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Spectra and angular distributions of photoelectrons from ionization of atoms by a combination of two short
pulses in the XUV and IR range are theoretically considered. The transition from the streaking regime for
ultrashort XUV pulses to the sideband formation for longer pulses is discussed. For photoelectrons of sufficiently
high energy (a few hundreds of eV), the peculiarity of the angular distribution and the gross structure of the
sidebands are investigated.
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I. INTRODUCTION

With the advent of free-electron lasers (FEL) in the extreme
ultraviolet (XUV) and x-ray regions, and of new XUV
sources based on high-order harmonic generation (HHG), the
experiments with synchronized XUV and infrared (IR) pulses
from powerful lasers have received a special attention. Studies
of the two-color XUV + IR photoionization can provide
fundamental information on the properties of the continuum
spectrum of atoms and molecules and on the so-called free-
free transitions (see, for example, Ref. [1] and references
therein). Moreover, such experiments can be used to study
the properties of the FEL radiation [2] and of the harmonics in
HHG [3].

When a photoelectron is produced by an XUV pulse in
the presence of a laser pulse, the electron energy can be
changed due to interaction with the electromagnetic field of
the laser. Depending on the characteristics of the pulses, there
are different scenarios of the process. The basic parameters
which determine the character of the process are the durations
of the XUV and the IR pulses, τX and τL, respectively, and the
period of the laser field TL. If τX � TL, the created pulse of
photoelectrons (replica of the XUV pulse) is extremely short
and all electrons appear in the laser field practically at the
same phase. This is a typical case of the conventional streaking
effect [4,5] which was widely used for characterization of the
attosecond XUV pulses [6–8] and very recently also of the
FEL femtosecond pulses [9]. Similar conditions are fulfilled
for each individual pulse in experiments with the trains of
attosecond pulses [10,11].

In another limiting case of the laser assisted photoelec-
tric effect (LAPE) when τL > τX � TL, specific structures
at the wings of a photoline, the so-called sidebands, ap-
pear. The sidebands consist of a regular sequence of lines
with the interval between lines equal to the laser photon
energy. They were studied experimentally [12–15] as well as
theoretically [16–18].

Quite informative is the study of angular distributions of
photoelectrons in the two-color photoionization. The angle re-
solved studies of XUV + IR atomic photoionization have been
reported in both regimes: sideband formation in ionization by
high-order harmonics [19,20] and ionization of atoms by a
train of attosecond pulses in the presence of a strong IR laser

field [21,22]. It was demonstrated that the angular distributions
are sensitive to the time delay between the XUV and IR pulses
and to the relative phases and intensities of the harmonics.
All these studies were made for comparatively low energy
of emitted photoelectrons (below 20 eV). In such conditions
the photoelectron spectrum contains a few sidebands and their
angular distribution is simple, determined mainly by the dipole
selection rule in absorption of one-two photons.

Much less attention has been devoted to the intermediate
case when τX ≈ TL. Nowadays, this case becomes of a special
interest for the experiments with the new x-ray FEL facilities
such as the Linac coherent light source [23]. Here the duration
of the XUV pulse can be smaller than 10 fs [24], i.e., it covers
only two to four periods of the IR field, which has a period typ-
ically TL ≈ 2.7 fs for a Ti:sapphire laser operated at 800 nm. A
study of the intermediate case is important for understanding
the mechanism of formation of the sidebands. Moreover, the
large energy of generated photons at an x-ray FEL permits one
to study peculiarities of the sidebands at high kinetic energies
where strong irregularity of the sideband intensity can be
expected.

Theoretically the two-color photoionization of atoms
have been considered in numerous articles using various
theoretical technique. The simplest approach is based on the
strong-field approximation (SFA) [25] which was success-
fully used both in the streaking regime [5,26] and in the
conditions of sideband formation (see, e.g., Refs. [1,16]).
More refined treatment includes the interaction of the emitted
electron with the Coulomb field of the residual ion (see
Refs. [16,27,28] and references therein for earlier articles).
More sophisticated theories are based on a numerical solution
of time-dependent Schrödinger equation (see, for example,
Refs. [17,18,20,26,29,30]).

