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The quantum walk was originally proposed as a quantum-mechanical analog of the classical random walk,
and has since become a powerful tool in quantum information science. In this paper, we show that discrete-time
quantum walks provide a versatile platform for studying topological phases, which are currently the subject
of intense theoretical and experimental investigations. In particular, we demonstrate that recent experimental
realizations of quantum walks with cold atoms, photons, and ions simulate a nontrivial one-dimensional
topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological
phases, which have been classified in one and two dimensions. We further discuss the existence of robust edge
modes at phase boundaries, which provide experimental signatures for the nontrivial topological character of the

system.
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I. INTRODUCTION

Quantum walks, the quantum analogs of classical random
walks [1], form the basis of efficient quantum algorithms [2,3],
and provide a universal platform for quantum computation [4].
Much like their classical counterparts, quantum walks can
be used to model a wide variety of physical processes
including photosynthesis [5,6], quantum diffusion [7], optical
or spin pumping and vortex transport [8], and electrical
breakdown [9,10]. Motivated by the prospect of such an
array of applications, several groups have recently realized
quantum walks in experiments using ultracold atoms in optical
lattices [11], trapped ions [12,13], photons [14,15], and nuclear
magnetic resonance [16]. These systems offer the possibility
to study quantum dynamics of single or many particles in a
precisely controlled experimental setting.

Here, we show that quantum walks can be used to explore
dynamics in a wide range of topological phases [17-19]. Inter-
est in topological phases was first sparked by the discovery of
the integer-quantized Hall 1QH) effect [19,20], and has rapidly
increased in recent years following the prediction [21-23] and
experimental realization [24,25] of a new class of materials
called topological insulators. Unlike more familiar states
of matter, such as the ferromagnetic and superconducting
phases, which break SU(2) (spin-rotation) and U(1) (gauge)
symmetries, respectively, topological phases do not break
any symmetries and cannot be described by any local-order
parameters. Rather, these phases are described by topological
invariants, which characterize the global structures of their
ground-state wave functions. Topological phases are known
to host a variety of exotic phenomena, such as fractional
charges and magnetic monopoles [26,27]. Motivated by such
possibilities, there has been a great effort to realize and study
topological phases in well-controlled systems composed of
photons [28] or cold atoms and molecules [29—42].

In this paper, we investigate the realization of topological
phases in discrete-time quantum walks (DTQWs). Ina DTQW,
a walker with a twofold internal spin degree of freedom is made
to hop between adjacent sites of a lattice through a series of
unitary operations [Fig. 1(a)]. As we explain subsequently, this
discrete-time quantum dynamics can be described in terms of
an effective band structure [see Fig. 1(b)] with strong spin-
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orbit coupling. We will show that the one-dimensional (1D)
version of the DTQW, which was recently demonstrated in
experiments [11,12,14,15] realizes a nontrivial 1D topological
phase. This topological phase is analogous to that of the
Su-Schrieffer-Heeger (SSH) model of polyacetylene [17].
The topology of this phase is characterized by a nonzero
winding of the spinor eigenstates on a great circle of the Bloch
sphere, as illustrated in Fig. 1(b). We discuss how, with slight
modifications of the DTQW protocol, DTQWs can realize a
wide range of topological phases in 1D and two dimensions
(2D).

The class of topological phases, which can be realized
in a system of noninteracting particles is determined by the
dimensionality of the system and the underlying symmetries of
its Hamiltonian. Figure 2 shows the ten classes of topological
phases, which can arise in 1D and 2D systems with and without
time-reversal symmetry (TRS) and particle-hole symmetry
(PHS) (see Refs. [26,43,44] and discussion following). If both
symmetries are absent in 1D, the possibility of a distinct
chiral symmetry creates an additional class of topological
phases. Within each class, the allowed phases are character-
ized by either an integer (Z) or a binary (Z;) topological
invariant. In DTQWs, both PHS and TRS can be realized
by an appropriate choice of the DTQW protocol. While a
single class of topological phase is typically realized in any
particular condensed-matter system, we find that DTQWs
can be used to simulate all of the phases listed in Fig. 2.
Thus, DTQWs provide a powerful realizable platform that
enables the experimental study of the entire periodic table of
topological phases classified in Refs. [43,44] in 1D and 2D.

The nontrivial topological properties of the systems clas-
sified in Fig. 2 are manifested in the presence of robust
edge states at phase boundaries (i.e., zero energy bound
states [18] and gapless edge modes [45] in 1D and 2D systems,
respectively). We propose a scheme to identify the presence of
topological phases through the observation of edge modes at
an interface between regions where different DTQW protocols
are applied.

The prospect of creating topological phases in atomic or
optical systems using DTQWs offers a unique opportunity to
study dynamics in these phases using direct local probes of the
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FIG. 1. (Color online) (a) One-dimensional DTQW protocol.
First, the walker’s internal spin is rotated through an angle 6 about the
y axis. Then, the walker is coherently translated by one lattice site to
the right (left) if its spin is up (down), respectively. The quantum walk
is produced by repeatedly applying this combined step operation.
(b) Effective band structure of 1D DTQW with 6 = /2. The spinor
eigenstates at each momentum k are directed along the unit vector
ny (k) [see Eq. (6)], as represented on the Bloch sphere. ny (k) always
lies on a plane perpendicular to a constant vector A, containing the
origin (see text). Note that ny(k) winds around the origin once as k
traverses the Brillouin zone (BZ).

particle’s wave function. Moreover, the unprecedented control-
lability of these systems opens the possibility for systematic
investigations of quantum phase transitions between different
topological phases, and of the robustness of these phases to
a variety of perturbations including impurities, decoherence,
interactions, and explicit breaking of symmetries.

