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Fast optimal transition between two equilibrium states
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Université de Nice-Sophia Antipolis, Institut non Linéaire de Nice, CNRS, 1361 route des Lucioles, F-06560 Valbonne, France
(Received 8 June 2010; published 24 September 2010)

We demonstrate a technique based on invariants of motion for a time-dependent Hamiltonian, allowing a
fast transition to a final state identical in theory to that obtained through a perfectly adiabatic transformation.
This method is experimentally applied to the fast decompression of an ultracold cloud of 87Rb atoms held in a
harmonic magnetic trap in the presence of gravity. We are able to decompress the trap by a factor of 15 within
35 ms with a strong suppression of the sloshing and breathing modes induced by the large vertical displacement
and curvature reduction of the trap. When compared to a standard linear decompression, we achieve a gain of a
factor of 37 on the transition time.
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I. INTRODUCTION

The controlled manipulation of quantum states is central to
many areas of physics such as quantum information processing
[1,2], design of pulses for nuclear magnetic resonance imaging
[3–5], atomic gas cooling [6] and transport [7], or ion ma-
nipulation [8]. The paradigm of adiabatic transformations, in
which the Hamiltonian parameters are changed infinitesimally
slowly with time [9], is often used to drive a system from a
given quantum state to another. However, the urge to shorten
the duration of the experiments has driven the search for
fast optimal nonadiabatic strategies [8,10–13], with a minimal
amount of extra energy supplied to the system.

In the particular field of cold atoms, time-dependent
potentials are becoming increasingly used. Examples include
the transport of cold atomic samples over various distances
[7,11,14], or the production of very low temperatures using
trap decompression [6]. To minimize the energy imparted to
the atoms, most of these experiments were performed in the
adiabatic regime where the process duration was much longer
than the oscillation period in the potential, yielding times in the
few seconds range or longer. Achieving a faster transfer with a
limited heating motivated experimentalists to employ various
nonadiabatic procedures [11,15]. Recently, a method based on
invariants of motion was proposed for the decompression of
harmonic traps which was argued to give access to shorter
times than “bang-bang” control [12] provided that negative
curvatures could be transiently applied [13].

We present in this article an experimental demonstration
of shortcuts to adiabaticity based on this method, which
we employ to decompress a cloud of magnetically trapped
87Rb atoms. Because of gravity, the position of the trap
center shifts vertically, which induces sloshing modes of the
trapped atoms. At the same time, a breathing mode is excited
by the reduction of the trap frequency. We thus generalize
the approach of Ref. [13] to the case of a time-dependent
harmonic plus constant linear potential to account for gravity.
We derive a trap frequency trajectory ωz(t) which yields a
final state identical to that obtained through a purely adiabatic
transformation (hence the “optimal” transition), but in a much
shorter time. We experimentally implement this trajectory to
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perform a vertical trap decompression by a factor of 15 within
35 ms (corresponding to roughly half the decompressed trap
oscillation period), with a strong suppression of the cloud’s
center of mass and size oscillations.

II. OPTIMAL TRAJECTORY DETERMINATION

We start our theoretical approach by considering a time-
dependent harmonic oscillator in the presence of gravity

H (t) = p2

2m
+ 1

2
mω2

z (t)z2 + mgz, (1)

with initial and final angular frequencies ωz(0) = ω0z and
ωz(tf ) = ωf z, respectively. The objective is to engineer a
trajectory ωz(t) between these two values so that if we start
with an initial state at equilibrium at temperature T0, this state is
mapped to a final equilibrium state at temperature Tf = T0/γ

2,
with γ 2 = ω0z/ωf z [13]. Our solution is based on invariants
of motion of the form [16,17]
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where Q = z/b + ga/ω2
0z and � = bp − mḃz + mb2gȧ/ω2

0z

play the role of canonical variables. For Eq. (2) to be an
invariant, the dimensionless functions b and a, respectively
linked to the size σz and center-of-mass position zcm of the
cloud through σz(t) = b(t)σz(0) and zcm(t) = −a(t)b(t)g/ω2

0z,
must be solutions of

d2b/dt2 + b(t)ω2
z (t) = ω2

0z/b(t)3, (3)

d2a/dτ 2 + a(τ ) = b(τ )3, (4)

where τ (t) = ω0z

∫ t

0 dt ′/b2. The solutions of the time-
dependent Schrödinger equation coincide with the stationary
states of the initial and final Hamiltonians H (t = 0) and
H (tf ) if I (t = {0,tf }) ∝ H (t = {0,tf }) [18]. Thus we set
ȧ(0) = ȧ(tf ) = ḃ(0) = ḃ(tf ) = 0 and a(0) = 1, a(tf ) = γ 3,
b(0) = 1, b(tf ) = γ . These latter terms imply that b̈(0) =
b̈(tf ) = 0 must hold as well, giving ten independent boundary
conditions (BC). Our procedure to engineer ωz(t) is the
following: (i) we use a polynomial ansatz for a(τ ) of the form
a(τ ) = ∑j�9

