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Self-localization of a small number of Bose particles in a superfluid Fermi system
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We consider self-localization of a small number of Bose particles immersed in a large homogeneous superfluid
mixture of fermions in three- and one-dimensional space. Bosons distort the density of surrounding fermions
and create a potential well where they can form a bound state analogous to a small polaron state. In the three-
dimensional volume, we observe the self-localization for repulsive interactions between bosons and fermions. In
the one-dimensional case, bosons self-localize as well for attractive interactions, thereby forming, together with
a pair of fermions at the bottom of the Fermi sea, a vector soliton. We analyze also thermal effects and show
that small nonzero temperature affects the pairing function of the Fermi subsystem and has little influence on the
self-localization phenomena.
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I. INTRODUCTION

Ultracold atomic gases offer possibilities for realizations
of complex mathematical models used in different fields
of physics with an unprecedented level of the experimental
control [1,2]. For example, condensed matter phenomena like
the superfluid–Mott-insulator transition and the Bose-glass
phase or the Anderson localization effects can be experimen-
tally investigated [3–6]. Fermionic gases, in particular Fermi
superfluids, have received a lot of attention, especially after
the observation of the transition between the superfluid BCS
pairs and the Bose-Einstein condensate (BEC) of diatomic
molecules [7,8].

The behavior of a small object immersed in degenerate
quantum gases has been investigated by several authors [9–18].
For example, weak interactions between a single impurity atom
and particles of a large BEC can be described by the pertur-
bation theory. For stronger interactions, an effective mass of
an impurity atom diverges, indicating the breakdown of the
perturbation approach and the self-localization of the impurity
object in a close analogy to the small polaron problem, i.e.,
localization of an electron in a surrounding cloud of lattice
distortions [19]. In ultracold fermionic gases, an example
of polaron effects with a small number of spin-up fermions
immersed in a large cloud of spin-down Fermi particles
has been studied theoretically [20–25] and recently realized
experimentally [26,27]. Employing a Feshbach resonance,
which allows tuning the interaction strength between atoms,
experimentalists have been able to investigate a transition from
the nearly noninteracting case, through the polaron regime to
the limit where pairs of unlike fermions form tightly bound
molecules.

In the present publication, we consider a small number of
Bose particles immersed in a large, homogeneous, superfluid
and balanced mixture of spin-up and spin-down fermions
and analyze the self-localization phenomenon. Another limit,
investigated already in the literature, concerns Bose-Fermi
mixtures with a number of bosons comparable to (or even
larger than) a number of fermions and effects of the phase
separation [28–38]. The latter corresponds to instability of
a homogeneous solution when boson-fermion interaction
reaches a critical strength. In the case of small boson numbers,

the boson-boson interactions can be neglected, and the uniform
density solution is unstable as soon as the boson-fermion
coupling constant becomes nonzero. However, this does not
mean the self-localization of Bose particles. We show that the
self-localization (i.e., a dramatic form of the phase separation
where the localized Bosonic density is not affected by the
boundary conditions) takes place for stronger interactions
when the boson-fermion coupling constant is greater than a
nonzero critical value.

The possibility of solitonic behavior in Bose-Fermi mix-
tures with fermions both in the normal and superfluid states
has been investigated in the literature [33,39–41]. For a large
number of bosons, if the attractive boson-fermion interaction
is sufficiently strong, the boson-boson repulsion may be
outweighed and the whole Bose and Fermi clouds reveal
solitonic behavior. We consider Bose-Fermi mixtures in the
opposite limit of small boson numbers. In that regime, a
different kind of soliton exists. Indeed, in the one-dimensional
(1D) case, description of the system may be reduced to a
simple model where bosons and a single pair of fermions at
the bottom of the Fermi sea are described by a vector soliton
solution.

The paper is organized as follows. In Sec. II we introduce
the model used in the description of Bose-Fermi mixtures. The
results for the case of three-dimensional (3D) and 1D space
are collected in Sec. III, and we conclude in Sec. IV.

II. MODEL DESCRIPTION

Let us consider a small number Nb of bosonic atoms in the
Bose-Einstein condensate state immersed in a homogeneous,
dilute and balanced mixture of fermions in two different
internal spin states in a 3D volume. Interactions of ultracold
atoms can be described via contact potentials Vij (r) = gij δ(r)
with strengths given in terms of s-wave scattering lengths aij

as gij = 2πh̄2aij

mij
, where mij stands for a reduced mass of a

pair of interacting atoms. In our model, we consider attractive
interactions between fermions in different spin states, i.e., neg-
ative coupling constant gff . Interactions between bosons and
fermions are determined by the spin-independent parameter
gbf . We neglect mutual interactions of bosonic atoms in the

1050-2947/2010/82(3)/033601(7) 033601-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.033601
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assumption that either their density remains sufficiently small
or the coupling constant is negligible.

