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Quantum walks and quantum simulations with Bloch-oscillating spinor atoms
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We propose a scheme for the realization of a quantum walker and a quantum simulator for the Dirac equation
with ultracold spinor atoms in driven optical lattices. A precise control of the dynamics of the atomic matter
wave can be realized using time-dependent external forces. If the force depends on the spin state of the atoms, the
dynamics will entangle the inner and outer degrees of freedom, which offers unique opportunities for quantum
information and quantum simulation. Here we introduce a method to realize a quantum walker based on the
state-dependent transport of spinor atoms and a coherent driving of the internal state. In the limit of weak driving
the dynamics are equivalent to that of a Dirac particle in 1 + 1 dimensions. Thus it becomes possible to simulate
relativistic effects such as Zitterbewegung and Klein tunneling.
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I. INTRODUCTION

Quantum simulators aim at the simulation of complex
quantum systems in well-controllable laboratory experiments
[1]. Such a simulation is especially useful when the original
quantum system is experimentally not accessible and classical
simulations are impossible due to the exponential size of
the Hilbert space. Furthermore, quantum simulators offer the
possibility to tune the experimental parameters to explore
novel physical phenomena. Important examples include the
simulation of solid state systems with ultracold atoms [2],
Dirac dynamics with graphene [3,4] or trapped ions [5,6], and
sonic black holes in Bose-Einstein condensates [7].

Ultracold atoms in optical lattices are especially suited for
such a task since their dynamics can be controlled with an
astonishing precision and their dynamics can be measured in
situ. In the present paper we propose to use spinor atoms in
tilted or driven optical lattices to realize a quantum walker—a
paradigmatic system in quantum information science [8–12]—
and a quantum simulator for relativistic Dirac dynamics.
In contrast to previous proposals which were based on the
realization of artificial gauge fields using atoms with a tripod
internal structure [13,14], we focus on simple spinor atoms
with two internal states, which are used routinely in ongoing
experiments. The necessary correlations between the internal
and the external dynamics can be realized with state-dependent
external forces, in particular, by magnetic gradient fields
[15–19]. Using a suitable driving of this external field and
microwave transitions between the internal states [20,21], one
can obtain control over the full dynamics of the atoms.

II. BLOCH OSCILLATIONS AND TRANSPORT
IN OPTICAL LATTICES

A Bloch oscillation is the counterintuitive dynamic of a
quantum particle in a periodic potential subject to a static
external force. The force accelerates the particle until it
reaches the edge of the Brillouin zone, where it is Bragg
reflected. If Landau-Zener tunneling to higher bands can be
neglected, this leads to a fully periodic motion. This peculiar
kind of dynamic was postulated by Bloch already in 1928 in
the context of electrons in crystals [22] but never observed

because of the strong scattering of the electrons. Thus it
took another seven decades before Bloch oscillations could
be demonstrated for electrons in semiconductor superlattices
[23], photons in waveguide arrays [24], and ultracold atoms in
optical lattices [25]. The latter realization especially shows an
astonishing level of coherence and offers various possibilities
to precisely control the atomic dynamics. Recent experiments
have demonstrated that Bloch oscillations can persist over
tens of thousand of periods and extend over macroscopic
distances [17]. An example of Bloch oscillations of an atomic
matter wave is shown in Fig. 1(a).

Extensive possibilities to control the atomic motion can
be realized in driven optical lattices (i.e., in lattices with
a time-dependent external field [15,26–31]). A particular
interesting case is periodic driving, when the direction of the
field is reversed before the matter wave reaches the edge of
the Brillouin zone, decelerating the wave packet back to a
standstill. Thus the atoms always have a positive momentum
such that directed transport is realized, as illustrated in Fig. 1(b)
for a sinusoidal driving.

