of the trapped dipolar gas in Table I for the main system
parameters considered in this paper. We consider the ratio
µ/kBT 0

F , which gives us a quantitative measure of the effect

1The isotropy of mass ensures the noninteracting momentum
distribution is isotropic; however, this could be changed, e.g., by using
an optical lattice to modify the effective mass in different directions.
It may be possible to extend our mean-field analysis to this case (e.g.,
see [35]).

FIG. 3. (Color online) Schematic showing how the distribution
of dipoles in (a) prolate, (b) spherical, and (c) oblate geometries.

of interactions on the Fermi temperature of the interacting
system. In practice we evaluate these results at the small but
finite temperature of T = 0.01T 0

F . We do this because the
lowest temperature we can solve for is limited by the ability
of the computational grids we use to resolve the sharp Fermi
surface. However, as shown in Fig. 4, the chemical rapidly
saturates as T → 0 and the values calculated at T = 0.01T 0

F

should be very close to the T = 0 value.
The behavior of the chemical potential has been considered

for the uniform gas in [29]. In that work it was found that
increasing the dipolar interaction strength suppressed µ. In
the trapped system we observe that prolate trapping geometry
can enhance this suppression, while an oblate geometry can
instead cause the chemical potential to increase with increasing
interaction strength.

4. Entropy: Mechanism for mechanical cooling

It is of interest to know how the entropy of the system
depends on the other parameters, such as the trapping potential
and interaction strength. We can directly calculate the entropy
from the Wigner function as

S = −
∫

dxdk
(2π )3

{W (x,k) ln W (x,k)

+ [1 − W (x,k)] ln[1 − W (x,k)]}. (15)

In Fig. 5(a) we show results for the entropy versus
temperature for three different trap geometries with constant
interaction strength. In Ref. [29] the entropic behavior of the
uniform gas was studied and in their numerical simulations
they found that as the strength of the dipolar interactions were
increased the value of entropy decreased (at fixed temperature).
We find even richer behavior in the trapped system. When the
position-space density is prolate (i.e., λ < 1) interactions tend
to decrease the entropy (most easily seen by considering the

TABLE I. Low-temperature chemical potential µ/kBT 0
F for the

system parameters considered in this paper. Chemical potential is
evaluated from our Hartree-Fock solution at a temperature of T =
0.01T 0

F .

λ

Dt 0.1 1 10

0.5 0.95 1.00 1.07
1 0.87 0.98 1.14
2 unstable unstable 1.24
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FIG. 4. (Color online) Chemical potential (µ/kBT 0
F ) as a function

of temperature. Calculation parameters are λ = 0.1 [blue (dark gray)
lines],1 [green (light gray) lines], and 10 [red (gray) lines]. The
dimensionless interaction strength is Dt = 1. Values at T = 0.01T 0

F

are shown with crosses.

difference in entropy form the noninteracting case shown in
Fig. 5(b)]. In contrast, for an oblate density distribution the
behavior is the opposite of the uniform case and the entropy
increases with increasing interaction strength.

We have also computed the cases shown in Fig. 5(b)
but neglecting exchange interactions (see Sec. III C), and
we find that universally this increases the value of entropy
by a small amount (relative to results including exchange).
This demonstrates that the entropic shifts we observe are
dominated by direct interactions, consistent with the energetic
observations made in Sec. III A2.

Interestingly, for all cases shown in Fig. 5(b) the difference
arising from interactions is maximum at a temperature of
T ≈ 0.2T 0

F , with little dependence on Dt or λ. This coincides
with the temperature at which we observe the most rapid
change in the deformation parameters (see Fig. 1). Thus,
0.2T 0

F appears to set the appropriate temperature scale for
experiments to achieve in order to observe the onset of strong
dipolar effects in thermodynamic properties. Currently, this is
approximately an order of magnitude colder than the coldest
reported temperature for polar molecules.