II. TOPOLOGICAL PHASES IN 1D

The 1D DTQW protocol employed in recent experi-
ments [11-16] is depicted schematically in Fig. 1(a). The
basis states of the system are described in terms of the
position of the walker, defined on integer lattice sites x, and
its internal spin state, which can be either up (1) or down ({).
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FIG. 2. (Color online) Topological phases realized by DTQWs.
DTQWs can naturally realize all ten classes of nontrivial topological
phases in 1D and 2D, see Refs. [43,44]. TRS and PHS are defined
by the existence of antiunitary operators 7" and P satisfying Eqs. (7)
and (8), and may be absent, or present with 72 = &1 (P? = £1).
In the absence of both TRS and PHS, a distinct chiral symmetry
with a unitary I" satisfying Eq. (9) may be found. In each case, the
symmetry-allowed phases are classified by an integer (Z) or binary
(Z,) topological invariant. Classes containing the SSH model [17],
IQH [19,20], and quantum spin Hall (QSH) [21-25] phases are
indicated.
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The quantum evolution is produced by repeatedly applying a
unitary operation,

U®) = TRO), (1)

that defines one step of the quantum walk. Each step consists
of a spin rotation R(8), followed by a coherent spin-dependent
translation,

T= [+ D@ M T+ 1x = DixI @)L )

that shifts the walker to the right (left) by one lattice site if its
spin is up (down). This step protocol is a unitary generalization
of the classical process in which a random walker hops left or
right according to the outcome of a stochastic coin flip. Here,
as in the experiments of Refs. [11-13], we consider the case
where R(6) corresponds to a spin rotation around the y axis
through an angle 6,

R(O) = [cos 6/2)

—sin(0/2
. sin (6/ )]. 3)
sin (6/2)

cos (0/2)

Although the step protocol is defined explicitly in terms of
the discrete unitary operations 7 and R(0), the net evolution
over one step is equivalent to that generated by a time-
independent effective Hamiltonian H(0) over the step time
dt,

U@©) =e HOd p—1. 4)

The evolution operator for N steps is given by UM (0) =
e HON S Thys, the DTQW provides a stroboscopic simu-
lation of the evolution generated by H(0) at the discrete times
N §t. In the following, we take units in which §z = 1.

The DTQW protocol described earlier is translationally
invariant. The evolution operator U(0) and the Hamiltonian
H (0) are thus diagonalized down to 2 x 2 blocks in the basis
of Fourier modes |k) ® |o) = \/#27 > e " x) ® |o), with
—m < k < 7. For the choice of R(9) in Eq. (3), H(A) can
be written as

T
H(®) = / dk [Eg(k)ng(k) - o] ® |k) (K], ®)
where 0 = (0y,0,,0;) is the vector of Pauli matrices and the
unit vector ng(k) = (nx,ny,n;) defines the quantization axis
for the spinor eigenstates at each momentum k. Because the
evolution is prescribed stroboscopically at unit intervals, the
eigenvalues +Ey (k) of H(0) are only determined up to integer
multiples of 2w. The corresponding band structure is thus
a quasienergy spectrum, with 2z periodicity in energy. For
0 # 0 or 2w, explicit expressions for Ey(k) and ng(k) are
given by cos Ey(k) = cos(6/2) cos k and

[sin (6/2) sin k, sin(6/2) cos k, — cos(0/2) sin k]

no (k) = sin Ey(k)

(6)

A typical band structure +Fy(k) is shown in Fig. 1(b). Note
that for 6, = 0 or 2, the spectrum of H(6,) is gapless, and
ng, (k,) is ill defined for k, = 0,7.

Hamiltonians of the form (5) can support topological phases
if they possess certain symmetries, as indicated in Fig. 2. The
TRS and PHS of this table are defined by the existence of
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FIG. 3. (Color online) (a) One-dimensional split-step DTQW protocol, see Eq. (10). (b) Winding number associated with the split-step
DTQW as a function of the spin-rotation angles 6, and 6,. Topologically distinct gapped phases are separated by phase-transition lines
where a gap closes at either £ = 0 or E = 7. (c) Phase boundary in the spatially inhomogeneous split-step DTQW. In the second rotation
stage of Eq. (10), the walker’s spin is rotated by an angle 6,(x) = %(92, +6,,) + %(GH — 6,_) tanh (x/3). (d), (¢) Dynamics of the spatially
inhomogeneous split-step walk, with the walker initialized with spin up at x = 0. In both panels, we take 6; = —x/2 and 6, = 37 /4,
corresponding to winding number O in the region x < 0 [white dot (middle) in panel b]. In (d), we create a phase boundary by taking
6+ = m/4, which gives winding number 1 for x >> O [see blue dot (bottom) in panel b]. After many steps, the probability to find the walker
near x = 0 remains large, indicating the existence of at least one localized state at the phase boundary. For this particular example, numerical
diagonalization shows that there are three localized states at this boundary. In (e), we take 6,, = 117/8 [orange (top) dot in panel b], so that
the quantum walk in all regions is characterized by winding number 0. In this case, the probability to find the walker near x = 0 after many

steps decays to 0, indicating the absence of a localized state at the boundary.