To be precise, we have simulated the dynamics of ultracold
Cs atoms in an optical lattice with a wavelength of λ =
1064 nm and a depth of V0 = ER . The strength of the external
field was assumed to be F0/m = 0.42 m/s2, which can be
easily realized by accelerating the optical lattice [25] or by a
magnetic gradient field [15,17]. The dynamics of the atomic
matter wave is then given by the Wannier-Stark Hamiltonian

Ĥ (t) = −h̄2

2m

∂2

∂x2
+ V0 cos2(k0x) + F (t)x, (1)

where k0 = 2π/λ and ER = h̄2k2
0/2m is the atomic recoil

energy. The initial state has been chosen as a Bloch state with
zero momentum weighted by a Gaussian with a width σ = 6λ.
For a static field one then finds the celebrated Bloch oscillations
with a period given by the Bloch time TB = 4πh̄/λF0. The
maximum displacement of the wave packet is given by
d = �/F0, � being the width of the ground Bloch band [26].

A directed transport of the atoms can be realized by means
of a time-periodic driving. During one period of the driving
the atoms are first accelerated and the decelerated back to
a standstill, such that the atomic wave function is displaced
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FIG. 1. (Color online) Dynamics of ultracold Cesium atoms in
a driven optical lattice. (a) A static external field leads to Bloch
oscillations. (b) A sinusoidal driving of the field leads to directed
transport. We assumed an optical lattice with a wave length λ =
1064 nm, a depth of V0 = ER and a maximum field strength of
F0/m = 0.42 m/s2. The time is given in units of the Bloch period
TB = 8.44 ms and the period of the external driving Tdrive = 10 ms,
respectively.

in space but otherwise unaffected. An example for directed
transport in a driven optical lattice is shown in Fig. 1(b) for a
sinusoidal driving

F (t) = F1 cos(2πt/T ), (2)

assuming a driving strength of F1/m = 0.42 m/s2 with a
period of T = 10 ms. The transport properties of a driven
optical lattice can be calculated analytically within the tight-
binding approximation [26,27]. It is found that transport is
possible only for a pure ac driving, while it is generally
forbidden in the case of a combined dc and ac field F (t)
except for the case of a resonant driving T = nTB . The actual
transport velocity depends on the initial state, but an upper
bound can easily be found

vmax = d�

2h̄
Jn

(
dF1

h̄ω

)
, (3)

where Jn is an ordinary Bessel function. The case of a pure ac
driving corresponds to n = 0. The dispersion of a wave packet
is generally negligible for an initially broad wave packet as it
vanishes with 1/σ 4 [15,27,28]. This approach to controlling
transport in driven optical lattices was experimentally demon-
strated in [30,31].

III. QUANTUM WALKS

Now consider the dynamics of a spinor atom, where the
atoms experience a different field strength depending on their
initial state. Using Bloch oscillations and the directed transport
described previously, it is possible to entangle the position and
the internal degrees of freedom. This provides the basis for
the implementation of a quantum walk or a Dirac quantum
simulator.

One possibility to induce a state-dependent transport of
spinor atoms is the use of a magnetic gradient field. In
particular, we consider the dynamics of ultracold Cs atoms
with the internal states |↑〉 = |F = 4,mF = 4〉 and |↓〉 =
|F = 3,mF = 3〉 [16]. The magnetic moments of these two
internal states are opposite, such that they move into different

directions in a magnetic gradient field. The effective potential
is given by

VmF
(x) = gF mF µB�Bx, (4)

assuming a linear magnetic gradient field Bz(x) = �Bx. The
effective Landé factor of the two internal states is given
by gF=4 = 1/4 and gF=3 = −1/4 [32] and µB = 9.274 ×
10−24 J/T denotes the Bohr magneton. The magnetic gradient
field can also be varied in time to control the atomic motion
[15]. Furthermore, we assume that the internal state of the
atoms can be manipulated coherently by resonant microwave
pulses with Rabi frequency �(t) [20]. The dynamics of
the atomic state [ψ↑(x,t),ψ↓(x,t)] is thus given by the
Hamiltonian