We observe the interesting feature that as the trap ratio
λ increases the entropy curves shift to lower temperatures.
Thus, if the trap geometry is changed adiabatically (constant
entropy) then the system temperature should decrease [see
the process indicated in the inset to Fig. 5(a)]. This realizes
a mechanical cooling process for the system induced by
squeezing the dipolar gas along the polarization direction.
Overall this scheme offers rather limited scope for cooling,
but as there is considerable work underway in experiments to
reduce the temperature of polar molecules to the degenerate
regime, this scheme might be a useful final stage in the cooling
sequence. We emphasize that this is not compressing the gas
overall, since the trap ratio is changed with the geometric mean
trap frequency kept fixed.
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FIG. 5. (Color online) Entropy versus temperature for a dipolar
Fermi gas. (a) Entropy versus temperature. (b) Difference in entropy
from the ideal Fermi gas. The inset shows a magnification of the
entropy curves with an adiabatic process from initial condition (i) to
final condition (f) indicated. Aspect ratios are λ = 0.1 [blue (dark
gray) lines], 1 [green (light gray) lines], and 10 [red (gray) lines].
The interaction parameters are Dt = 0.5 (dotted), Dt = 1 (solid),
and Dt = 2 (dashed).

5. Heat capacity

The heat capacity can be evaluated as

C =
(

∂E

∂T

)
N

= T

(
∂S

∂T

)
N

, (16)

i.e., either through the energy functional (9) or the entropy (15).
We have applied both methods and find they agree. These
definitions require us to take a numerical derivative, which
we do by finite difference using two solutions that differ in
temperature by �T = 10−4T . Our results for the heat capacity
are shown in Fig. 6.

The behavior seen in the heat capacity is easily understood
from our entropy results [see Fig. 5(b) and Eq. (16)]. In
particular the crossover of the curves in Fig. 6(a) [i.e., where
the difference curves cross the horizontal axis in Fig. 6(b)]
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FIG. 6. (Color online) Heat capacity versus temperature for a
dipolar Fermi gas. (a) Heat capacity versus temperature. (b) Change
in the interacting heat capacity from the ideal gas heat capacity.
Aspect ratios are λ = 0.1 [blue (dark gray) lines], 1 [green (light
gray) lines], and 10 [red (gray) lines]. The interaction parameters are
Dt = 0.5 (dotted), Dt = 1 (solid), and Dt = 2 (dashed).

occurs at T ≈ 0.2T 0
F where the peak in entropy difference was

observed in Fig. 5(b).

B. Dipolar gas coherence

Developments in experimental techniques (e.g., see [36–
40]) have enabled the measurement of correlations in ultra-
cold gases. Such measurements provide useful many-body
information (e.g., see [41–43]).

The first-order coherence of the gas is described by the
two-point correlation function

G(1)(x,x′) = 〈ψ̂†(x)ψ̂(x′)〉 (17)

(e.g., see [44]), where ψ̂(x) is the fermionic quantum field
operator. By introducing center-of-mass [R = 1

2 (x + x′)] and

r/aho
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FIG. 7. (Color online) Normalized volume-averaged correlation
functions for the dipolar Fermi gas. (a) The first-order corre-
lation function g(1)(r) and high-temperature limit (black curve)
e−π |r|2/λ2

dB . (b) The second-order correlation function g(2)(r) and
high-temperature limit 1 − e−2π |r|2/λ2

dB . Results are given along the x

axis (dashed) and along the z axis (dotted) for aspect ratio λ = 1 (with
other aspect ratios showing similar behavior) and Dt = 1. Results are
shown for T = 0.01T 0

F [blue (gray)] and T = 0.5T 0
F [red (light gray)].

T = 0.5T 0
F is used for the high-temperature limits. Results for both

aspect ratios are indistinguishable from their high-temperature limit
at T = T 0

F .

relative [r = x − x′] coordinates, the correlation function
relates directly to the Wigner function as

G(1)(R,r) =
∫

dk
(2π )3

W (R,k)eik·r. (18)

While it is possible to experimentally measure the first-
order correlation function at two specific points in a trapped
gas [40], it is useful to consider a volume-averaged correlation
function that eliminates the dependence on the center-of-mass
coordinate (e.g., see [36–39]). Motivated by this we define the
volume-averaged first-order correlation function

g(1)(r) =
∫

dRG(1)(R,r)∫
dR

√
n
(
R + 1

2 r
)
n
(
R − 1

2 r
) , (19)

033605-6



THERMODYNAMICS AND COHERENCE OF A TRAPPED . . . PHYSICAL REVIEW A 82, 033605 (2010)

which we have normalized by the density (see Eq. (2.20)
of [44]) so that g(1)(0) = 1.