antiunitary operators 7 and P satisfying

THT '=H, (7)
PHP' = —H. (8)

The Hamiltonian H(6) given by Egs. (5) and (6) possesses
PHS ((8) with P = K, where K is the complex conjugation
operator. To see this, note that the evolution operator U(6)
given by Egs. (1)-(3) is real, and thus invariant under K.
Along with Eq. (4), this implies H*(#) = —H(#), which
satisfies Eq. (8) with P = K. In addition, using Eq. (6), it is
straightforward to check that H(0) possesses a unitary chiral
symmetry of the form

T,'H@)y = —H(0), ©)

with Ty = e7™49/2 where Ay = [cos (6/2),0, sin (6/2)] is
perpendicular to ng (k) for all k. The presence of both PHS (8)
and chiral symmetry (9) guarantees that H (6) is invariant under
TRS (7) with 7 = T'y'P, see Refs. [43,44].

The symmetry classes identified in Fig. 2 are distinguished
by whether the relevant symmetry operators 7 and P square to
1 or —1. Because here both 72 = 1 and P? = 1, H(6) belongs
to the class of Hamiltonians labeled SSH. The corresponding
integer-valued topological invariant Z has a simple geometri-
cal interpretation. Chiral symmetry (9) constrains ny (k) to lie
on a plane, which is perpendicular to Ay, and which contains
the origin [see Fig. 1(b)]. Thus, H(#) can be characterized
by the number of times ny(k) winds around the origin as k
runs from —z to 7. Since the winding number of ng (k) given
by Eq. (6) is 1 for all 8 # 0,27, the DTQWSs implemented
in experiments [11-13] simulate the Z = 1 SSH topological
phase.

The nontrivial topological character of the system can be
revealed at a boundary between topologically distinct phases.
To open the possibility to create such a boundary, we introduce
the split-step DTQW protocol shown in Fig. 3(a). Starting from
the DTQW defined by Eq. (1), we split the translations of the
spin-up and spin-down components, and insert an additional
spin rotation R(6,) around the y axis in between,

Us(01,00) = T\ R(6,) Ty R(61), (10)

where Ty shifts the walker to the right (left) by one lattice
site if its spin is up (down).

The split-step protocol defines a family of effective Hamil-
tonians Hg(6),6,) parametrized by the two spin-rotation angles
0; and 6,. This family realizes both Z =0 and Z = 1 SSH
topological phases as displayed in Fig. 3(b), with chiral
symmetry (9) given by Iy, 9, = Tp,, P = K, and T = [y, P.
We give the derivation of the phase diagram of Fig. 3(b) in
Appendix A. Gapped phases with winding numbers Z = 0
and Z =1 are separated by phase-transition lines where
the quasienergy gap closes at either E =0 or E = +£m, as
indicated in the figure.

We propose to create a phase boundary in the DTQW by
replacing the second (spatially uniform) spin rotation R(6;) of
Eq. (10) with a site-dependent spin rotation R[6(x)], which
rotates the walker’s spin through an angle 6,(x) about the y
axis at each site x. Specifically, we consider the situation where
0>(x) — 6,_ forx <« 0and changes monotonically to 6,(x) —
6,4 for x > 0 [see Fig. 3(c)]. Although this protocol is not
translationally invariant, symmetries (7)—(9) are preserved. In
particular, the system retains the chiral symmetry under Iy,
for arbitrary 6,(x) as long as 6; remains uniform.
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FIG. 4. (Color online) (a) Translation vectors for the triangular lattice 2D quantum walk defined in Eq. (11). (b) Chern number associated
with the 2D DTQW as a function of the rotation angles 6, and 6,. (c) Geometry of an inhomogeneous 2D quantum walk with periodic boundary
conditions. In the red (middle) region, we take 6; = 6, = 37 /2, corresponding to Chern number —1, while in the white (top and bottom)
regions, we take 6; = 6, = 7x /6, corresponding to Chern number O [see colored dot (upper) in panel (b)]. Arrows indicate the propagation
directions of chiral edge modes localized at the two boundaries. (d) Quasienergy spectrum of the inhomogeneous 2D quantum walk depicted
in panel (c) for a 100 x 100 site lattice. The BZ for momentum k, parallel to the interface is defined for the doubled unit cell accessed by U,p,
Eq. (11). Two branches of chiral edge modes connect the upper and lower bands. The dotted (solid) line corresponds to the mode localized at

the upper (lower) boundary in panel (c).

When the rotation angles (6;,6,+) and (8;,0,_) are chosen
to realize topologically distinct phases with Z = 0and Z = 1
in the regions x < 0 and x >> 0, a bound state with energy 0
or 7 exists near the phase boundary x = 0 [18]. The existence
of such a bound state is guaranteed by topology, and does not
depend on the details of the boundary. The bound state can be
probed by initializing the walker at x = 0 as demonstrated
in Fig. 3(d). Because this initial state has a nonvanishing
overlap with the bound state, part of the walker’s wave packet
will remain localized near x = 0. On the other hand, if the
pairs (01,0,1), (01,0,_) are chosen to lie within the same
diamond-shaped region of Fig. 3(b), then the system can
be made spatially uniform through a continuous deformation
of the Hamiltonian without closing either gap at £ =0 or
E = m. In this case, there are no topologically protected
modes localized at the boundary. For monotonic 6,(x), this
guarantees that the system does not support any bound states,
and the probability to find the walker at x = 0 decays to zero
with an increasing number of DTQW steps [see Fig. 3(e)].
The existence and absence of localized states at the boundary
has been confirmed through numerical as well as analytical
methods (See Appendix E).