The system is described by the following Hamiltonian:

Ĥ =
∫

d3r

[
�̂

†
b

(
− h̄2

2mb

∇2

)
�̂b +

∑
s=+,−

(
�̂

†
f,sH0�̂f,s

− |gff |
2

�̂
†
f,s�̂

†
f,−s�̂f,−s�̂f,s + gbf �̂

†
f,s�̂f,s�̂

†
b�̂b

)]
,

(1)

where H0 = − h̄2

2mf
∇2 − µ. �̂b and �̂f,s refer, respectively,

to the field operators of bosonic and fermionic atoms where
s ∈ {+,−} indicates a spin state. µ stands for the chemical
potential of the Fermi subsystem, and mb and mf are masses
of bosons and fermions, respectively.

We look for a thermal equilibrium state assuming that the
Bose and Fermi subsystems are separable. For instance, in the
limit of zero temperature, it is given by a product ground state

|�〉 = |ψ〉f |φ〉b. (2)

We also postulate that the Fermi subsystem can be described
by the BCS mean-field approximation [8] with the pairing
field �(r) = |gff |〈ψ̂f,+ψ̂f,−〉 and the Hartree-Fock potential
W (r) = −|gff |〈ψ̂†

f,+ψ̂f,+〉 = −|gff |〈ψ̂†
f,−ψ̂f,−〉 affected by

a potential proportional to the density of bosons Nb|φ(r)|2.
Assuming a spherical symmetry of particle densities, the
description of the system reduces to the Bogoliubov–de
Gennes equations for fermions

(H0 + W + gbf Nb|φ|2)unlm + �vnlm = Enlunlm,
(3)

�∗unlm − (H0 + W + gbf Nb|φ|2)vnlm = Enlvnlm,

where l and m stand for angular momentum quantum numbers
and

W = −|gff |
∑
nlm

[fnl|unlm(r)|2 + (1 − fnl)|vnlm(r)|2], (4)

� = |gff |
∑
nlm

(1 − 2fnl)unlm(r)v∗
nlm(r), (5)

with the Fermi-Dirac distribution

fnl = 1

exp(Enl/kBT ) + 1
, (6)

which have to be solved together with the Gross-Pitaevskii
equation for bosons[

− h̄2

2mb

∇2 + V (r)

]
φ(r) = µbφ(r), (7)

where

V (r) = − 2gbf

|gff |W (r) = gbf ρf (r). (8)

The effective potential V (r) for bosons comes from contact
interactions between bosons and fermions. ρf is density
of fermions and µb is the chemical potential for bosons.
We consider the temperature much lower than the critical
temperature for Bose-Einstein condensation, therefore we can
neglect thermal excitations of bosons.

The coupled equations (3) and (7) are solved numerically in
a self-consistant manner. In the calculations and in all figures,
we adopt

E0 = 2EF = h̄2k2
F

mf

,

(9)

l0 = 1

kF

,

units for energy and length, respectively, where kF =
(3π2n0)1/3 is the Fermi wave number of a uniform ideal Fermi
gas of density n0. In these units, the coupling constants are the
following:

gff = 4π kF aff ,
(10)

gbf = 2π kF abf

(
1 + mf

mb

)
,

and we deal with six independent parameters in the system:
number of bosons Nb, chemical potential of Fermi subsystem
µ, ratio of the masses mb

mf
, scattering lengths kF aff and kF abf ,

and radius R of the 3D volume we consider.
In the 3D case, the coupling constant gff in � [Eq. (5)]

has to be regularized in order to avoid ultraviolet divergences.
That is, gff → geff where

1

|geff| = 1

|gff | − 1

2π2

(
1

2
ln

√
EC + √

µ√
EC − √

µ
−

√
EC

µ

)
. (11)

The logarithmic term in (11) results from the sum over
Bogoliubov modes corresponding to the energy above a
numerical cutoff EC performed in the spirit of the local density
approximation, see [42–45] for details.