j=0 αj (τ/τf )j , for which ten coefficients are fixed
by the BC and the other can be arbitrarily chosen; (ii) we
evaluate b3(τ ) and thus b[τ (t)]; and (iii) using Eq. (3) we
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obtain the function ωz(t). Quite nonintuitively, the obtained
solution is valid for any magnitude of the linear term in the
time-dependent Hamiltonian (as long as this linear term is
not time dependent itself). In the particular case of g = 0
(no constant force term), however, a lower-order polynomial
ansatz (fifth order) is sufficient [13].

III. EXPERIMENTAL PROCEDURE

To experimentally investigate shortcuts to adiabaticity, we
employ a sample of ultracold 87Rb atoms held in a magnetic
Ioffe-Pritchard trap. This popular type of trap is harmonic (for
cold enough atoms) and anisotropic with a typical ratio of 10
between the oscillation frequencies in the radial dimensions
ωx,z and the axial one ωy (see Fig. 1) yielding the well-
known cigar-shaped aspect of the trapped cloud. For shallow
traps, gravity significantly affects the potential in the vertical
dimension, yielding a displacement of the trap minimum
−g/ω2

z compared to a tight trap. Our magnetic trap is of the
quadrupole-Ioffe-configuration type (QUIC trap) introduced
in Ref. [19], the three-coils setup sketched in Fig. 1. For
sufficiently cold atoms (kBT � µB0) the magnetic potential
is harmonic of the form [20]

µB = µ

[
B0 + 1

2

(
B ′2

B0
− B ′′

2

)
(x2 + z2) + 1

2
B ′′y2

]
, (5)

where µ/h ≈ 1.4 MHz/G for our atoms in |F = 2,mF = +2〉.
B ′ is the radial gradient of the magnetic field while B ′′
represents its curvature along y. B0 is the minimum of the
magnetic field at the trap center, which can be adjusted using
two independent parameters: the current iQ running in the
three QUIC coils or the current iB0 in a pair of compensation
coils providing a uniform field along y (see Fig. 1). Since
B ′′ � B ′2/B0, the radial and axial angular frequencies are

(a) (b)

FIG. 1. Trapping geometry (figure in the horizontal plane).
Ultracold 87Rb atoms are trapped in an Ioffe-Pritchard-type magnetic
trap created by current iQ running through the three QUIC coils 1, 2,
and 3. An additional pair of coils (a and b) produces a homogeneous
field along y, which allows an independent tuning of the trap minimum
field B0 via the current iB0 .

given by

ωx,z ≈
√

µ

m

B ′(iQ)√
B0(iQ,iB0 )

, (6)

ωy =
√

µ

m

√
B ′′(iQ) . (7)

These expressions show that we can, to some extent, manip-
ulate independently the radial and axial frequencies using iQ
and iB0 .

Our initial sample is a small (N = 105 atoms) and cold
(T0 = 1.63 µK) atomic cloud. The low temperature guarantees
that the potential seen by the atoms remains harmonic even for
large decompression factors. The small number of atoms is
chosen to reduce the density and thus the elastic collision rate
responsible for the energy transfer between dimensions and
thermalization. In the compressed trap with the previously
mentioned parameters, the typical time between two elastic
collisions is ≈28 ms, quite larger than the radial oscillation
period of 4 ms.

Prior to implementing a decompression sequence, we need
to characterize the initial and final states. To this end, the
position and size of the atomic cloud in three dimensions (3D)
are measured using absorption imaging along two orthogonal
directions. The trap frequencies are measured by slightly off-
setting the trap center using compensation coils then abruptly
releasing it and measuring the cloud’s center-of-mass motion
as a function of time. For our fully compressed trap (iQ =
27 A, iB0 = 0), we obtain ν0x = ω0x/2π = 228.1 Hz, ν0y =
22.2 Hz, and ν0z = 235.8 Hz. To measure the parameters of
the final, decompressed state we perform an “adiabatic-like”
(i.e., slow tf = 6 s) decompression using linear ramps for
the currents iQ and iB0 . In the following, we will refer to such
ramps as “linear decompressions,” although the resulting ωz(t)
is not strictly linear [Eqs. (6) and (7)]. The results presented
in this article are obtained with a vertical decompression
factor ν0z/νf z = 15, yielding final frequencies νf x = 18.1 Hz,
νfy = 7.1 Hz, and νf z = 15.7 Hz for the decompressed trap.
In practice, this is achieved by decreasing iQ from 27 to 3.6
A and increasing iB0 from 0 to 3 A. Since νy is not affected
by the increase of iB0 [see Eq. (7)], the decompressed trap is
much more isotropic (νf {x,z}/νfy ≈ 2) than the compressed
one (ν0{x,z}/ν0y ≈ 12).

