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Fluctuations in photoionization cross sections of singlet planar helium
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The fluctuating part of the total photoionization cross sections up to the 20th single ionization threshold from the
ground state of helium are investigated within a planar model of the atom. The calculated fluctuations reproduce
existing experimental observations rather well. The fluctuations are mainly due to a dominant series of resonances
which can be associated with an approximate quantum number F = N − K . As the energy approaches the double
ionization threshold, the dominant role of a single series as sole contributor is apparently lost as new series start
to contribute significantly to the cross sections.

DOI: 10.1103/PhysRevA.82.033422 PACS number(s): 32.80.Fb, 31.15.A−, 32.30.−r

I. INTRODUCTION

Despite the seemingly simple problem of three charged
particles with known interactions, there exists no comprehen-
sive understanding of highly doubly excited states of two-
electron atoms. As compared with hydrogen, helium contains
the electron-electron interaction which is responsible for the
complex classical dynamics [1,2]. On the quantum level, the
spectrum of the semiclassical regime of highly doubly excited
states is expected to be influenced by the underlying classical
chaotic dynamics; and typical signatures of quantum chaos,
such as a Wigner distribution of the energy spacings between
nearest-neighbor resonances [3], semiclassical scaling laws for
the fluctuations in the spectrum close to the double ionization
threshold [4], or Ericson fluctuations [5–7], are expected to
become observable [8].

Doubly excited states of two-electron atoms are organized
in series converging toward the single ionization thresholds
(SITs) IN of He(N )+ states. Starting from the fourth SIT,
members of higher lying series interfere with lower series.
Above the eighth ionization series, the widths of the resonances
can be larger than their separation [9,10]. Close to the double
ionization threshold (DIT), the density of states increases
significantly. As a consequence, it has long been speculated
about the existence and onset of the Ericson regime of strongly
overlapping autoionizing states. Also, the number of open
channels increases dramatically approaching the DIT. There-
fore, an accurate treatment of this problem defines a theoretical
and numerical challenge. Studies on quantum chaos of the
one-dimensional (1D) helium atom have predicted Ericson
fluctuations in the total photoionization cross sections (TPCS)
to be observable above I34 [11,12], and studies within the s2

model find Ericson fluctuations in the partial inelastic cross
sections between electrons and He+ already around I16 [13].
Currently available full three-dimensional (3D) approaches are
able to describe the spectrum up to the N = 17 threshold [12].
The analysis of the theoretical and experimental results up
to IN=17 in [12] reveals a clear dominance of principal
Rydberg series in the total photoionization cross section. These
series are associated with the approximate quantum number
F = N − K given in terms of the inner electron excitation N

and the parabolic quantum number K of Herrick’s algebraic
classification [14–16]. Consequently, Ericson fluctuations are
absent in this regime in clear contradiction with the predictions
of simplified models [13].

In a recent paper [17], we investigated the fluctuations in
the TPCS in the energy regime up to I20 of triplet planar (2D)
helium. In addition to the existence of dominant series in the
TPCS and of the approximate quantum number F for a large
fraction of the resonances, we observed also a competition
in the contributions between the dominant and subdominant
series at high energies which eventually could lead to an earlier
onset of Ericson fluctuations. The relevance of this competition
for the real atom is shown in this article, where we explore the
fluctuations in the TPCS from the ground state of singlet planar
helium into the resonances up to the 20th ionization threshold
and reproduce the observations by Jiang et al. [4].

The paper is organized as follows. In Sec. II, we outline
our theoretical and numerical setup. Section III provides a
description of the spectral properties of planar helium up to
the 20th ionization threshold, and discusses the role of Rydberg
series associated with the low-dimensional eZe configuration
in the TPCS. Section IV concludes the paper. Unless stated
otherwise, atomic units are used throughout this document.
For the conversion, 1 a.u. = 27.211 389 5 eV has been used.

II. THEORY AND NUMERICAL IMPLEMENTATION

A detailed description of our approach for planar helium
has already been presented elsewhere [17–20]. We will thus
give only a brief review of its most relevant aspects.