The aim of this work is twofold. First, we investigate the
transition from the streaking to the sideband regime paying a
special attention to the formation of the sideband structure.
Second, having in mind application at an x-ray FEL, we
analyze the case of high-energy photoelectrons, when the
number of sidebands is large. Here we investigate the angular
dependence and the gross structure of the sideband spectrum.
We use the simplest description of the process, namely the
SFA and a single-active-electron approach. Earlier, a similar
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problem was considered for the case of laser-assisted Auger
decay [31–33]. We note that within the strong-field approxima-
tion used in our analysis, there is a close analogy between the
formation of sidebands in photoelectron and Auger-electron
spectra. In both cases the sidebands appear due to interaction
of the emitted electron with the IR laser field, whereas the
physical mechanism of the electron ejection plays a secondary
role. In spite of this similarity, we believe that a special analysis
of the two-color XUV + IR photoionization by short pulses is
necessary for proper interpretation of experimental results.
First such experiments have been already realized [2,15]. It
is clear that also in the future they will be performed for
characterization of the pulses generated by new FELs. A study
of the sideband structure is the first and necessary element
of the analysis of such experiments. In comparison with the
Auger decay, the case of XUV + IR photoionization has an
advantage that the duration of the electron pulse, which is
determined by the duration of the XUV pulse, can be varied
while the equivalent duration of the Auger electron emission is
determined by the lifetime of the Auger state. In addition, it is
easier to study the sidebands in laser-assisted photoionization
than in the Auger decay. In the latter case many Auger
lines are excited and their sidebands overlap, which makes
spectral analysis more complicated [34]. Finally we note that
due to different selection rules in photoemission and Auger
emission, the angular distributions of the sidebands should
differ substantially in these two cases. Thus the angle resolved
sideband structure in photoemission of energetic electrons
deserves a special theoretical investigation.

II. BASIC EQUATIONS AND APPROXIMATIONS

Using a standard approach to the laser assisted XUV pho-
toionization of an atom [35,36] we consider the process within
the first-order time-dependent perturbation theory [37]. The
amplitude of the transition from the initial state �0 exp(−iE0t)
to the final state which contains the ionic state �f exp(−iEf t)
and the emitted photoelectron state ψ�k may be written using
the length gauge as follows (atomic units are used throughout
unless otherwise indicated):

A�k = −i

∫ ∞

−∞
dt ĒX(t)〈�f ψ�k|D̂|�0〉 exp[i(Eb − ωX)t],

(1)

where ĒX(t) is the envelope of the XUV pulse, ωX is its carrier
frequency, D̂ is the dipole operator, and Eb = Ef − E0 is the
binding energy (positive) of the electron. The wave function
ψ�k(t) describes the “dressed” photoelectron in the laser field,
which is characterized by the final (asymptotic) momentum �k.
The following consideration is based on the SFA [25] in which
the wave function of the photoelectron is represented by the
nonrelativistic Volkov wave function [38]:

ψ�k = exp{i[�k − �AL(t)]�r − i�(�k,t)}. (2)

Here

�(�k,t) = 1

2

∫ ∞

t

dt ′[�k − �AL(t ′)]2 (3)

with �AL(t) being the vector potential of the laser field, which
we define as �AL(t) = ∫ ∞

t
dt ′ �EL(t ′) where �EL(t) is the IR laser

electric field vector. (We assume that both XUV and IR fields
are linearly polarized along the same direction which is chosen
as the z axis of the coordinate system.) Moreover, we ignore
the influence of the laser field on the bound ionic and atomic
states which is a sufficiently good approximation for not very
strong laser fields (1012–1013 W/cm2) considered here.

Equation (1) can be interpreted in this way: at moment t

an electron is created by the XUV field with momentum �k0

which is then transferred by the IR field to the final state with
momentum �k. Since �k is fixed, this means that �k0 = �k − �AL(t)
depends on t .

The transverse momentum is conserved, thus

k0 sin ϑ0 = k sin ϑ, (4)

where ϑ0 is the angle of electron emission from atom in the
laser field and ϑ is the angle of photoemission (at infinity).
The modulus of the momenta are connected by the relation:

k2
0(t)

2
= k2

2
− kA(t) cos ϑ + A2(t)/2. (5)

Substituting Eq. (2) into Eq. (1) and using the single-active-
electron approximation one can reduce the dipole matrix
element in Eq. (1) to the single-electron photoionization
amplitude, d�k0

, which after expansion in partial waves may
be presented as

d�k0
= dl0−1[Yl0−1,m0 (ϑ0,0) + R ei(δl0+1−δl0−1)Yl0+1,m0 (ϑ0,0)],

(6)

where dl0±1 are the partial dipole amplitudes for the transitions
from the initial state with the orbital angular momentum l0, Ylm

are spherical harmonics, R = |dl0+1|/|dl0−1|, and δl0±1 are the
photoionization phases. If l0 = 0 (s shell), the amplitude is

d�k0
= dsY1,0(ϑ0,0). (7)