III. RESULTS

Without interactions between bosons and fermions, the
ground state of the system corresponds to uniform particle
densities. For the nonzero coupling constant gbf , the uniform
solution become unstable and, depending on the sign of gbf , the
bosonic and fermionic clouds tend to separate from each other
or try to stick together. For sufficiently strong interactions, the
effect of the self-localization may be expected (see the similar
problem in the case of an impurity atom immersed in a large
Bose-Einstein condensate considered in Refs. [9–11]). Indeed,
for gbf > 0, bosons repel fermions and create a potential
well in their vicinity where they may localize if the well
is sufficiently large. For attractive interactions, the density
of fermions increases in the vicinity of Bose particles. Due
to the fact that gbf < 0, the bosons experience the density
deformation in a form of a potential well, and they may
localize.

We begin with the 3D model and focus on the re-
pulsive boson-fermion interactions. Analyses of both zero-
temperature limit and thermal effects are performed. Then
we consider the 1D case in which the self-localization
phenomenon may be related to the presence of a vector soliton
solution.
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FIG. 1. (Color online) Self-localization of 23Na atoms in a
superfluid mixture of 40K atoms. Panel (a) shows the pairing
function �(r), panel (b) fermion density ρf (r), and panel (c)
density of bosons |φ(r)|2. Solid black lines correspond to boson-
fermion interaction strength gbf = 10 and dotted-dashed blue lines
to gbf = 0. In panel (c), the dotted-dashed blue line is hardly visible
because for gbf = 0, bosons are delocalized and their density is
very small. Number of bosons Nb = 100 and fermions Nf ≈ 12 000
(chemical potential µ = EF ) and fermion-fermion coupling constant
gff = −5.5.

A. Three-dimensional model

Figure 1 shows the densities of bosons and fermions and
the pairing function corresponding to the ground state of the
system for gbf = 0 and gbf = 10. Without boson-fermion
interactions, the quantities are flat and uniform (except a small
region close to the edge of the 3D volume due to assumed
open boundary conditions). However, when the considerable
interactions are turned on, it becomes energetically favorable
to separate bosons and fermions, the ρf (r) is depleted around
the center, and bosons form a bound state localized in a small
area around r = 0. It is clear, that the localization effect is
the result of boson-fermion interactions. It relies on a local
deformation of the density of fermions and is not affected by
the boundary conditions.

The response of the Fermi subsystem to bosons, which
tend to localize, can be investigated by monitoring the defor-
mation of the Bogoliubov quasiparticle modes. The density
of fermions is the sum of the Bogoliubov modes ρf (r) =
2
∑

nlm |vnlm(r)|2. The modes with zero angular momentum
contribute only to the density around r = 0. Consequently,
the modification of these modes is primarily responsible for
preparation of the potential well in which bosons localize. In
Fig. 2, we illustrate the deformation of two modes with l = 0
corresponding to fermions at the bottom of the Fermi sea, but
we should keep in mind that all modes with l = 0 become
affected by the interactions with bosons. The deformation of
modes for fermions at the Fermi level is reflected by a change
of a shape of the pairing field visible in Fig. 1, because those
modes contribute mainly to �(r).

The interaction of fermions and the impurity Bose particles
influences the pairing function � only locally, see Fig. 1. It
implies that the superfluidity is not destroyed even when the

0 10 20 30 40
r

0

10
-4

|v(
r)

20
0|2

0

3×10
-5

|v(
r)

10
0|2

(b)

(a)

FIG. 2. (Color online) Probability densities |vnlm(r)|2 of two
fermion pairs at the bottom of the Fermi sea with angular momentum
l = 0. Panel (a) corresponds to the ground state (n = 1) of the radial
degree of freedom, and panel (b) to the first excited state (n = 2).
Solid black lines correspond to boson-fermion interaction strength
gbf = 10 and dotted-dashed blue lines to gbf = 0. All parameters are
the same as in Fig. 1.

interaction is so strong that the localization of the impurity
object takes place.

The data in Figs. 1 and 2 are related to Nb = 100 23Na atoms
and the mixture of Nf ≈ 12 000 40K atoms (chemical potential
µ = EF ) in two different hyperfine states. We set the scattering
lengths gff = −5.5 and gbf = 10 with the assumption that
they can be realized by the use of the Feshbach resonances
(e.g., magnetic resonance for fermions and optical resonance
between bosons and fermions [8,46]). In Fig. 3, we show the
average radius of the Bose cloud 〈r〉 and the standard deviation
σ = (〈r2〉 − 〈r〉2)1/2 as a function of the coupling constant
gbf . The self-localization means that both 〈r〉 and σ are much
smaller than the radius of the 3D volume. One can see that there
is a critical nonzero value of gbf leading to the self-localization.
In the case of a small Bose subsystem considered here, this
critical gbf is distinctly different from the critical value for the
instability of the homogeneous solution. The latter, for the case
without boson-boson interactions, corresponds to gbf > 0. If
we replace the sodium atoms by 7Li atoms, it turns out that the
critical value of gbf for the self-localization increases. This is
because compressing the cloud of light lithium particles costs
more energy than in the case of heavier sodium atoms.