We illustrate the efficiency of our shortcut method by
realizing a fast (tf = 35 ms) trap decompression optimized
for the vertical dimension z, where gravity strongly affects the
cloud’s motion. The employed solution νz(t) is shown in Fig. 2
(line, note the vertical log scale). Because of the finite time
response of the trap electronic circuit, the measured trap field
profile is different from the computed one. We thus monitored
νz by interrupting the sequence at different times and adjusted
the compensation field to obtain a measured νz(t) (symbols
in Fig. 2) close to the theoretical one (deviation <5%). The
uncertainty on the experimental values is ±2%.

IV. RESULTS

Figure 3 shows the result of the shortcut decompression
using the trajectory of Fig. 2. We plot in Fig. 3(a) the time
evolution of the cloud’s center-of-mass position zcm once the
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FIG. 2. Optimal trap frequency trajectory for a 35 ms vertical de-
compression. We plot (line) νz(t) for a 35 ms vertical decompression
from ν0z = 235.8 Hz to νf z = 15.7 Hz, obtained with the invariant
method (see text). The symbols correspond to measured values of the
vertical trap frequency during the decompression process.

decompression sequence is completed, and in Fig. 3(b) that
of the cloud’s size σz. These data correspond to averages
over three successive images, taken after a 6 ms time of
flight. The open circles correspond to an abrupt jump from
ν0z to νf z (in practice, the effective decompression time is
≈0.1 ms). The solid circles are obtained with a (nonoptimal)

FIG. 3. (Color online) Vertical trap decompression: comparison
between different schemes. We report in (a) and (b), respectively, the
cloud’s vertical center-of-mass position zcm and size σz versus time af-
ter decompression for four different sequences. Open circles (green):
abrupt decompression; solid circles (black): linear decompression in
35 ms; stars (red): shortcut decompression in 35 ms; squares (blue):
linear decompression in 6 s.

linear decompression of duration tf = 35 ms, the stars with the
shortcut trajectory, and the squares with a quasiadiabatic linear
decompression in 6 s. In every instance we observe in Fig. 3(a)
the expected sinusoidal oscillations of zcm at the decompressed
trap frequency νf z = 15.7 Hz (dipole mode) and of amplitude
	zcm. As can be seen, the shortcut decompression yields
a strong reduction of 	zcm when compared to the abrupt
and 35 ms linear decompressions, by a factor of 9 and 7.2,

respectively. However, the residual center-of-mass oscillations
after the shortcut sequence are still sizable, a factor of 5 larger
than that observed for the 6-s-long linear decompression.
We attribute these residual oscillations to imperfections of
the experiments which are discussed at the end of the
paper. From the amplitude 	zcm we can infer the excess
energy communicated to the cloud in the form of the dipole
excitation Edip = 1/2mω2

f z	zcm
2. We also observe in Fig. 3(b)

oscillations of the cloud’s size σz at twice the frequency of the
decompressed trap (breathing mode). The theory predicts such
nonsinusoidal periodic oscillations whose expression can be
derived analytically [21]. In the experiment, the measurement
of σz is less accurate than that of zcm because of the limited
spatial resolution and noise (σz ≈ 40 µm), and we cannot fit
the measured oscillations to the model in every instance. We
thus quantify the amplitude of the breathing mode by using
the standard deviation 	σz of σz(t) after decompression. We
observe a reduction of 	σz when we use the shortcut trajectory,
by a factor of 7 and 3 when compared to the abrupt and linear
decompressions, respectively. The residual 	σz is again a
factor of 5 above that of the 6-s-long linear decompression.
The excess energy stored in the breathing mode is Ebreath ≈
2mω2

f z	σz
2. Note that we overestimate 	σz (and thus Ebreath)

because of our 6 ms time of flight. The total excess energy
imparted to the system during the decompression is then
Eexc = Edip + Ebreath. Quite obviously from the vertical scales
in Fig. 3, we always have Edip � Ebreath. Using the previous
expression, we find excess energies of 54, 35, 0.7, and
0.02 µK for the abrupt, 35 ms linear, 35 ms shortcut, and
6 s linear decompressions, respectively. For the latter we
measured a final temperature Tf = 0.13 µK. Since the initial
temperature is T0 = 1.63 µK, the cooling factor is 12.5, quite
close to the expected ν0z/νf z = 15 value for a purely adiabatic
transition.