With further modifications to the DTQW protocol, each
of the topological classes in 1D given in Fig. 2 can be
realized. The examples and detailed analysis of 1D quantum
walk corresponding to each topological phase are described in
Appendix B. In addition, as we will now discuss, a straightfor-
ward extension of the protocol to a higher-dimensional lattice
allows the DTQW to simulate topological phases in 2D.

III. TOPOLOGICAL PHASES IN 2D

To begin, we consider a family of 2D quantum walks
in which the walker possesses two internal states as in the
previous 1D DTQWs. Nontrivial topological phases can be
realized in a variety of 2D lattice geometries. Here, we consider
the case of a triangular lattice, and discuss equivalent square
lattice realizations in Appendix C. One step of the quantum
walk is defined by the unitary operation,

Uyp(61,02) = T3R(01) T2 R(02)T1 R(61), (11)

where T; (i = 1,2,3) translates the walker with spin up (down)
in the 4+(—)v; direction, with {v;} defined in Fig. 4(a). The net
result of Eq. (11) is to make the walker hop between sites
of a superlattice defined by twice the primitive unit cell. The
effective Hamiltonian for this 2D DTQW takes the form of
Eq. (5) with the integration over k = (k,,k,) taken over the
2D BZ of the superlattice.

We now study the topological properties of the 2D DTQW:s
defined by Eq. (11). The corresponding effective Hamiltonians
lack TRS, and are thus contained in the symmetry classes in
the bottom row of Fig. 2. Because U,p is real, this system
possesses PHS with P = K (see before). With a slight
modification, this symmetry can be broken, and phases in
the class labeled IQH in Fig. 2 can also be realized (see
Appendix B). These phases are analogous to those of the
Haldane model [46], which exhibits an IQH effect in the
absence of a net magnetic field.

The phases realized by the 2D DTQW, Eq. (11), are
characterized by an integer-valued topological invariant called
the first Chern number. This quantity is defined in terms of the
unit vector n(k), see Eq. (5), as C = % fBz d*k[n - (O, M X
0r,n)]. Geometrically, the Chern number is equal to the number
of times n(k) covers the unit sphere as k is taken over the
2D BZ. We have numerically calculated Chern numbers for
2D DTQWs throughout the full range of spin-rotation angles
0, and 6,. We describe the details for the determination of
the phase diagram for Fig. 4(b) in Appendix D. As shown in
Fig. 4(b), phases with C = 0 and with C = %1 can be realized.

Similar to the 1D case, nontrivial topology in 2D DTQWs is
manifested in the presence of protected midgap modes bound
to the interface between two topologically distinct phases.
These gapless modes are analogous to the chiral edge modes
of quantum Hall systems, and are robust against perturbations.
To confirm the existence of such edge modes, we have used
numerical diagonalization to study a nonuniform 2D DTQW
on a 100 x 100 site triangular lattice with periodic boundary
conditions, see Fig. 4(c). We take the spin-rotation angles
0, and 6, in Eq. (11) to be site dependent, with 0;(y) =
6,(y) = 37 /2 chosen to realize the C = —1 phase inside the
red (middle) strip 25 <y < 75, and 6,(y) = 6,(y) =T /6
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chosen to realize the trivial C =0 phase outside. The
quasienergy spectrum is plotted in Fig. 4(d) as a function
of the conserved momentum component k, parallel to the
interface. Two counterpropagating chiral edge modes exist
inside the bulk gap. These modes are separately localized at
the two boundaries between the C = 0 and C = —1 phases,
as indicated in Fig. 4(c).

As described previously for 1D, these chiral edge modes
can be probed by performing the spatially inhomogeneous
2D DTQW described earlier with the walker initialized at the
boundary between two topologically distinct phases. Because
a general state localized near the phase boundary has a nonzero
overlap with the chiral edge mode, part of the walker’s wave
packet will propagate unidirectionally along the boundary.
Such unidirectional propagation is protected by topology, and
hence is robust even in the presence of an irregularly shaped
boundary.

Finally,we present a time-reversal-invariant 2D DTQW
with 72 = —1, which can realize the QSH phase (see Fig. 2).
The realization of this phase requires the presence of at least
four bands, which contain two pairs of time-reversed partners.
Therefore, we now consider a DTQW where the walker
possesses four internal states (e.g., a four-level atom, see also
experiment [12]). We label these four states by a spin index o,
which takes the values 1 and |, and a flavor index t, which
takes the values A and B. The time-reversal-invariant unitary
step operator Urtgy is constructed in a block-diagonal form

U= (Y4 ° (12)
TRI — 0 UB )

where Uy (Up) only acts on the walker if its flavor index
is equal to A (B). By fixing Ug = U!, we ensure that
Urri is invariant under the TRS operation 7 =it K,
where 7, is a Pauli matrix, which acts on the flavor index.
As an example, if U, is chosen according to Eq. (11),
then Up = R(—0)T R(—62)T) R(—6,)T; . Note that T,
translates the walker in the direction —(+4)v; if its spin is up
(down) (i.e., TiT) acts opposite to 7;.