A small nonzero temperature mostly affects superfluidity
and has little effect on the self-localization phenomenon.
Indeed, in Fig. 4, we see that even for T = 0.028TF when
the pairing function is very small, the densities of bosons and
fermions hardly change. Increasing temperature to T = TF

(which is still much smaller than the critical temperature
for Bose-Einstein condensation of Nb = 100 bosonic atoms
localized in a volume of the radius 〈r〉 ≈ 4, i.e., TBEC ≈ 6TF ),
we observe effects of thermal fluctuations in the fermion
density and a modification of the density of bosons, but the
self-localization persists. Thus, bosons self-localize for both
the normal and superfluid phases of the Fermi subsystem.

We have considered the repulsive boson-fermion inter-
action. For the attractive interaction, we do not observe
the self-localization regardless of the phase of the Fermi
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FIG. 3. (Color online) The average radius of the Bose cloud
〈r〉 [panel (a)] and the standard deviation σ = (〈r2〉 − 〈r〉2)1/2

[panel (b)] vs boson-fermion coupling constant gbf . Black full
symbols correspond to a mixture of 23Na and 40K atoms, while red
open symbols to a mixture of 7Li and 40K atoms. Note the abrupt
transitions to localized states when critical values of gbf are reached.
All the other parameters are the same as in Figs. 1 and 2.

subsystem. For gbf < 0, the particle densities may collapse to
Dirac-δ distributions. For sufficiently small |gbf |, a metastable
state may appear. However, it turns out that the existence of
such a metastable state is not the result of self-localization in
the system. Indeed, it is an effect of a compromise between
the requirement of minimal kinetic energies and restrictions
related to the boundary conditions. In the following, we
consider a 1D model in which there is no problem with the
collapse of the densities and show that Bose particles can
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FIG. 4. (Color online) Self-localization of 23Na atoms in a
superfluid mixture of 40K atoms for nonzero temperature. Panel (a)
shows the pairing function �(r), panel (b) fermion density ρf (r), and
panel (c) density of bosons |φ(r)|2. Solid black lines correspond to
T = 0 and µ = EF , red dashed lines to T = 0.028TF and µ = EF ,
and blue dotted-dashed lines to T = 6TF and µ = 0.16EF . Boson-
fermion interaction strength gbf = 10, fermion-fermion coupling
constant gff = −5.5, and number of bosons Nb = 100 and fermions
Nf ≈ 12 000. In panel (a) the dotted-dashed blue line is not visible
because for T = 6TF the pairing function is equal to zero. In panels (c)
and (d), the solid black and dashed red lines are hardly distinguishable.

localize in the Fermi subsystem for attractive boson-fermion
interactions too.

B. One-dimensional model

If in x and y directions, we apply harmonic potentials of
frequency ω⊥, and h̄ω⊥ is much greater than the chemical
potentials, only the ground states of the transverse degrees of
freedom of particles are relevant, and the 3D system becomes
effectively one dimensional. Assuming that Bose and Fermi
particles are in the ground states of the two-dimensional
harmonic trap in the transverse direction and performing
integration over x and y in the Hamiltonian (1), we obtain
the 1D version of Eqs. (3)–(8) with the following coupling
constants:

g1D
ff = gff

2πσ 2
f

= 2h̄ω⊥aff ,

(12)
g1D

bf = gbf

π
(
σ 2

f + σ 2
b

) = 2h̄ω⊥abf ,

where σb = √
h̄/mbω⊥ and σf = √

h̄/mf ω⊥ lengths repre-
sent the ground-state extents of Fermi and Bose particles,
respectively, confined by the two-dimensional harmonic trap
in the transverse direction. In the units (9), the 1D coupling
constants read

g1D
ff = 2mf ω⊥

h̄kF

aff ,

(13)

g1D
bf = 2mf ω⊥

h̄kF

abf .