The Hamiltonian describing the helium atom, in atomic
units, reads as

H = �p2
1 + �p2

2

2
− Z

r1
− Z

r2
+ 1

r12
, (1)

where �pi and ri , i = 1,2, denote the respective momenta and
positions of both electrons, r12 represents the interelectronic
distance, the nucleus (with infinite mass) is fixed at the origin,
and Z is the nuclear charge. The classical dynamics generated
by this Hamiltonian is invariant with respect to the energy E

of the two-electron system [19–21]. In particular, the angular
momentum scales as Lsc = |E| 1

2 L. Therefore, for moderate
values of L and highly doubly excited states (E � 0), the
scaled angular momentum is close to zero, tantamount to an
almost planar three-body configuration. Precisely this is the
semiclassical energy regime in which one expects that classical
and quantum dynamics are similar. From now on we restrict
our problem to two dimensions, i.e., the electrons and the
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nucleus are confined to a plane. In this case, two successive,
parabolic coordinate transformations and a suitable rotation
completely regularize all singularities in the Hamiltonian
and finally allow one to identify the eigenvalue problem
generated by (1) with an eigenvalue problem describing four
coupled harmonic oscillators [18–20]. Consequently, (1) can
be represented in a basis set defined by the tensor product

|n1n2n3n4〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉 ⊗ |n4〉 (2)

of Fock states of the individual harmonic oscillators, and has
a purely algebraic representation in the associated annihi-
lation and creation operators that define the four-oscillator
algebra. This representation leads to a generalized eigenvalue
problem which involves polynomials of maximal degree 16
in the creation and annihilation operators, with altogether
1511 monomial terms, and thus allows a purely analytical
calculation of all matrix elements defining our eigenvalue
problem [19,20]. The Hamiltonian (1) is invariant under the
particle exchange symmetry P12 and the symmetry �x with
respect to the x axis. It also commutes with the total angular
momentum l. This leads to a reduction of the eigenvalue
problem.

The resolution of the resonances in the complex plane is
achieved with the help of the complex rotation method [22–26],
consisting of a rotation of the coordinates by a suitable
angle θ into the complex plane. In addition to this, we also
introduce a dilation of the coordinates by a real parame-
ter α. The complex dilation is thus achieved through the
transformations �r → α�r exp (iθ ) and �p → �p exp (−iθ )/α.
Though the dilation by α is a unitary transformation, the
whole transformation leads to a complex symmetric matrix
representation of the generalized eigenvalue problem. Its
spectrum is complex in general with the following properties:

(a) The bound states of the Hamiltonian (1) are invariant
under complex rotation.

(b) There are isolated complex eigenvalues Ei,θ = Ei −
i�i/2 in the lower half plane, corresponding to resonance
states. These are stationary under changes of θ , provided
the dilation angle is large enough to uncover their positions
on the Riemannian sheets of the associated resolvent [27,28].
The associated resonance eigenfunctions are square inte-
grable [29], in contrast to the resonance eigenfunctions of
the unrotated Hamiltonian.

(c) The continuum states are located on half lines, rotated by
an angle −2θ around the ionization thresholds of the unrotated
Hamiltonian, into the lower half of the complex plane.

Due to the polynomial character of the representation in
creation and annihilation operators, these complex symmetric
matrices have a sparse banded structure with 159 coupling
matrix elements in the band. The basis |n1n2n3n4〉 is properly
symmetrized and truncated for numerical implementation.
The description of highly doubly excited states requires the
diagonalization of a generalized eigenvalue problem involving
matrices of typically large dimensions (e.g., 394161 × 18498
for max(n1,n2,n3,n4) = 420 for the description of singlet P

states around the 20th ionization threshold). This is achieved
with the help of an efficient implementation of the Lanczos
algorithm [30–32], which uses advanced techniques of parallel
programming [33,34]. The numerical diagonalization was

carried out on large computers like the HLRB II of the
Bayerische Akademie der Wissenschaften [35].

The photoionization cross section can be calculated in terms
of the eigenvalues Ei,θ and eigenstates |ψi,θ 〉 of the complex
rotated Hamiltonian. The photoionization cross section from
the initial state |φin

E 〉 with energy Ein into the final states
mediated by a photon with energy ω is given by

σ (ω) = 4πω

c
Im

[∑
i

〈ψi,θ |R(θ )T |φin
E 〉2

Ei,θ − Ein − ω

]
, (3)

where T = �e · �r is the dipole operator with the light polariza-
tion �e, 〈ψi,θ | is the transpose of |ψi,θ 〉 in the representation
described above, and R(θ ) = exp [−θ (�r · �p + �p · �r)/2] is the
complex rotation operator. Transformation into the appropriate
coordinates allows one to represent the matrix elements of
the dipole operator in the creation and annihilation operators.
The sum in Eq. (3) includes all eigenvalues and eigenstates of
the rotated Hamiltonian. The continuum states are responsible
for the smooth background σbg of the cross sections, which
is the average of the cross sections. The fluctuating part
σfl = σ − σbg of the cross sections—which is dominated by
Fano profiles for low energies or by a strong fluctuating
pattern as the energy approaches the DIT—is determined by
the resonances. Therefore, in order to numerically calculate the
fluctuating part σfl of the TPCS, only resonances are plugged
into Eq. (3).