Using Hartree-Fock factorization we can also consider
higher order correlation functions, such as the second-order
expression

G(2)(x,x′) = 〈ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)〉 (20)

= n(x)n(x′) − |G(1)(x,x′)|2, (21)

which relates to the system density correlations. The normal-
ized and volume-averaged second-order correlation function
is given by

g(2)(r) = 1 −
∫

dR|G(1)(R,r)|2∫
dRn

(
R + 1

2 r
)
n
(
R − 1

2 r
) . (22)

Results for g(1)(r) and g(2)(r) are shown in Fig. 7. The
low-temperature case of g(1)(r) considered in Fig. 7(a) exhibits
asymmetry: The length scale for the decay of coherence
is shorter along the z direction than along the x (radial)
direction. For higher temperatures, this feature is washed out
by thermal fluctuations and the coherence becomes isotropic.
We have verified that the low-temperature asymmetry in the
coherence arises from exchange interactions. To do this we
set �E(x,k) to zero in our calculations (but still retaining the
direct interactions; see Sec. III C) and found that the correlation
functions are isotropic.

The g(2)(r) correlation function reveals the expected an-
tibunching behavior for fermions [see Fig. 7(b)], that is,
g(2)(0) = 0. We also observe asymmetry in these second-order
correlations at low temperatures similar to that seen for the
first-order coherence function.

To characterize the first-order coherence more thoroughly
we follow [45] and define the coherence length in the x

direction (lcoh,x) as

(lcoh,x)2 =
∫

dr
∫

dR|G(1)(R,r)|2x2

2
∫

dr
∫

dR|G(1)(R,r)|2 , (23)

T/T 0
F

l c
o
h
/a

h
o

0 0.2 0.4 0.6 0.8 1
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FIG. 8. (Color online) Coherence length of a dipolar Fermi gas as
a function of temperature: lcoh,x (dashed line) and lcoh,z (dotted line).
Results are given for Dt = 1 and an aspect ratio of λ = 1. Results
for aspect ratios of λ = 0.1 and λ = 10 are similar. The black curve
shows λdB/

√
8π for reference.

and similarly for the other directions. [Note that x is a
component of the relative coordinate.] At high temperatures
we have the limiting (Boltzmann) behavior lcoh → λdB/

√
8π

(independent of direction), with λdB = h/
√

2πmkBT . The
results for the coherence length are shown in Fig. 8 and reveal
the dependence of the coherence anisotropy on temperature.

C. Hartree results

The results presented so far are computationally demanding
and it is desirable to produce a simpler theory. We have
observed that, except in the nearly spherical traps, the exchange
interaction is typically much smaller than the direct interaction.
Thus neglecting the exchange (Fock) term would seem to be a

TABLE II. Comparison of Hartree (H) and Hartree-Fock (HF) predictions for thermodynamic parameters.

T = 0.01T 0
F T = 0.5T 0

F

µ/kBT 0
F β ED/Nh̄ω µ/kBT 0

F β ED/Nh̄ω

λ Dt HF H HF H HF H HF H HF H HF H

0.1 0.5 0.945 0.947 0.988 0.989 −3.11 −3.09 0.194 0.194 0.998 0.998 −1.07 −1.07
1 0.874 0.887 0.970 0.972 −7.50 −7.20 0.168 0.169 0.996 0.996 −2.26 −2.25

0.25 0.5 0.954 0.957 0.966 0.966 −2.54 −2.53 0.198 0.199 0.994 0.994 −0.88 −0.88
1 0.896 0.908 0.921 0.924 −6.02 −5.80 0.177 0.178 0.988 0.988 −1.84 −1.83

0.5 0.5 0.971 0.973 0.941 0.941 −1.61 −1.60 0.206 0.206 0.990 0.990 −0.55 −0.55
1 0.931 0.941 0.875 0.880 −3.86 −3.72 0.192 0.193 0.979 0.979 −1.14 −1.14

1 0.5 0.996 0.998 0.922 0.923 −0.20 −0.19 0.217 0.218 0.986 0.986 −0.02 −0.02
1 0.983 0.992 0.848 0.853 −0.82 −0.77 0.216 0.217 0.972 0.972 −0.07 −0.07

2 0.5 1.025 1.027 0.923 0.924 1.44 1.44 0.231 0.232 0.985 0.985 0.60 0.60
1 1.043 1.050 0.859 0.863 2.49 2.47 0.243 0.244 0.972 0.972 1.15 1.15