In the 1D case, there is no ultraviolet divergence and the
pairing function does not require regularization. Nevertheless,
numerical simulations converge much faster if the Bogoliubov
modes, above a numerical cutoff energy Ec, are included in the
spirit of the local density approximation. That is, the coupling
constant in � is substituted by

1

|g1D
eff |

= 1

|g1D
ff | − 1

2π
ln

√
EC + √

µ√
EC − √

µ
. (14)

For repulsive boson-fermion interactions, we observe the
self-localization of bosons with the behavior of the particle
densities similar to that in the 3D case. Therefore we focus
on attractive interactions only. Figure 5 shows the results
for gbf = −20, obtained with periodic boundary conditions
for fermions and open boundary conditions for bosons. For
the attractive interactions, bosons and fermions try to stick
together, which leads to an increase of the fermion density in
the vicinity of the boson concentration and the creation of a
potential well for localization of Bose particles.

Analyzing the Bogoliubov modes vk(z) (see Fig. 6), we
find that the probability density v2

0(z) of a pair of fermions
at the bottom of the Fermi sea becomes strongly localized.
The Bogoliubov mode v1(z) of the next fermion pair forms
also a bound state. Since v1(z) is an antisymmetric function, it
is nearly zero in the area around z = 0. Probability densities
of other fermions are deformed, and almost all of them drop
to zero in the region where v0(z) is localized. This may be
interpreted as a realization of the Pauli exclusion rule. In the
BCS limit, only particles close to the Fermi level contribute to
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FIG. 5. (Color online) Self-localization of a single boson
(Nb = 1) in a superfluid mixture of fermions in 1D space. Panel (a)
shows the pairing function �(z), panel (b) fermion density ρf (z),
and panel (c) boson density |φ(z)|2. Solid black lines correspond
to boson-fermion interaction strength gbf = −20 and dotted-dashed
blue lines to gbf = 0. Number of fermions Nf ≈ 20 (chemical
potential µ = EF ) and fermion-fermion coupling constant gff = −1.
Ratio of masses of Bose and Fermi particles mb

mf
fulfills Eq. (17). The

configuration space extends from z = −10 to z = 10. In panel (c)
the dotted-dashed blue line is hardly visible, because the boson is
delocalized and its density is very small for gbf = 0. Red dashed line
in panel (c) indicates the solitonic solution Eq. (18).

the pairing function �, and there is practically no contributions
from fermions located deeply in the Fermi sea. Therefore there
is also no contribution from the pair of fermions at the bottom
of the Fermi sea. That is why �(z), contrary to the fermion
density, reveals a minimum at z = 0, see Fig. 5.

The analysis of the Bogoliubov modes suggests a simple
model of self-localization in the case of attractive boson-
fermion interactions. Suppose that in the vicinity of the
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FIG. 6. (Color online) Bogoliubov modes vk(z) corresponding to
fermion pairs located close to the bottom of the Fermi sea. Panel (a)
is related to the pair of fermions at the bottom of the Fermi sea,
panels (b) and (c) to the next pairs. Solid black lines correspond
to the numerical solutions. Red dashed line in panel (a) indicates
solitonic solution Eq. (18). All the others parameters are the same as in
Fig. 5.

localized bosons, we may neglect the pairing field and the
density of all fermions except a fermion pair at the bottom of
the Fermi sea. Then, we obtain the following set of equations:

(µ − E0)v0 =
[
−1

2
∂2
z − |gff |v2

0 − |gbf |Nbφ
2

]
v0, (15)

µbφ =
[
− mf

2mb

∂2
z − 2|gbf |v2

0

]
φ. (16)

For
mb

mf

= Nb

2
+ |gff |

2|gbf | , (17)

there exists an analytical solution of Eqs. (15) and (16),

φ(z) = v0(z) =
√

α

2
sech(αz), (18)

with

α = |gbf | mb

mf

,

E0 = µ + g2
bf m2

b

2m2
f

, (19)

µb = −g2
bf mb

2mf

.

Such a solution resembles vector solitons. They appear in
nonlinear optics when interactions of several field components
are described by a set of coupled nonlinear Schrödinger
equations [47]. Note that for the self-localization of an impurity
atom in a large BEC considered in Ref. [11], the 1D system is
described by a parametric soliton with the state of the impurity
atom given by the hyperbolic secant squared function.