Further in this section we consider s shell ionization.
We are interested in the region of rather large energies of

photoelectrons (hundreds of eV) when the sidebands consist
of many lines, whereas the spread of the sideband structure
is much smaller than the photoelectron energy. Since at
large energies the dipole matrix element depends weakly on
the energy, one can ignore its energy dependence. Then the
amplitude of s shell photoionization may be approximated as

A�k ≈ −idsFa(�k), (8)

where the function Fa(�k) is defined as

Fa(�k) =
∫ tM

t0

dt ĒX(t)Y1,0(ϑ0(t),0)

× exp

[
i

∫ ∞

t

dt ′
(

1

2
[k2 − 2kAL(t ′) cos ϑ

+A2
L(t ′)] − 1

2
κ2

)]
, (9)

where t0 and tM correspond to the beginning and the end of the
XUV pulse, respectively, and κ2/2 = ωX − Eb is the energy
of the electron ejected by a very long pulse in absence of the
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IR field. Here and in the following the XUV pulse is supposed
to be shorter than the laser pulse and it completely overlaps
with the latter. In order to evaluate Fa(�k) one should calculate
ϑ0(t) for each pair (k,ϑ) and then integrate over t .

The value |Fa|2 represents the spectrum of photoelectrons
in the laser field. If the XUV pulse is very short (τX � TL),
the vector potential �AL is practically constant during the XUV
pulse, �AL(t0), and the function Fa(�k) is proportional to the δ

function δ([�k − �AL(t0)]2 − κ2). This gives the known picture
of streaking [4], namely the photoelectron peak is shifted by
the laser field from its original position κ2/2 to the new one
determined by the value of the vector potential at the moment
of photoemission.

In the opposite case, when the pulses are infinitely long, one
can obtain, by supposing �AL(t) = �A0L sin ωLt and ignoring
the term proportional to A2

L in Eq. (9), the well-known result
that the spectrum consists of sideband lines at the energies of
k2
n = κ2 ± 2nωL, with the intensity proportional to the square

of Bessel function J 2
n ( �A0L · �kn/ωL) (this case is discussed in

detail in Ref. [1]). If the quadratic term in AL(t) is retained
in Eq. (9), the integral can be expressed in terms of the
generalized Bessel functions [39] Jn(α,β).

Our goal is to analyze the intermediate case when the XUV
pulse duration is equal to a few periods of the IR field. In
the following we first present several examples of the spectra
obtained by numerical calculation of |Fa(�k)|2 and then analyze
this factor analytically.

III. RESULTS AND DISCUSSION

A. Photoelectron spectra

Using Eq. (9), we have calculated the photoelectron spectra
from laser-assisted photoionization generated by the XUV
pulses of various duration. In this section we suppose that
the photoelectron is emitted along the polarization vector of
the laser field. The energy of the photoelectron without IR
field is set equal to 220 eV (8.09 a.u.). The laser field has
parameters frequently used in experiments: the photon energy
is 1.66 eV (the carrier wavelength is ∼800 nm), the pulse
duration is 20 fs, and the intensity is 3.5 × 1012 W/cm2 (the
electric field amplitude is about 0.01 a.u.). The results of our
calculations are presented in Fig. 1. Different panels show
the calculated spectra for different durations of the XUV pulse
which is supposed to have a Gaussian shape. The laser pulse
envelope has a flat central part with sharp increase at the
beginning and decrease at the end of the pulse. In the insets
we show the vector potential of the IR field and the envelope
of the XUV pulse in arbitrary units (the pulses are plotted as
normalized to the same maximum value). We have assumed
that the maximum of the Gaussian XUV pulse is at the middle
of the IR pulse and coincides with one of the maxima of its
vector potential. The vertical dashed line in all figures shows
the position of the photoelectron energy in the absence of the
laser field.

In Fig. 1(a), the duration of the XUV pulse (FWHM of
the field) is 1 fs. This is close to the half period of the laser
field (TL = 2.5 fs). The photoelectron spectrum consists of
a big maximum at the energy ∼8.7 a.u. (236 eV) which is
shifted from the original energy 220 eV due to the streaking

effect. In addition, there are smaller maxima at the low-energy
side which are due to interference of electrons emitted at
different moments of the IR pulse. Since the energy difference
between these maxima is not a constant and it is not equal
to the frequency of the laser field, the maxima are not the
usual sidebands. A very similar picture has been obtained in
our article [26] by solving numerically the time-dependent
Schrödinger equation which describes the photoionization of
Ar(3s) subshell. We note that if the position of the XUV pulse is
shifted by one-half of the IR period, the main maximum will be
shifted to the lower energy (∼7.5 a.u.) and the whole spectrum
will be a mirror reflection of the presented one with respect to
the unperturbed photoline position. For even smaller duration
of the XUV pulse the small peaks gradually disappear, and
the spectrum contains only the main peak at shifted position
which depends on the delay time between pulses (streaking).