Time-reversal invariant systems in 2D with 72 = —1 are
characterized by a Z, topological invariant (middle row of
right panel in Fig. 2). If 6; and 6, are chosen such that
U, is characterized by an odd Chern number, then Urgg
realizes a QSH phase with the Z, invariant equal to 1 [21].
Strictly speaking, the effective Hamiltonian corresponding to
Urgry conserves the flavor index t and, as a result, supports
topological phases classified by an integer Z, rather than the
binary invariant Z,. However, this additional symmetry can
be broken by introducing a coupling between A and B states,
which preserves TRS. In this way, the generic Z, classification
can be retrieved. Explicit examples of 2D quantum walks
corresponding to each topological phase in Fig. 2 are given
in Appendix B.

IV. DISCUSSION AND SUMMARY

Because the edge modes bound to interfaces between
topologically distinct phases in 1D and 2D are topologically
protected, their existence is expected to be robust against a
broad range of perturbations, which may arise in real experi-
ments. In particular, their existence is insensitive to the details

PHYSICAL REVIEW A 82, 033429 (2010)

of the boundaries, which may be sharp or smooth, straight or
curved (in 2D), etc. In some cases, the topological protection
arises from certain symmetries (e.g., chiral symmetry in the
1D examples before). However, even if these symmetries are
slightly broken by small errors in the spin-rotation axes and/or
angles, the edge states are expected to persist due to the absence
of nearby states inside the bulk energy gap.

Throughout this paper, we have focused on signatures
of topological phases in single-particle dynamics. However,
some dramatic manifestations of topological order (e.g.,
charge fractionalization and the quantization of the Hall
conductivity) appear for specific many-body states such as
the filled-band ground states of fermionic systems. To observe
these phenomena in DTQW s with multiple walkers, analogous
many-body states can be prepared schematically as follows.
For special choices of the DTQW parameters, the Bloch
eigenstates are simple (i.e., local in space, and uniform in spin).
By preparing a single filled band comprised of such states,
more complicated filled-band states can be obtained through
a quasiadiabatic evolution in which the DTQW parameters
are changed slightly from step to step. Even if an energy gap
closes along the way, the number of excitations created in the
process can be controlled by the effective sweep rate. In this
way, many-body aspects of topological phases may also be
studied using DTQWs.

In this paper, we have shown that DTQWs provide a unique
setting in which to realize topological phases in 1D and 2D.
With only slight modifications to the quantum walk protocol,
which was realized in recent experiments, the entire periodic
table of topological insulators [26,43,44] in 1D and 2D can
be explored. In addition, we have provided a method to detect
the presence of topological phases through the appearance of
robust edge states at boundaries between topologically distinct
phases.

Recently, several promising system-specific methods have
been proposed to realize topological phases using cold
atoms [29—41], polar molecules [42], or photons [28]. Our
work advances this emerging field by providing a general
framework for studying topological phases in a wide variety of
available experimental systems including cold atoms, trapped
ions, and photons. In the case of DTQWSs, engineering
of topological phases in DTQWs is enabled through the
nonperturbative effect of dynamical drives.

By extending this work to three dimensions, it may be
possible to realize new topological phases, such as the Hopf
insulator [47], which have not yet been explored in condensed-
matter systems. In addition, multiparticle generalizations of
DTQWs will open new avenues in which to explore the
quantum many-body dynamics of interacting fermionic or
bosonic systems.
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APPENDIX A: DETERMINATION OF THE PHASE
DIAGRAM FOR 1D SPLIT-STEP DTQW

The unitary evolution of the 1D split-step DTQW,
Eq. (10), is generated by a Hamiltonian of the form
of Eq. (5) with cos E(k) = cos(6,/2) cos(0;/2) cos k —
sin (6, /2) sin (6,/2), and

cos (6>/2) sin(6,/2) sin k

nx(k) = . s
sin E(k)
) sin (6,/2) cos (61/2) + cos (62/2) sin (6, /2) cos k
ny = )
Y sin E(k)
— 6,/2 61/2) sin k
n.(k) = cos (6,/ .) cos (61/2) sin . (AD)
sin E(k)
It is straightforward to check that A(9)) =

[cos (61/2),0, sin(6;/2)] is perpendicular to n(k) for all
k. Therefore, the system possesses chiral symmetry (9) with
['(6)) = e~ i™AOD9/2  Ag a result, the split-step DTQW can
be characterized by the winding number of n(k) around the
origin, denoted by Z. Using the explicit expression for n(k) in
Eq. (Al), we find Z =1 if |tan (6,/2)/tan (0;/2)| < 1, and
Z = 0if |tan (6,/2)/tan (6, /2)| > 1. The spectrum is gapless
along the lines |tan (6,/2)/tan (6;/2)| = 1. Thus, we obtain
the phase diagram displayed in Fig. 3(b).