A comparison of the analytical solutions (18) with numer-
ical results of the full set of equations is shown in Figs. 5
and 6. The agreement is very good and increases with the
strength of boson-fermion interactions. Indeed, for the strong
interaction, due to the Pauli exclusion rule, there is negligible
probability density to find other fermions than the localized
pair in the vicinity of z = 0. As a consequence, the localized
bosons interact almost exclusively with the localized fermion
pair and the set of Eqs. (15) and (16) becomes exact.

Figure 6(b) shows that the Bogoliubov mode v1(z) forms an
antisymmetric bound state. In the vicinity of z = 0 (where the
fermion density is dominated by v2

0 and the pairing function
drops to zero), this mode should fulfill an equation similar to
Eq. (15), that is,

(µ − E1)v1 =
[
−1

2
∂2
z − |gff |v2

0 − |gbf |Nbφ
2

]
v1. (20)

If φ and v0 are given by Eq. (18) the antisymmetric solution
of Eq. (20) forms a marginal bound state

v1(z) ∼ tanh(αz), (21)

E1 = µ. (22)

In the full description of the system, the state governed by
Eq. (19) may become either truly bound or unbound. In the
considered system, it turns out that the state is pushed toward
a true bound state as visible in Fig. 6(b).

When the boson-fermion coupling constant gbf is de-
creased, we observe the increasing discrepancy between
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FIG. 7. (Color online) Width of the boson density, i.e., σ =
(〈z2〉 − 〈z〉2)1/2, vs boson-fermion coupling constant gbf . Black full
symbols correspond to the numerical values and red open symbols to
the solutions Eq. (18). The configuration space extends from z = −20
to z = 20. All the others parameters are the same as in Fig. 5.

analytical and numerical solutions, see Fig. 7. The width
of the boson probability density obtained numerically is
significantly greater than the corresponding analytical value.
This is because in the effective potential experienced by the
bosons, a considerable contribution comes from other fermions
and not only from the pair at the bottom of the Fermi sea. The
density of such fermions, contrary to the localized fermion
pair, possesses a minimum at z = 0 and thus effectively makes
the potential well for bosons weaker. Consequently, bosons
occupy a much larger space than can be expected on the basis
of solutions (18).

IV. CONCLUSIONS

We have considered a small number of bosons immersed
in a superfluid mixture of fermions in two different spin
states. With negligible boson-boson interactions, homoge-
neous densities of the particles become unstable as soon as
the boson-fermion coupling constant is nonzero, which is
identified with the phase separation transition. We show that
in 3D space for sufficiently strong repulsive boson-fermion
interactions, a dramatic form of the phase separation (i.e., the
self-localization of Bose particles) takes place. That is, the
repulsion between particles creates a local potential well for
bosons where, if the well is sufficiently large, they can localize.

The difference between critical values of the boson-fermion
interaction strength for the instability of a homogeneous
solution and for the self-localization is very clear if the
boson-boson interactions are negligible that is when the Bose
subsystem consists of a small particle number.

The self-localization is present for both the superfluid and
the normal state of fermions. It modifies properties of the
Fermi subsystem locally without destroying the superfluidity.
Low nonzero temperature affects the pairing function but has
little effect on the self-localization phenomenon.

We do not observe the self-localization for attractive
boson-fermion interactions in the 3D case. In this context,
the self-localization requires sufficiently strong boson-fermion
interactions. However, for strong attractive interactions, no
metastable state of the system exists, and the densities of
the atoms collapse to Dirac-δ distributions, indicating a
breakdown of the description with the contact interaction
potentials. In the 1D case, there is no collapse for attractive
boson-fermion interactions. The self-localization of bosons
is accompanied by localization of a pair of fermions at the
bottom of the Fermi sea. This phenomenon can be described
by a simple model, where the self-localization is related to the
existence of a vector soliton solution.

To realize experimentally the self-localization of bosons in
a Fermi system, ultracold clouds of bosons and fermions have
to be prepared in a laboratory. For a sufficiently large boson-
fermion coupling constant, which can be achieved by means
of a Feshbach resonance, the self-localization takes place.
Signatures of the self-localization can be visible in expansion
of the atomic clouds after trapping potentials are turned
off. That is, if during the time of flight the boson-fermion
interactions are kept negligibly weak, the initially strongly
localized boson cloud will show much faster expansion than
the Fermi cloud due to release of a large kinetic energy.
The simplest experiment would employ a Fermi subsystem
in a normal phase. In order to observe the self-localization
in a superfluid Fermi mixture, a manipulation of a fermion-
fermion coupling constant is also needed and two Feshbach
resonances must be employed, e.g., one resonance controlled
by a magnetic field and the other by optical means.
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