4 0.5 1.052 1.053 0.942 0.942 2.85 2.84 0.244 0.244 0.989 0.989 1.15 1.15
1 1.094 1.100 0.898 0.900 5.16 5.10 0.268 0.269 0.979 0.979 2.20 2.20

10 0.5 1.074 1.076 0.969 0.970 4.01 4.00 0.255 0.255 0.994 0.994 1.62 1.62
1 1.136 1.141 0.949 0.950 7.20 7.12 0.288 0.289 0.989 0.989 3.08 3.08
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reasonable approximation in anisotropic traps, and we can use
the simplified Hartree dispersion

ε(x,k) = h̄2k2

2m
+ U (x) + �D(x). (24)

Since the k dependence is of a simple isotropic form it can be
integrated out to obtain

n(x) =
∫

dk
(2π )3

W (x,k) (25)

= 1

λ3
dB

ζ−
3/2(e[µ−Veff (x)]/kBT ), (26)

where ζ−
ν (z) = ∑∞

k=1(−1)k−1zk/kν is the Fermi function and
Veff(x) = U (x) + �D(x) is the effective potential. Thus the
spatial density can be obtained self-consistently using Eq. (26),
without needing to construct W (x,k) or ε(x,k).

To obtain some information about the applicability of the
Hartree theory, we compare its predictions to the full Hartree-
Fock calculations for a range of thermodynamic parameters in
Table II. We observe that agreement between the two theories
is best for highly anisotropic traps, small interaction strength,
and high temperatures. Of course we note that in all cases
the Hartree theory would predict α = 1 (since momentum
distortion is solely from exchange interactions) and that the
coherence properties of the gas would be isotropic.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have developed a finite-temperature mean-
field treatment of a single component trapped Fermi gas with
dipole-dipole interactions. We have discussed the details of our
numerical implementation to assist others in implementing this
theory, and we have made comparisons to the numerical results
of Zhang and Yi [29] and variational theories to validate our
calculations.

We have considered a range of thermodynamic properties
of the system. We have found that the long-ranged and
anisotropic interaction causes many system properties to
depend on the trap geometry, beyond simple scaling with
the (geometric) mean trap frequency. Interestingly, we find
that dipolar interactions allow the system to be cooled as the
harmonic confinement is used to squeeze the system toward
an oblate geometry.

We have constructed the first- and second-order correlation
functions within the Hartree-Fock approximation and have
evaluated these in the volume-averaged form relevant to
experiments. We find that the exchange interactions give rise
to anisotropy in these correlation functions, clearly revealed in
the coherence length of the system.

Importantly, our results show the sensitivity of many of the
features of the dipolar Fermi gas to temperature. In particular,
over a wide range of parameters and observables we find that
the strongest effects of the dipolar interactions are apparent for
T <∼ 0.2T 0

F . Additionally, we find that many of the qualitative
predictions made for the uniform gas are strongly modified
in the trapped system by strong direct interaction effects,
particularly in oblate traps. Finally, we have investigated a
simpler Hartree theory that avoids the technical complexities
associated with evaluating the exchange interactions and is

much faster to calculate. We have validated its applicabil-
ity and accuracy for studying thermodynamic properties in
anisotropic trapping potentials where the exchange effects are
less significant.

With current fermionic polar molecule experiments pro-
gressing toward degeneracy, and suggestions that very flat traps
will be necessary to reduce inelastic collision processes [3],
these results will be useful to understand the system behavior
and to perform accurate thermometry.
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APPENDIX A: NUMERICAL METHODS

1. Choice and use of computational grids: Underlying
quadratures

We represent the Wigner function and the Hartree-Fock
dispersion as four-dimensional arrays given by

Wqrst ≡ W (ρq,zr ,kρs
,kzt

), (A1)

εqrst ≡ ε(ρq,zr ,kρs
,kzt

). (A2)

We have chosen the numerical grids {ρq,zr ,kρs
,kzt

} to provide
an efficient representation of these functions, making use
of their known symmetry. Additionally, the grid allows us
to implement numerical quadrature, which in the standard
form is ∫ b

a

dxw(x)f (x) ≈
N∑

j=1

wjf (xj ), (A3)

where the roots ({xj }), weight function [w(x)], and weights
(wj ) define the quadrature. In the following we introduce the
two types of numerical grids we use in detail and discuss their
related quadrature.