Ĥ (t) = −h̄2

2m

∂2

∂x2
+ V0 cos2(k0x)

+
(

V↑(x) 0

0 V↓(x)

)
+ h̄�(t)

2
σ̂x . (5)

A coherent quantum walker can be implemented by a
sinusoidal driving of the gradient field �B(t) = �B0 ×
sin(2πt/T ). During one period, the atoms are first accelerated
and then decelerated back to a standstill as illustrated in
Fig. 1(b). However, the transport direction depends on the
direction of the external field, which is opposite for both
internal states, thus realizing an effective quantum walk. The
coin operation is then realized by a π/2 pulse coupling the two
hyperfine levels after integer multiples of the driving time T .
An example of a quantum walk is shown in Fig. 2(c), where
we have plotted the dynamics of the complete atomic density
|ψ↑(x,t)|2 + |ψ↓(x,t)|2. The time dependence of the magnetic
gradient field and the microwave pulses are illustrated in the
upper panels of the figure. Initially, all atoms are assumed to
be in the internal state |↓〉 ⊗ ψ0(x), where the spatial wave
function ψ0(x) is a Bloch state with κ = 0, weighted with a
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FIG. 2. (Color online) Quantum walk of ultracold Cs atoms in
a driven magnetic gradient field. (a) The coin operations: Rabi
frequency of the microwave π/2 pulses inducing transitions between
the two hyperfine levels. (b) The shift operation: A driven magnetic
gradient field induces state-dependent transport. (c) The result-
ing dynamics of the total atomic density |ψ↑(x,t)|2 + |ψ↓(x,t)|2.
Parameters are given in the text.
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FIG. 3. (Color online) Characterization of a Bloch quantum
walk. (a) Increase of the standard deviation �x =

√
〈x2〉 − 〈x〉2.

(b) The total atomic population |ψ↑(x,t)|2 + |ψ↓(x,t)|2 after
15 driving periods. The parameters are given in the text.

Gaussian envelope of width σ = 3λ. The depth of the optical
lattice is given by V0 = ER . The Bloch quantum walk is further
analyzed in Fig. 3, where the width of the atomic wave packet
�x(t) and the final atomic density are plotted. A quantum walk
is characterized by a linear increase of the width �x ∼ t in
contrast to a classical random walk for which �x ∼ t1/2.

It has to be noted that the magnitude of the force is different
for the two spin states leading to a trivial overall displacement
of the atomic density pattern. Furthermore this introduces a
phase shift between the two spinor components, which has
more severe consequences. This phase shift can be avoided
by choosing internal states with the same mF (i.e. |↑〉 = |4,3〉
instead of |4,4〉) or it can be compensated actively by a static
magnetic field.

IV. DIRAC DYNAMICS

For weak driving, the dynamics of a quantum walker are
equivalent to that of a Dirac particle in the 1 + 1 dimension
[33], which can be seen as follows. During one period T the
atoms are first displaced depending on their internal state and
then the internal state is rotated by an angle θ . Assuming that
the internal rotation is fast compared to T , the dynamics are
given by the evolution operator Û (nT ) = (Û2Û1)n with

Û1 =
(

D̂d 0

0 D̂−d

)
and Û2 = exp(−iθ σ̂x/2), (6)

where D̂d denotes the translation operator over a distance d.
In the limit of weak driving (i.e., small values of d and θ )
the dynamics can be described by an effective Hamiltonian
Û (nT ) ≈ exp(−iĤeffn), which is given by

Ĥeff = dp̂σ̂z + θ

2
σ̂x . (7)

This is just the Dirac Hamiltonian with an effective mass m =
θ/2d and the momentum operator p̂ = −i∂/∂x.