Figure 1(b) presents the results for the XUV pulse of 2 fs
duration. In this case, a large part of the pulse overlaps with
the other half-periods of the IR vector potential (see insert).
Correspondingly, in the low-energy part of the spectrum strong
lines appear. They are separated by the energy interval of about
1.6 eV (0.06 a.u.), which corresponds to the energy of the IR
quanta.

When the XUV pulse duration is larger (3 fs), the main
(right) peak also reveals the structure with the interval of
1.6 eV [see Fig. 1(c)]. The spectrum becomes more symmetric
with respect to the original energy of 220 eV. This tendency
continues in Fig. 1(d) which corresponds to the XUV pulse
of 4-fs width. Further increase of the XUV pulse duration
does not lead to a qualitative change of the spectrum. The
lines become narrower and higher, but new lines do not
appear.

Inspecting Fig. 1(d), one notes that the variation of the
sideband intensity is not regular, but the lines exhibit some
gross structure. Similar gross structure was revealed also
in laser-assisted Auger electron spectra [33]. In order to
make the gross structure clearly visible we have averaged
the spectrum by convoluting it with a Gaussian function
with the width (FWHM) of ∼2 eV, larger than the spacing
of the sideband lines. This Gaussian averaging imitates the
experimental resolution. The resulting curves are shown in
all four panels by the thick (red) lines. Interestingly, the
positions of the maxima and minima of the curves are very
robust and are almost independent of the duration of the XUV
pulse.

In order to explain the behavior of the sideband spectra
for different pulse widths and the origin of the gross structure
we have analyzed the basic expression (9) following the lines
suggested in Ref. [33]. For convenience, we suppose that both
the XUV and the IR pulses are almost flat with a sharp increase
of the intensity at the beginning and a steep decrease at the
end of the pulse. In this case, to a rather good approximation,
the value of the IR pulse vector potential can be expressed as
AL(t) = α + A0L sin ωLt , where the constant α is determined
by the contribution to �AL(t) from the rear part of the pulse
where its intensity decreases to zero, and A0L is the amplitude
of the vector potential. We assume that t = 0 is chosen at the
beginning of the XUV pulse (t0 = 0), thus AL(t0) = α. Let
consider the case when the IR pulse is longer than XUV pulse,
so the XUV pulse covers only a few oscillations of the laser
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FIG. 1. (Color online) The calculated electron spectra (thin black lines) excited by the XUV pulses of different durations [(a) 1 fs, (b) 2 fs,
(c) 3 fs, (d) 4 fs] in the field of the 3.5 × 1012 W/cm2 IR laser. The duration of the laser pulse is 20 fs. In the inserts the vector potential of the
IR and the envelope of the XUV pulses are shown. For further details see text. Thick (red) lines show the averaged spectra. Dashed vertical
line shows the position of the unperturbed photoline.

field. Then the integral (9) can be approximated by a sum of
contributions of time intervals equal to the period of the laser
pulse:

F(k) ≈
Nmax∑
n=1

En(k)[J (k)]n, (10)

where Nmax = τX/TL is the number of full periods of the laser
field covered by the XUV pulse,

J (k) = exp

(
i

∫ TL

0
dt ′′

1

2
{[k − AL(t ′′)]2 − κ2}

)
, (11)

and

En(k) =
∫ nTL

(n−1)TL

dt ′ĒX(t ′)

× exp

(
i

∫ t ′

(n−1)TL

dt ′′
1

2
{[k − AL(t ′′)]2 − κ2}

)
.