a. Axial grids

In the axial direction we use the uniformly spaced position
grid (i.e., the well-known grid for the discrete Fourier
transform)

zj = (
j − 1

2

)
�z, j = 1, . . . ,Nz, (A4)

where �z is the point spacing. We restrict this grid to positive
values because of the assumed even symmetry of the functions
about z = 0. We take the grid for the Fourier transformed
variable to be

Fz,j = π
Nz�z

(
j − 1

2

)
, j = 1, . . . ,Nz. (A5)

Using the trapezium rule with the discrete Fourier grid has
been shown to be a Gauss-Chebychev quadrature of the first
kind [46], that is, quadrature with weight function w(z) = 1
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and weights w
(z)
i = �z. A similar quadrature exists in Fz space

with w
(Fz)
i = π/Nz�z.

We now consider how to perform the Fourier transforma-
tion. As the function to be transformed is even we need only
implement a cosine transform, that is,

f̃ (Fz) =
∫ ∞

−∞
dzcos(Fzz)f (z) (A6)

⇒ f̃ (Fz,i) ≈
∑

j

Tijf (zj ), (A7)

where we have introduced the transformation matrix

Tij = 2�z cos

[
π

Nz

(
i − 1

2

)(
j − 1

2

)]
. (A8)

To obtain (A7) we have used the quadrature rule and assumed
even symmetry of the function f (z). Similarly, the inverse
transform from f̃ (Fz,j ) → f (zi) is given by the matrix

(T −1)ij = 1

Nz�z

cos

[
π

Nz

(
i − 1

2

)(
j − 1

2

)]
. (A9)

Finally, we note that while we have cast this argument in
terms of performing quadrature, we of course have obtained
the standard discrete cosine transformation. Thus, to within
constant prefactors, the forward and inverse transform are the
so-called DCT-IV variant of the discrete cosine transformation
available in some standard FFT libraries (e.g., see [47]).

For the case of the axial momentum variable kz, the grid is
similarly given by

kzj
= (

j − 1
2

)
�kz

, j = 1, . . . ,Nkz
, (A10)

where �kz
is the spacing between momentum points. This

discussion regarding the quadrature of quantities on the
position grid immediately applies to the momentum case with
the replacements Nz → Nkz

and �z → �kz
.

b. Radial grids

In the radial direction it is convenient to introduce grids
based on the roots of the Bessel function to allow an efficient
Hankel transform (i.e., radial Fourier transformation) to be
performed (also see [34]). For the position variable we use a
numerical grid of Nρ points covering the region (0,R) given
by

ρj = αjR

αNρ+1
, j = 1, . . . ,Nρ, (A11)

where αj is the j th root of the Bessel function J0(z). We take
the respective grid for the Fourier transformed variables to be

Fρ,j = αj

R
, j = 1, . . . ,Nρ. (A12)

Associated with these grids are quadratures with weight
functions w(ρ) = ρ and w(Fρ) = Fρ in direct and Fourier
space, respectively, with the corresponding weights

w
(ρ)
j = 2R2

α2
Nρ+1

1

J1(αj )2
, (A13)

w
(Fρ )
j = 2

R2

1

J1(αj )2
(A14)

(see [48,49]).
The in-plane (i.e., two-dimensional) Fourier transformation

of a radially symmetric function, f (ρ), is given by

f̃ (Fρ) =
∫ ∞

0
dρρ

∫ 2π

0
dφeiFρρ cos φf (ρ) (A15)

= 2π

[∫ ∞

0
dρρJ0(Fρρ)f (ρ)

]
, (A16)

where φ is the in-plane angular coordinate. The term in the
square brackets in Eq. (A16) is a Hankel transformation.
By making use of the quadrature, (A16) is approximately
given by

f̃ (Fρ,i) ≈
∑

j

Hijf (ρj ), (A17)

where the transformation matrix is

Hij = 4πR2

α2
Nρ+1

J0
(
αiαj/αNρ+1

)
J1(αj )2

. (A18)

The inverse transformation [i.e., f̃ (Fρ,i) → f (ρj )] is given by
the matrix

(H−1)ij = 1

4πR2

J0
(
αiαj/αNρ+1

)
J1(αj )2

. (A19)

For the case of the radial momentum variable kρ , the grid
is similarly given by

kρj
= αj K

αNkρ
+1

, j = 1, . . . ,Nkρ
, (A20)

where K is the range of the momentum grid. This discussion
regarding the quadrature of quantities on the position grid im-
mediately applies to the momentum case with the replacement
Nρ → Nkρ

and R → K . For future reference, we denote w
(kρ )
i

as the quadrature weights.