Further insight into the spectral structure and important
features of the underlying classical dynamics are obtained
through the expectation value for each resonance state of the
cosine of the angle θ12 between the electron positions �r1 and �r2

(〈cos θ12〉). The operator cos θ12 has also an exact polynomial
representation in terms of the creation and annihilation
operators, and its expectation value for a given state |ψi〉 in
terms of the rotated states is [17]

〈ψi | cos θ12|ψi〉 ≈ Re(〈ψi,θ | cos θ12|ψi,θ 〉) . (4)

III. RESULTS

As in the three-dimensional case [2], the eigenstates of 2D
helium are organized in series converging to single ionization
thresholds which all converge to the double ionization thresh-
old at zero energy. The threshold structure of the spectrum is
essentially the same as for the case without electron-electron
interaction, and the location of the various single ionization
thresholds is unaffected by the term 1/r12, since the electron-
electron interaction vanishes at large distances. Thus, the N th
threshold energy is given by [18,19]

IN = − 2

(N − 1/2)2
a.u., N ∈ N, (5)

a series which obviously converges to zero with N → ∞. The
first series of eigenenergies converges to the threshold I1 =
−8 a.u., and above this energy all bound states with N > 1
are embedded into the continuum of lower series; i.e., they are
resonance states with finite width [28]. Due to the truncation
of the basis, the exact thresholds cannot be reached, but only
effective thresholds I eff

N [33,36]. The spectrum can be classified
by the particle exchange symmetry P12, the symmetry �x with
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FIG. 1. (Color online) Fluctuations of the photoionization cross section of doubly excited singlet helium between I8 and I15: experimental
data (bottom, blue) and theoretical results for planar helium (top, black). The theoretical data were scaled according to Eq. (8) and afterward
convoluted by a Gaussian function with 1.7 meV width (FWHM). For clarity, the theoretical data are displaced by −9 meV in horizontal
direction and one unit in vertical direction. The amplitude of the cross section in the right panel has been enlarged by a factor of 2.5 with
respect to the left panel.

respect to the x axis, and the absolute value |l| of the angular
momentum (or, equivalently, l2).

In this work we investigate the photoionization cross section
for dipole transitions from the singlet planar helium ground
state, with angular momentum l = 0 and �x = +1. The
energy of this state is given by

Ein = −11.899 822 342 953 0 a.u. (6)

The dipole operator couples this state with |l| = 1 singlet
states of symmetry �x = +1. The resolution of the TPCS
at high energies close to the double ionization threshold
requires the accurate calculation of the spectrum associated
with these states. The numerically obtained spectrum contains
discretized continuum states rotated by 2θ in the complex
plane, converged resonances (stable under moderate variations
of α and θ ), and numerical artifacts and nonconverged
resonances (θ - and α-dependent) due to the truncation of
the basis [17]. To extract the converged resonances, all
data points have been checked for convergence with data
for other parameter sets (α,θ ). Depending on the energy
regime, these parameters have to be adjusted. Finally, a given
energy regime is calculated with 6–12 parameter sets (α,θ )
among {(0.35,0.15), (0.35,0.20), (0.35,0.25), (0.35,0.30),
(0.40,0.15), (0.40,0.20), (0.40,0.25), (0.40,0.30), (0.45,0.10),
(0.45,0.15), (0.50,0.10), (0.50,0.15), (0.50,0.20), (0.50,0.25),
(0.50,0.30), (0.55,0.10), (0.55,0.15)}. As the criterion of
convergence for the resonances, we used a coincidence, for
resonances of at least four different parameter sets (α,θ ),
within a maximal deviation of a factor of 10−5 for Re(Ei,θ ) (that
is, a coincidence of five significant digits), 10−2 for Im(Ei,θ ),
10−2 for 〈cos θ12〉, and 5 × 10−2 for 〈ψi,θ |R(θ )T |φin

E 〉2. In
addition, we checked that the real part of 〈ψi,θ | cos θ12|ψi,θ 〉
is at least two orders of magnitude larger than the imaginary
part.