(12)

Since ĒX(t) is almost constant during the pulse ĒX(t) ∼ E0X,
and since AL(t) is a periodic function within the IR pulse, the
value En(k) is approximately constant, independent of n. It
may be presented as

En(k) ≈ Ẽ(k) = E0X

∫ TL

0
dteiQ(t), (13)

where

Q(t) =
∫ t

0
dt ′

1

2
{[k − AL(t ′)]2 − κ2}. (14)

In this case the sum in Eq. (10) can be computed:

F(k) ≈ Ẽ(k)
1 − [J (k)]Nmax+1

1 − J (k)
. (15)

There are two types of structure in the spectrum, presented by
Eq. (15): the narrow structure determined by the condition
J (k) = 1, where the quantity F(k) ≈ Ẽ(k)Nmax, and the
broader structure associated with the k dependence of the
quantity Ẽ(k). The structure of the first type consists of
narrow peaks with the spacing between them close to the IR
frequency. The structure of the second type is a modulation of
the amplitudes of the narrow peaks. This is a gross structure
which reveals itself in the energy averaged spectra. It can be
qualitatively described using the stationary phase approach.
We note that the value Ẽ(k) within a factor coincides with the
value G(tX + TL) for tX = 0 considered in the Appendix of
Ref. [33]. As it was shown in that article, the main contribution
to the integral (12) comes from the region around the stationary
phase points ts which are determined by the equation

k − AL(ts) = ±κ, (16)

where the plus (minus) sign corresponds to the ejection of
electrons in (opposite to) the direction of the IR field. Note that
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this confirms the validity of our assumption of factorization of
the amplitude (8), since the dipole amplitude can be taken at
k = κ . Within the stationary phase approximation the value
Ẽ(k) can be presented [33] in terms of Airy functions as
follows:

Ẽ(k) ≈ E0X ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eiQ(tmax)
[

8π2|S|1/2

κ|EL(ts )|
]1/2

Ai(S)

if k > α + κ,

eiQ(tmin)
[

8π2|S̄|1/2

κ|EL(ts )|
]1/2

Ai(S̄)

if k < α + κ,

(17)

where the Airy function Ai(z) is defined as in Ref. [40] and

S =
[
(k − α − A0)2 − κ2

]
[4A0ω

2
L(k − α − A0)]1/3

, (18)

S̄ =
[
(k − α + A0)2 − κ2

]
[−4A0ω

2
L(k − α + A0)]1/3

. (19)

In Eq. (17) ts is the stationary phase point which is
determined by Eq. (16). The phases Q(tmax) and Q(tmin) are
calculated according to Eq. (14) for the points tmax and tmin,
where the vector potential reaches its maximal and minimal
values, respectively (for more details see the Appendix in
Ref. [33]). As follows from Eq. (17), the maxima and minima
in the gross structure, that is described by the modulus squared
|Ẽ(k)|2, are determined by the extrema and zeros of the Airy
function, respectively. Asymptotically the Airy function is
presented as [40]

Ai(x) ≈ 1√
π (−x)1/4

sin

(
2

3
(−x)3/2 + π

4

)
, (20)

valid for x < −1.5. Since the asymptotic expression (20)
represents the Airy function above the first maximum with
an accuracy of a few percentage points, one can easily obtain
the position of the maxima and minima of the gross structure
from the following equation valid for the detected electron
energies higher than κ2/2:

S(k) = −
[

3

2

(
πn ± π

4

)]2/3

, n = 1,2, . . . , (21)

where the upper sign (+) corresponds to maxima, the lower
sign (−) to minima. For the energies below κ2/2 the same
Eq. (21) is valid but for S̄(k).

Knowing the positions of the maxima of |Ai(S)|2 and using
Eqs. (18) and (19), one can calculate the corresponding energy
positions of the gross-structure maxima in the spectrum. (Note
that for our choice of the IR pulse α ≈ 0.) In Fig. 1(d) we
have shown by arrows the positions of the maxima calculated
using Eq. (17). They agree very well with the maxima of
the averaged spectra, calculated with Eq. (9). Importantly,
the positions of the maxima of the gross structure depend
on the IR field frequency and intensity but are independent
of the parameters of the XUV pulse. Therefore, these max-
ima are at the same energy for all XUV pulse durations
(see Fig. 1).

Analyzing expression (17), one can conclude that the gross
structure is mainly localized in the k variable in the interval
[κ + α − A0L,κ + α + A0L] where its maxima and minima
modulate the intensity of the conventional sideband lines,

FIG. 2. (Color online) Schematic presentation of the fields and
the positions of the stationary phase points ts . Solid (black) line
represents a part of the IR vector potential, lines with symbols show
envelopes of two XUV pulses. Horizontal dashed line shows the value
of k − κ . For further explanations see the text.

equidistant in the energy variable k2/2. The same maxima
and minima are responsible for the spectral structure at the
XUV pulse duration τX � TL [see Fig. 1(a)].