APPENDIX B: EXPLICIT DTQW PROTOCOLS FOR ALL
TOPOLOGICAL CLASSES

In this section, we provide explicit DTQW protocols, which
can be used to realize topological phases in each of the
symmetry classes listed in Fig. 2 of the main text. These
protocols are summarized in Fig. 5. Each DTQW presented
in Fig. 5 can realize both trivial and nontrivial phases within a
given symmetry class. The specific phase, which is realized is
determined by the spin-rotation angles, which parametrize the
quantum walk; the system can be driven through a topological
phase transition by tuning these spin-rotation angles. In the
following, we denote the presence of TRS with 72 = +1 by
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TRS = +£1, and the absence of TRS by TRS = 0. Similarly,
we denote the presence of PHS with P2 = &1 by PHS = +1,
and its absence by PHS = 0. We denote the presence of chiral
symmetry under the unitary operator I' by CH = 1, and its
absence by CH = 0. Note that because the chiral symmetry
operator I is unitary, rather than antiunitary, the phase of its
square does not carry any additional information. In particular,
the transformation I' — €T results in I'> — ¢%°I"2. For all
of the DTQWs considered later, the presence of any two of
the symmetries {TRS, PHS, CH} automatically ensures the
presence of the third. For example, if a system possesses PHS
and CH under the operators P and I', then it also possesses
TRS under the operator 7 = PT.

1. Doubling procedure

Quantum walks with TRS = —1 can be readily constructed
from DTQWs with TRS = 0 through the doubling procedure
used to construct Upgrr [Eq. (12)] in the main text. First, the
walker is endowed with an additional twofold flavor index
7, which can take either the value A or B. We then choose
an evolution operator, which is diagonal in the flavor index
and which satisfies Up = UX, where Uy(p) is the evolution
operator, which acts on the walker with flavor A(B). With this
possibility in mind, in the following, we focus on examples
with TRS = 0.

2. One-dimensional topological phases

a. Symmetry classes:
{TRS=0,PHS =0, CH=1}(2)
{TRS =-1,PHS = -1, CH =1} (2)

The split-step DTQW described by Eq. (10) of the main
text realizes the symmetry class with TRS = 1, PHS = 1, and
CH = 1. By an appropriate change of the direction of the
spin-rotation axes, TRS and PHS can be broken, while CH is
retained. Thus, in order to realize the related symmetry classes

212 121 222 120
T P I . 1D DTQW protocol T P I : 2D DTQW protocol
(TRS)I(PHS): (CS) (TRS):(PHS) 1 (CS)
1:1:1: THy (0) or — UL = TyR, (0,)TuRs(02)Ti Ry (61)
Lo MRG)TIROY e T
: | Trra TR (0) or : | V(U 0 inyoye/? 1 0 -
=i | L P D )
' ' ' Ug 0 ' ' ' v, 0
ettty (6 ewr) fmeliml (V)
—: 1 :— EUss’ =T\ R,(02) T' R, (0)T || — : 1 :— EU2D*TsRy(f)l)TzRy(92)TlRy(91)
o Ue 0 N\ || 4 A N
i () iy (8 )

FIG. 5. DTQW protocols for each symmetry class of topological phases in 1D and 2D. By tuning the rotation angles, all of these examples
can realize both trivial and nontrivial topological phases within each class. Here, T translates the walker to the right (left) if its spin is up
(down), while T} (T, ) translates only the spin-up (-down) component to the right (left). In 2D, the translation 7; shifts the walker in the v; (—v;)
direction if its spin is up (down), see Fig. 4(a) of the main text. A spin-rotation operator R, (9) rotates the walker’s spin through an angle 6 about
the axis u € {y,o,8}, where o = %(0, 1,1), and B = [sin (7/8), cos (;r/8),0]. In most cases, quantum walks with TRS = —1 and PHS = —1
are obtained by the doubling procedure starting from a quantum walk with evolution operator Uy, which has TRS = 0 and PHS = 0. Such
cases are separated by dotted lines. See main text for descriptions of the relevant symmetry operators.
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TRS =0, PHS = 0, and CH = 1, we will break the PHS of
the split-step DTQW.

In the main text, we showed that any DTQW whose unitary
evolution operator is real possesses PHS with P = K, where
K is the complex-conjugation operator. The existence of PHS
is in fact more general: If the two spin rotations in a split-step
DTQW are performed around the same axis, and if that axis
lies in the xy plane, then the DTQW will have PHS = 1. To
see this, suppose that both rotations are performed around the
axis (sin ¢, cos ¢,0). It is then straightforward to check that
the resulting effective Hamiltonian possesses PHS under the
operator P = e 19:¢/2K ¢io:¢/2,

On the other hand, PHS is absent if we choose a rotation
axis that contains a nonzero z component. An example of a
DTQW with PHS = 0 is provided by the evolution operator,

Ug(61,6,) = T, Ry(62) Ty Ry (61), (B1)
where R,(0) is a spin rotation around the axis o =
\/%(0, 1,1) through the angle 6. Although PHS is ab-
sent, this system possesses chiral symmetry under the
symmetry operator [, (6;) = ie 74«(@)9/2 \where A,(6)) =
[cos (6,/2), \/Li sin (0 /2), «/Li sin (01 /2)]. The absence of TRS
can be checked in the following way. If the energy eigenvalues
of the two states with momentum k are given by | E(k)|, then
TRS = +£1 requires |E(k)| = |E(—k)|. We have explicitly
checked that this relation is not satisfied for the DTQW defined
by Eq. (B1), and thus conclude that TRS is absent.

The preceding split-step DTQW, Eq. (B1), can realize
distinct topological phases by tuning the spin-rotation angle
6,. For example, the trivial phase with winding number Z = 0
is realized with 6; = m/2 and 6, = 3w /4, and the phase
with winding number Z =1 is realized with 6; = 7/2 and
92 =T / 4.