As the energy approaches the total breakup threshold, the
density of states increases dramatically. Single resonances will
overlap with other resonances in the sense that the widths of
individual resonances are larger than the separation from their
nearest-neighbor resonances. Individual Fano profiles are thus
hard or impossible to distinguish, and the cross sections exhibit

a strongly oscillating or fluctuating pattern around a smooth
background. The fluctuating part σfl(ω) of the TPCS is given
by Eq. (3), where only converged resonances are taken into
account [17].

The TPCS for singlet planar helium from the ground state
has been measured up to energies around the 15th SIT [12].
A direct comparison with the TPCS for planar helium is not
possible, due to the different energy scales of the eigenstates
of planar and 3D helium. In particular, the positions of the
ionization thresholds for planar helium (5) do not coincide
with those for the 3D system

I 3D
N = − 2

N2
. (7)

This problem can be solved by rescaling the energies for planar
helium according to

Escaled
2D = − 2(√

− 2
E2D

+ 1
2

)2 . (8)

In Fig. 1, energy-rescaled calculated fluctuations σfl for singlet
planar helium are presented together with the experimental
photoionization-yield spectra of doubly excited singlet helium
from [12]. The energies are converted to eV (zero value fixed
at the ground-state energy), and the calculated cross section
has been convoluted by a Gaussian function with 1.7 meV
[full width at half maximum (FWHM)], which is consistent
with the experimental resolution. Our theoretical predictions
have been slightly shifted by −0.009 eV in order to match the
experiment.

Planar helium is known to provide a good qualitative
description [37]. Figure 1 shows, moreover, the quantitative
power of the planar approach. Characteristic features of
the cross section are well resolved within the data by the
planar model. Furthermore, experimental and theoretical data
show excellent agreement concerning peak positions and
peak shapes. Discrepancies seem to occur near the effective
ionization thresholds. These observations support once again
the expectation that the planar model describes helium for the
energy regime close to the DIT rather well.
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FIG. 2. (Color online) Calculated 〈cos θ12〉 values as a function of
resonance energy E below the 20th threshold. Each point represents
a particular singlet state resonance with �x = +1 and |l| = 1. For
values of 〈cos θ12〉 close to −1, the resonances are organized in series
along straight lines converging to −1 at the DIT. These series are
labeled by the approximate quantum number F . The dominant and
subdominant series are highlighted in color online: green (light gray)
F = 2, purple (dark gray) F = 4.

The investigations by Jiang et al. [12,38] show that the
total cross section is dominated by the low-dimensional
collinear eZe dynamics. Only very few resonances contribute
significantly to the photoionization cross section in the region
from I9 to I16, and the series of contributing resonances are
associated with (small) constant values of F = N − K , where
N and K are approximate quantum numbers from Herrick’s
algebraic classification [14,15]. These observations have been
verified up to the 20th SIT for triplet helium under a planar
approach [17], where we predicted in addition a competition
of the contributions to the TPCS of series associated with the
values of F = 1, 3, and 5. In the rest of this section, we show
that there is also a competition between different series in
singlet helium.

Figure 2 presents a plot of the calculated expectation
values 〈cos θ12〉 as a function of

√|Re(Eθ )| for all converged
resonances below I4 up to I20. θ12 is the angle between the two
electron position vectors �r1 and �r2. A clear decomposition into
series of resonances can be identified for 〈cos θ12〉 <∼ −0.5.
From the relation

〈cos θ12〉 n→∞−→ −K

N
, (9)

the eZe configuration can be identified with the maximum
value of K = N − 1, i.e., F = N − K = 1.1 Furthermore, the
values of 〈cos θ12〉 in the low-lying series in Fig. 2 decrease
smoothly with decreasing values of

√|Re(Eθ )|. This can be
understood as a consequence of the presence of perturbers with
different K values that belong to Rydberg series below the next
higher thresholds, i.e., of a strong mixing of resonances with
different N and K , but the same N − K . The approximate
quantum number F = N − K thus allows the classification

1Notice that Herrick’s classification is also valid for the 2D model
of helium. In this case, the quantum number T takes the value T = 0
[37,39].