To provide the reader with a better feeling of the time
scales involved in the trap decompression, we compare in
Fig. 4 our shortcut results with those of linear decompressions
with various durations (full circles for 	zcm, open circles
for 	σz). All the amplitudes in this figure are normalized
to those corresponding to an abrupt decompression (tf =
0.1 ms). The stars correspond to three shortcut experiments.
Two experiments were performed along the vertical: the
35 ms one depicted in Figs. 2 and 3 and a 100-ms-long
one. Another 20-ms-long shortcut decompression was also
performed along x (no gravity), using the fifth-order poly-
nomial ansatz of Ref. [13]. The solid stars correspond to
oscillation amplitudes of zcm while the open stars stand for
	σz. The linear decompression data allow us to estimate
a quantitative criterion for adiabaticity instead of the usual
qualitative criterion tf � 1/ω. For instance, we can set as
a criterion that the excess energy should be of the order or
smaller than the thermal energy associated with Tf = T0/γ

2:

033430-3



SCHAFF, SONG, VIGNOLO, AND LABEYRIE PHYSICAL REVIEW A 82, 033430 (2010)

FIG. 4. Summary of faster-than-adiabatic decompression results.
We plot the amplitudes of center-of-mass (filled circles) and cloud’s
size (open circles) oscillations along the vertical direction after linear
decompressions of various durations tf . All amplitudes are scaled to
that of the abrupt decompression (tf = 0.1 ms). The stars correspond
to our shortcut decompression experiments in 20, 35, and 100 ms
(filled symbols: center of mass, open symbols: size).

Eexc � 1/2mω2
f z	zcm

2 � kBTf . This condition yields tf �
3.3 s for linear ramps. Since our shortcut sequence in 100 ms
also satisfies this condition it can be considered adiabatic using
this criterion, with a reduction of the necessary decompression
time by a factor of 33. The 35 ms shortcut decompression does
not meet the previous criterion, but still realizes a gain on the
transition time of a factor of 37 when compared to a linear
ramp. The 20-ms-long decompression along x excites only
the breathing mode (no trap displacement), whose residual
amplitude is one order of magnitude lower than for the abrupt
transition and a factor of 2 above that of the 6 s linear ramp.

As stressed in the theoretical part of this article, only the
final state is identical to that obtained through an adiabatic
sequence. Indeed, we performed an experiment where we
interrupted the frequency trajectory of Fig. 2 after 10 ms (as
pointed out by the arrow in the figure). Despite the fact that
94% of the frequency difference ν0z − νf z has been covered
at t = 10 ms, we observe large center-of-mass and cloud size
oscillations, respectively, a factor of 7 and 4 larger than those
observed when the entire 35 ms sequence is completed. Thus
the last 25 ms of the frequency trajectory in Fig. 2 are of
paramount importance for reaching the optimal final state.

We now discuss experimental imperfections which might
be responsible for the residual oscillations observed in Fig. 3.
The first possible cause is a mismatch between the theoretical

frequency trajectory and the experimental one. As shown in
Fig. 2, we did our best to maintain this mismatch below
5% for selected time values of the trajectory, but we cannot
guarantee that this holds for the whole sequence. In particular,
as discussed previously, the last part of the trajectory where the
frequencies are small and thus the relative measurement error is
large is potentially more critical. Probably most importantly,
our trap can be considered harmonic only for small atomic
displacements from the trap center. During the shortcut
decompression, the trap center shifts vertically by ≈1 mm and
the atoms follow a complex dynamic that brings them quite far
from the trap center (≈300 µm). Deviations from harmonicity
may thus play an important role in our experiment [11],
limiting the performances of our shortcut decompression.

V. CONCLUSION

In conclusion, we presented in this article the first exper-
imental realization of the faster-than-adiabatic displacement
and cooling of an ensemble of magnetically trapped ultracold
atoms using an optimal decompression sequence based on
invariants of motion. Using this formalism, we derived optimal
trap frequency trajectories in the case of a time-dependent har-
monic potential plus a time-independent linear term account-
ing for gravity. Our solution also applies to the simpler case of
a purely harmonic potential such as that treated in Ref. [13].
We demonstrated the validity of our scheme by applying a
fast (35 ms) 15-fold frequency decompression to the trap
in the vertical dimension, yielding a residual center-of-mass
oscillation of the cloud equivalent to that of 1.3-s-long linear
decompression (a reduction by a factor of 37). As a future
prospect, one could apply this technique to more isotropic traps
(such as crossed dipole traps) to obtain a faster and efficient
cooling in 3D and produce very low temperatures. Optimal
trajectories could also be searched for in other situations such
as the moving quadrupole magnetic traps often used to trans-
port cold atoms [7]. This method can also be readily applied
to a Tonks gas [21] and to Bose-Einstein condensates (BEC)
with some restrictions on the dimensionality due to the scaling
of the interaction term [22,23]. More generally, these optimal
faster-than-adiabatic schemes could be adapted to many areas
of physics where time-dependent Hamiltonians are employed.
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