The recent experimental implementation of a DTQW with
photons [14,15] employed the rotation operator given by
the Hadamard gate Ry, = ie "™°/2, with n = 1/4/2(1,0,1).
Since the rotation axis contains a nonzero z component, we
conclude that this Hadamard walk belongs to the symmetry
classes TRS = 0, PHS =0, and CH = 1.

Using the doubling procedure described earlier, a TRS
DTQW with TRS = —1, PHS = —1, and CH =1 can be
constructed based on the DTQW defined in Eq. (B1). The
corresponding evolution for one step of the DTQW is given by
diag {U;‘;(@l,02),[U§'§(91,02)]T}. It is straightforward to check
that this quantum walk possesses chiral symmetry under
the operator I' = diag [I",(61),I";(01)]. By construction, this
DTQW possesses TRS = —1 with 7 =it,K. Using these
tho symmetries, we construct a PHS operator P = I'7 with
P=—1.

b. Symmetry classes:
{TRS =0, PHS =1, CH = 0} (Z,)
{TRS = -1, PHS =1, CH = 1} (Z,)

The construction of a DTQW with TRS =0, PHS =1,
and CH = 0 starts from the split-step DTQW with TRS =1,
PHS =1, and CH = 1 [see main text, Eq. (10)]. The chiral
symmetry can be broken by adding extra operations to the
split-step DTQW. On the other hand, in Sec. 2 a, we showed
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that PHS can be retained quite generally as long as the two
rotation axes are the same and are taken to lie on the xy plane.

In order to construct a DTQW with CH = 0, we begin with
Eq. (10) and add an additional spin-dependent translation T,
which translates the walker to the right (left) by one lattice site
if its spin is up (down) [see Eq. (2)]. Explicitly, the evolution
operator for one step of a representative DTQW from this
symmetry class is given by

Usy (01,62) = T\ R\ (62) Ty Ry (01T, (B2)

where R, () is a spin rotation around the y axis through an
angle 6 [Eq. (3)]. Since Ugy is real, this DTQW retains PHS =
1 with’ P = K.

The absence of chiral symmetry for this walk can be verified
by observing that the quantization axis n(k) does not lie on a
plane, which includes the origin. Therefore, no single operator
I" can be found that satisfies I’ H(k) = —H (k)I" for all k.

One-dimensional systems with PHS exhibit two distinct
topological phases [26]. These two phases are indexed by the
Berry phase, which can only take the quantized values 0 and
7 due to the presence of PHS. Explicitly, the invariant is given
by

dk
B = / Z(_l)<1/flb(k)|ak|wlb(k)>' (B3)

Here, |yn,(k)) is the eigenstate in the lower band with
momentum k. The DTQW described before can realize both
topological phases, with the trivial phase (B = 0) realized for
0 = m/2,0, = /6, and the nontrivial phase with B = 1/2
realized for 0; = 7 /2,0, = 2 /3.

Using the doubling procedure, we can construct a time-
reversal invariant DTQW with TRS = —1, PHS =1, and
CH = 1 based on Eq. (B2).

3. Two-dimensional topological phases

a. Symmetry classes:
{TRS = 0, PHS = 1, CH = 0} (Z)
{TRS = -1, PHS =1, CH = 1} (Z,)

The triangular lattice 2D DTQW defined by Eq. (11) of
the main text involves only spin rotations around the y axis.
Consequently, the evolution operator Usp, is real and possesses
PHS = 1 with P = K. Therefore, the time-reversal invariant
DTQW Urg; constructed from U,p, Eq. (12), is contained in
the symmetry classes TRS = —1, PHS = 1, and CH = 1.

As noted in the main text, Upg; is diagonal in the flavor
index T = A, B and thus possesses an extra symmetry related
to the conservation of 7,. Here, we describe a more general
2D DTQW with TRS = —1, which does not possess this
additional symmetry. The operator for one step of this modified
time-reversal invariant DTQW is given by

Us O . 1 0
Urny = ﬂryay<p/2 ,
T ( 0 1)e (o UB>

where U, (Up) acts on the walker if its flavor index is A (B).
The rotation e~'™%%/2 explicitly introduces mixing between
the A and B flavors, and thus breaks the conservation of .
This DTQW is characterized by TRS = —1 with the
symmetry operator 7 = it, K if Up is chosen according to

(B4)
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U = U/{. If the Chern number associated with U, is odd,
then Urgry with ¢ = 0 realizes a nontrivial QSH topological
phase. Because this phase is protected by TRS, the presence
of a small ¢ > 0 cannot take the system out of this phase.

b. Symmetry classes:
{TRS =0, PHS =0, CH = 0} (Z)
{TRS = -1, PHS = 0, CH = 0} (Z,)

The existence of topological phases characterized by a
nonzero Chern number does not rely on the presence of
PHS. Therefore, the topological phase with Chern number
1 in the TRS = 0, PHS = 1, and CS = 0 symmetry classes
can be directly transformed to the corresponding phase in
the TRS = 0, PHS = 0, and CS = 0 symmetry classes by a
perturbation, which breaks PHS. Such a perturbation can be
achieved by changing the rotation axis for the second rotation
stage in Eq. (11). The resulting DTQW single-step evolution
operator is given by

UL (61,60) = TsR(O) T2 Rg(0)Ti R(6)), (BS)

where R is a spin rotation around the y axis, and Rg(6)is a spin
rotation around the axis 8 = (sin ¢, cos ¢,0) with ¢ = /8.
The operators {7;} correspond to spin-dependent translations
along the directions {v;}, as defined in Fig. 4(a). The absence
of PHS is confirmed by examining the relationship between
energy eigenvalues |E(k)| and |E(—K)|. The presence of
PHS implies | E(k)| = | E(—Kk)|. This condition is violated for
DTQW (BS5). Therefore, this system does not possess PHS.