According to these results, ultracold spinor atoms show
an effective relativistic dynamics if the displacement d and
the rotation angle θ are reduced. This is simply realized by
increasing the lattice depth V0 and decreasing the strength of
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FIG. 4. (Color online) Zitterbewegung of spinor atoms in a driven
magnetic gradient field. (a) Evolution of the position expectation
value for different values of the rotation angle θ . (b) and (c) Evolution
of the probability densities |ψ↑(x,t)|2 and |ψ↓(x,t)|2 for θ = 0.1π .
The remaining parameters are given in the text.

the microwave driving field. An example is shown in Fig. 4 for
atoms initially prepared in the internal state |↓〉 = |3,3〉 with
a width σ = 10λ. The optical lattice is now deeper as in the
previous examples, V0 = 5ER . Transitions to the other spin
state |↑〉 = |4,3〉 are induced at integer multiples of the period
Tdrive with a variable rotation angle θ = �tpulse. For θ = 0, the
internal state does not change such that the atoms are steadily
transported by the time-periodic external force. Increasing θ

and thus the effective mass of the Dirac particle leads to a
Zitterbewegung of the atoms, which is illustrated in Fig. 4(a).
As expected, the period of the oscillations decreases with
the effective mass m. Microscopically, the oscillations of the
position expectation value 〈x(t)〉 result from the interference
of the two components of the atomic state, which are shown
in Figs. 4(b) and 4(c).

One of the most surprising predictions of Dirac theory is
the Klein paradox: Relativistic particles are not repelled by
a strong repulsive potential, but perfectly transmitted if the
height of the potential step exceeds 2mc2 [34]. Signatures
of this effect can be readily explored with ultracold atoms
in driven optical lattices. We consider a situation where an
additional blue detuned top-hat laser beam is focused aside of
the atom cloud. We model the induced optical dipole potential
by a tanh profile such that the total optical potential is given by

V (x) = Vlattice(x) + Vstep(x)

= V0 cos2(k0x) + Vs

2
{tanh[(x − xs)/w] + 1}. (8)

If the additional potential is weak enough, the directed
transport mechanism remains mostly unaffected. However,
the atomic wave packets accumulate a dynamical phase
depending on their position, which is equivalent to a potential
in the effective Dirac Hamiltonian (7). In this regime, the
dynamics are described by the discrete evolution operator

Û (nT ) ≈ (Û3Û2Û1)n with
(9)

Û3(x) = exp[−iVstep(x)T/h̄],
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FIG. 5. (Color online) Dynamics of spinor atoms in the Dirac
regime with an additional potential step. (a)–(c) Evolution of the
atomic density (left) and the position expectation value 〈x(t)〉 (right)
for different heights of the potential step: (a) Vstep/ER = 0, (b)
0.015, and (c) 0.1. (d) Position expectation value 〈x(t)〉 after a
fixed propagation time tfinal = 150 ms as a function of the potential
step Vs. Results of a full quantum simulation (solid blue line)
are compared to the effective discrete Dirac approximation (open
circles). The remaining parameters are the same as in Fig. 4 with
θ = 0.1π .

and Û1,2 given in Eq. (6). The dynamics in the presence of
an additional potential are shown in Fig. 5, comparing a full
simulation to the Dirac approximation (9). A good agreement
is observed for weak potential steps Vs <∼ 0.02ER .

A pronounced signature of the Klein tunneling observed
in Fig. 5 is that the repulsive potential step enhances the
transmission of the atomic matter wave. Without the potential,
the atoms exibit a Zitterbewegung as discussed previously.
If a weak additional potential step is included (e.g., Vs =
0.015ER) the oscillating motion is gone and the atoms
move steadily above the barrier. An even stronger potential,
however, suppresses the directed transport underlying the
Dirac quantum simulator. The effective description by the
Dirac Hamiltonian (7) is no longer appropriate and the atoms
are reflected just like ordinary Schrödinger particles. In this
regime the Dirac approximation clearly deviates from the exact
simulation results.