2. Evaluating the direct term

Here we demonstrate how (5) is evaluated numerically.
First, we obtain the density,

n(ρ,z) =
∫ ∞

0
dkz

∫ ∞

0
dkρ

kρ

2π2
W (ρ,z,kρ,kz) (A21)

⇒ nqr = �kz

2π2

∑
st

w
(kρ )
s Wqrst , (A22)

where we have made use of the momentum variable quadra-
tures to perform the integrations.

Then we note that the convolution is given by Fourier
transforms as �D(x) = F−1[Ũdd (k)n(k)]. Ronen et al. [34]
have shown that the discontinuity of Ũdd (k) at the origin
results in slow convergence without a cutoff in the real-space
interaction potential. Using a cutoff, L, that is larger than
the system has no physical consequences and results in the
corrected Fourier transformed interaction

ŨL
dd (k) = 1

3
Cdd

[
1 + 3

cos(Lk)

(Lk)2
− 3

sin(Lk)

(Lk)3

]
(3 cos θ2

k − 1).

(A23)
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Then we have that (5) is given by

�D,mn ≡ �D(ρm,zn) (A24)

=
∑
ij

(H−1)mi(T
−1)nj Ũ

L
dd (Fρ,i,Fz,j )

∑
qr

HiqTjrnqr .

(A25)

Our calculations for anisotropic traps require the cutoff to
be larger than any of the dimensions of our cloud. As our aspect
ratios are up to a factor of 10, it is computationally efficient
to avoid evaluation of the terms in (A25) where the density is
known to be negligibly small.

3. Evaluating the exchange term

We now consider (6). Unlike the direct term, which operates
on a marginal (i.e., the density), the exchange interaction
acts on the complete Wigner distribution. We adopt the same
notation for the direction term, that is,

�E,qrmn ≡ �E(ρq,zr ,kρm
,kzn

). (A26)

We consider an analytic simplification of the exchange term

�E(x,k) =
∫

dk′

(2π )3
W (x,k′)Ũdd (k − k′), (A27)

= Cdd

3

∫
dk′

(2π )3
W (x,k′)

[
3(kz − k′

z)
2

|k − k′|2 − 1

]
(A28)

=
∫ ∞

0
dk′

z

∫ ∞

0
k′
ρdk′

ρW (x,k′
ρ,k

′
z)

× [�(kρ,kz,k
′
ρ,k

′
z) + �(kρ,kz,k

′
ρ, − k′

z)], (A29)

where we have integrated out k′
φ and used that W (x,k) is even

in kz and has no kφ dependence, and we defined

�(kρ,kz,k
′
ρ,k

′
z)

≡ Cdd

3(2π )2

⎡
⎣ 3(kz − k′

z)
2√

(k2 + k′2 − 2kzk′
z)

2 − 4k2
ρk

′2
ρ

− 1

⎤
⎦ . (A30)

We note that Eq. (A29) is consistent with the functional
derivative of the expression Zhang and Yi have developed
for the exchange energy (see Sec. IV of [18]).

Numerically the exchange term is evaluated as

�E,qrmn = �kz

∑
st

w
(kρ )
s Wqrst�mnst , (A31)

where �mnst = �(kρm
,kzn

,kρs
,kzt

).

4. Choice of number of grid points

Using the Gaussian ansatz of [28], we compared the total
direct and exchange energies to the exact result at T = 0.5T 0

F .
We found that the relative error in the direct energy decreased
exponentially with {Nρ,Nz} and was less than 10−12 with
{Nρ,Nz} = {24,24}. The relative error in the exchange energy
decreased algebraically with {Nkρ

,Nkz
}, Nkρ

= 0.6Nkz
was

optimum, and with {Nkρ
,Nkz

} = {48,80} the relative error was
up to 10−4.

For the results presented in Sec. III, the Wigner function
and dispersion relation are calculated on four-dimensional
grids with sizes of {Nρ,Nz,Nkρ

,Nkz
} = {40,40,48,80}. For

each temperature these calculations can take approximately
10 hours to converge to self-consistency on an eight-core
2.8-GHz Xeon processor.
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