of these series of resonances, of which all members lie on
straight lines. As the energy approaches the DIT, new series
associated with higher values of F appear, and no mixing
between series with different values of F is found. In addition,
the extrapolations of the straight lines for series classified
by a constant value of F cross each other at a value of
〈cos θ12〉 = −1 at the DIT. In this limit, these resonances
correspond to the eZe configuration, which is stable under
angular perturbations, but unstable under radial perturbations.
Therefore, the existence of the approximate quantum number
F can be understood by the regularity in the angular direction
in helium, though the radial motion remains chaotic. In contrast
to these resonances, a series of resonances in the region where
〈cos θ12〉 is close to +1 exhibits a systematic increase of
〈cos θ12〉, though no mixing between N and K takes place. This
is a consequence of the underlying regular classical dynamics
of the frozen planet (Zee) configuration.

The approximate classification of helium resonances un-
veiled in Fig. 2 allows us to study separately the contributions
of different series to the photoionization cross sections. Indeed,
only a small fraction of states contribute significantly to the
cross section. In contrast to triplet helium, for singlet states, the
resonances which yield major contributions are characterized
by even values of F ,

F = 2m , m ∈ N , (10)

which is a consequence of the propensity rules for dipole
transitions [40]. Series with odd F and all resonances that
cannot be characterized by F , e.g., those resonances close
to the DIT for which −0.5 <∼ 〈cos θ12〉, result in almost no
contribution.

In Fig. 3, we compare the fluctuations of the photoion-
ization cross section with the contributions of the resonances
associated with F = 2. The subset of resonances with F =
2 resembles the cross section quite well, and therefore it
yields the dominant contributions. However, as the energy
approaches the DIT, the influence of series with higher values
of F grows. This is illustrated in Fig. 4, where we present the
separate contributions of the series with F = 2 and F = 4,
and the contributions of the remaining resonances. A direct
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FIG. 3. (Color online) Comparison of the fluctuations of the
photoionization cross sections from below I8 up to I20 including
all resonances (solid line) and resonances with F = 2 only (dashed
line).
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FIG. 4. (Color online) Contributions of subsets of resonances to
the fluctuations of the photoionization cross section from below I8

to below I20. The fluctuations due to the series F = 2 and F = 4
are shown in (a) and (b), respectively. The contributions from all
remaining resonances are depicted in (c). The rapid decrease of the
amplitudes in (a) in comparison to (b) suggests a competition between
the F = 2 and F = 4 series and an eventual loss of the dominant role
of the F = 2 series.

comparison of the plots in Fig. 4 provides a rough estimate
of the amplitudes of the fluctuations. The typical magnitude
of the fluctuations for the resonances series F = 2 around I9

is about six times larger than the one for the F = 4, which,
however, reduces to a factor of roughly 2.5 around I18. This
might eventually lead to a breakdown of the dominant series
picture and, therefore, to an earlier onset for a regime of strong
overlapping of contributing resonances. In such a case, the
peaks in the TPCS could not necessarily be associated with
individual resonances. This is the scenario described in the
seminal article by Ericson [5]; however, it is not yet found in
helium below I20. Indeed, it is possible to associate a single
resonance of the F = 2 or F = 4 series with almost every
peak in the cross section.

IV. SUMMARY AND CONCLUSIONS

A planar model for the helium atom has allowed the
description of the spectrum of singlet states up to the 20th
ionization threshold. Close to the DIT, the TPCS consists
of a smooth background and a fluctuating part which is
obtained from the resonances of the system. Within our
approach, we have verified the existence of the approximate
quantum number F = N − K found by Jiang et al. [4] and
of a dominant series in the TPCS associated with F = 2.
Furthermore, we have shown that the relative weight of
the contributions coming from the series with F = 2 and
F = 4 changes with increasing energy and might break the
dominance of the F = 2 completely at even higher energies.
The existence of dominant series plays a fundamental role in
the discussion about the existence of Ericson fluctuations in
helium. The density of states reduces considerably after the
restriction to the dominant series. The contributing resonances
are practically isolated, in contrast to the strong overlapping
exhibited by all resonances. Therefore, almost all peaks of the
cross section can be identified with single resonances.

At high energies, the planar model is not only a tool
for a qualitative description of the system. We have shown
that the planar model can reproduce existing experimental
observations and, therefore, it allows a quantitative description
of helium. The investigations carried out for singlet helium
here and for triplet helium in a previous work [17] acquire
thus a new quality.
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(2009); 80, 039902(E) (2009).
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