DTQW (B5) realizes both topologically trivial and non-
trivial phases with zero and nonzero Chern numbers. For
example, the choice 8 = 8, = 37/2 generates the phase with
Chern number —1, while 6; = 6, = 77 /6 corresponds to the
phase with Chern number 0. Since PHS is absent, this DTQW
belongs to the classes with TRS = 0, PHS = 0, and CS = 0.
The related time-reversal invariant DTQW constructed by
applying the doubling procedure to this walk has TRS = —1,
PHS =0, and CH = 0.

¢. Symmetry classes:
{TRS = 0, PHS = —1, CH = 0} (2)

Quantum walks with PHS = —1 can be constructed through
a doubling procedure similar to that used to construct DTQWs
with TRS = —1. Consider the block-diagonal evolution
operator,

Up = (24 ° (B6)
PHI — O UB 5

where U, (Up) acts on the walker if its flavor index is A (B).
If we choose Up = U}, then the resulting DTQWSs possess
PHS = —1 with P =ityK. By choosing U, according to
Eq. (B5) with parameters to give a Chern number of 1, Eq. (B6)
produces a DTQW, which realizes a nontrivial topological
phase in the symmetry classes TRS =0, PHS = —1, and
CH =0.
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FIG. 6. (Color online) Translation vectors for 2D DTQW on a
square lattice that realizes the phase diagram of Fig. 4 in the main
text. Crucially, v; satisfies the relation v = v; — v, just as in the
triangular lattice realization.

APPENDIX C: REALIZATION OF 2D TOPOLOGICAL
PHASES ON A SQUARE LATTICE

In the main text, we have provided examples of 2D
DTQWs, which realize topological phases on a triangular
lattice. However, these DTQWs can also be implemented on
a square lattice, as we explain later. A square lattice may be
easier to realize in some experimental implementations, such
as cold atoms in optical lattices.

Generally speaking, the phase diagram of a DTQW is
determined by the amplitude for the walker to hop from one
site to another after one complete step of the evolution. Thus,
as long as the hopping amplitudes between all pairs of sites
are preserved, geometrical deformations of the lattice do not
change the phase diagram. Therefore, the phase diagram of
a DTQW is insensitive to geometric deformations of its host
lattice.

In particular, 2D DTQWs with nonzero Chern numbers can
be realized on a square lattice by replacing the translations
along the vectors {v;} on the triangular lattice in Eq. (11)
with the vectors {w;} shown in Fig. 6. Here, w; = (1,1), w, =
(0,1), and w3 = (1,0). This protocol is obtained simply by
shearing the lattice used in Eq. (11) and Fig. 4(a). Note that
the diagonal translation along w; can be implemented by a
compound translation along (1,0) followed by a translation
along (0,1).

APPENDIX D: PHASE DIAGRAM OF THE 2D DTQW

Here, we briefly describe a general procedure for de-
termining the phase diagrams of 2D DTQWs. Because the
value of a quantized topological invariant can only change
across a phase boundary where a gap closes, we first identify
the lines in parameter space along which a gap vanishes in
the quasienergy spectrum. Once these phase boundaries are
determined, the topological phases between boundaries can be
identified by computing the topological invariant at any single
point within each region. For the 2D DTQW with an evolution
operator given by Eq. (11), we have obtained phase boundaries
analytically from the spectrum,

cos E(K) = {cos(6,/2) cos 6, cos [k - (vi 4+ V2)]
— sin(8,/2) sin 6, cos [k - (vi — v»)]} cos(v3 - K)
— cos (0,/2) sin[k - (vi + v»)] sin(v3 - k),
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which gives the lines shown in Fig. 4(b). We then numerically
evaluated the Chern number within each region using C =
% fBZ d’k[n - (3 n x 0k, m)] with the appropriate expression
for n(k).

APPENDIX E: LOCALIZED STATES AT A PHASE
BOUNDARY OF INHOMOGENEOUS SPLIT-STEP
1D DTQW

In addition to the dynamical simulations presented in the
main text, we have confirmed the existence of topologically
protected edge states with energy £ =0 or £ = 7 in the
1D split-step DTQW through an analytical calculation for
an infinite system with a sharp boundary, using 6,(x) = 6,_

PHYSICAL REVIEW A 82, 033429 (2010)

for x < 0 and 6,(x) = 6,4 for x > 0. Furthermore, we have
used numerical diagonalization to study the spectrum of a
finite (periodic) system on a ring, which hosts two phase
boundaries. In all cases, we find that, if the phases on
the two sides of a boundary are topologically distinct (i.e.,
characterized by different winding numbers Z), then a single
localized state with energy £ =0 or E = m exists at the
boundary.

For smooth boundaries as described in the main text, other
localized states that are not protected by topology could appear.
These bound states always appear in pairs with energies E and
—FE due to chiral symmetry. Therefore, when the phases on
the two sides of a boundary are topologically distinct, an odd
number of bound states appears at the phase boundary [18].
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