V. DECOHERENCE

Real experiments with spinor atoms are limited by a loss of
coherence due a coupling to the environment. The schemes
discussed previously make use on the opposite magnetic
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FIG. 6. (Color online) Quantum walk in the presence of deco-
herence. (a) Increase of the standard deviation �x(t) for different
values of the dephasing rate κ . (b) The standard deviation in a loglog
plot showing a different scaling �x(t) ∼ tα in the quantum regime
(κ = 0) and in the classical regime (κ = 100 s−1). The dashed black
line is a linear fit with the result α = 0.94 and α = 0.59, respectively.
(c) The standard deviation �x(tfinal) after a fixed time tfinal = 150 ms
as a function of κ .

moment of the two hyperfine states |↑〉 and |↓〉 to transport
the atoms in different directions. However, this makes the
atomic state vulnerable to dephasing caused by magnetic-field
fluctuations [9], while spatial coherence can be conserved
over seconds [17]. To explore the effects of decoherence,
we simulate the dynamics in the presence of pure dephasing
described by the Master equation

∂ρ̂

∂t
= − i

h̄
[Ĥ ,ρ̂] − κ

2

(
σ̂ 2

z ρ̂ + ρ̂σ̂ 2
z − 2σ̂zρ̂σ̂z

)
. (10)

For the numerical calculations we use the quantum jump
method [35], averaging over 100 trajectories.

Decoherence of the atomic states essentially turns a quan-
tum random walk into a classical one, which is confirmed by
the simulations shown in Fig. 6. After a short initial period the
standard deviation �x grows much slower in the the presence
of dephasing. The linear increase �x(t) ∼ t gradually changes
into the classical diffusion law �x(t) ∼ t1/2 if κ is increased.
The different scaling is analyzed quantitatively in part (b),
where �x(t) is plotted on a log-log scale together with a
linear fit, omitting the initial expansion of the atomic matter
wave. The different slope of the two curves directly reveals the
different diffusion exponents. The fit yields an exponent of α =
0.94 and α = 0.59 for κ = 0 and κ = 100 s−1, respectively,
which is in good agreement with the theoretical expectation
α = 1 for a quantum and α = 1/2 for a classical random walk.
A quantitative analysis of the decoherence process is provided
in Fig. 6(c), where the standard deviation �x after a fixed
propagation time tfinal = 150 ms is plotted as a function of κ .
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FIG. 7. (Color online) Atomic Zitterbewegung in the presence
of decoherence. Shown is the position expectation value 〈x(t)〉 for
different values of the dephasing rate κ . Parameters are the same as
in Fig. 4 with θ = 0.2π .

One observes that �x decreases with κ until the random walk
becomes completely classical at κ ≈ 80 s−1.

Also the Dirac quantum simulator discussed in the previous
section is vulnerable to decoherence of the atomic hyperfine
states. Figure 7 shows an example of the atomic Zitterbe-
wegung for the same parameters as in Fig. 4 for different
values of the dephasing rate κ . The oscillations of the mean
position of the atoms are much less pronounced for κ > 0.
We find that the dephasing rate must not exceed 20 s−1 to
observe a clear signature of a Zitterbewegung. For stronger
dephasing no interference effects and thus no oscillations are
visible.

VI. CONCLUSION

In the present paper we have explored the rich dynamics of
spinor atoms in tilted and driven optical lattices. These systems
are nowadays routinely realized experimentally and can be
controlled with a high accuracy. We have discussed how a
state-dependent transport can be realized by a periodic driving
and how this can be used to implement a quantum simulator.
A quantum random walk is realized when transitions between
the internal states are driven by microwave or Raman pulses.
In the continuum limit of weak driving, the dynamics are given
by the Dirac equation in a 1 + 1 dimension. Thus it is possible
to investigate relativistic effects such as Zitterbewegung or
Klein tunneling in a well-controllable laboratory experiment.

All elements needed for the implementation of the proposed
quantum simulator have been demonstrated quite recently
such that an experimental realization is possible with current
technology. A major obstacle can be decoherence of the
internal atomic state. On the other hand, decoherence processes
offer the possibility to experimentally study the quantum
classical transition for a Dirac particle.
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