The presented analysis is valid for the pulses of approxi-
mately rectangular shape (with a flat middle part). However,
our conclusions are valid for the pulses of arbitrary shape.
All the above-mentioned properties of the spectra can be
qualitatively obtained using the following simple “rules:”

(i) The main contribution to the spectra comes from the
vicinities of stationary phase points ts [see Eq. (16) and Fig. 2].

(ii) The magnitude of the contribution from a stationary
point is proportional to the XUV pulse strength at this point.

(iii) If more than one stationary phase points contribute,
their contributions interfere.

(iv) If the stationary points are close, the Airy function
representation, Eq. (17), describes well their contribution.

From these rules it follows that if the XUV pulse is very
short (green curve with dots in Fig. 2), only one of the
stationary points (ts2 in Fig. 2) contributes substantially. This
case corresponds to the streaking picture with one maximum in
the spectrum. When three or more stationary points are covered
by the XUV pulse (red curve with squares in Fig. 2), one has a
complicated picture of interference between the contributions
of all the stationary points involved (ts1–ts4) with one of them
giving the dominant contribution (in Fig. 2 this point is ts2).
From this qualitative consideration it follows that the positions
of minima and maxima in the electron spectrum are, as a rule,
rather robust since they are determined by the phase shift
between the fixed stationary points. (In some cases, when the
extrema are not pronounced, this rule can fail.)

In the above calculations it was supposed that both IR and
XUV pulses are phase stabilized. Since in real experiments
it may be not the case, it is of interest to investigate how the
calculated spectra depend on the relative delay time of the
pulses. In Fig. 3 we show the results for the 1 fs [Fig. 3(a)]
and 2 fs [Fig. 3(b)] XUV pulses calculated for different delay
times between the XUV and IR pulses within one period of
the IR light. Note that we define the delay �t = 0 if the
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FIG. 3. (Color online) The calculated electron spectra excited by the XUV pulses of durations [(a) 1 fs and (b) 2 fs] for different delay times
within one laser period. Solid line �t = 0, short-dashed line �t = TL/8, dash-dotted line �t = TL/4, dotted line �t = 3TL/8, long-dashed
line �t = TL/2. In the inset the corresponding lines show the position of the XUV-pulse envelope relative to the IR vector potential. Other
parameters of the pulses are the same as in Fig. 1. Dashed vertical line shows the position of the unperturbed photoline.

XUV-pulse maximum coincides with the maximum of the
IR vector potential (see the inserts in Fig. 3). In the case
of a very short XUV pulse [Fig. 3(a)] the streaking effect
dominates, and the spectrum strongly varies with the delay.
Interesting that at �t = TL/4 the spectral maximum is almost
completely washed out. In the case of a longer XUV pulse
[Fig. 3(b)] the streaking effect is not so pronounced albeit
visible. Importantly, the positions of the main maxima and
minima (maxima and minima of the gross structure) are very
stable and independent of the delay time. Thus the gross
structure of the sidebands should preserve even for phase
nonstabilized pulses. This follows also from the qualitative
discussion above.

B. Photoelectron angular distributions

The angular distribution of photoelectrons is axially sym-
metrical with respect to the z axis (joint direction of the IR and
XUV light polarizations). The dependence on the polar angle
ϑ is determined by two factors: first, the angular distribution

of photoelectrons without IR field, Eq. (6), and, second, the
angular dependence of the emitted electron interaction with the
IR field, Eq. (3). In the case of the s subshell ionization, the first
factor gives cos2 ϑ dependence with zero emission probability
at ϑ = 90◦. The effect of the second factor drastically depend
on the duration of the XUV pulse and on the delay between
the two pulses.

As an illustration, in Fig. 4 we show the calculated energy-
angular distributions of photoelectrons (double differential
cross section) for three different durations of the XUV pulse:
(a) 1 fs, (b) 2 fs, and (c) 4 fs. The photoelectron energy (without
IR field) is set equal to 220 eV. All other parameters are kept
the same as in Fig. 1. The distributions are presented as two-
dimensional color-scale plots. In all three panels the zero at 90◦
is clearly seen. For the shortest XUV pulse [1 fs, Fig. 4(a)] the
angular distribution for any electron energy is strongly asym-
metrical. For the strongest maximum this picture is close to the
streaking one (see, for example, Ref. [29]). Additional max-
ima, which appear due to interference, are precursors of the
sidebands. The spectrum changes dramatically with the angle.

FIG. 4. (Color online) The calculated energy-angle distributions of photoelectrons for ionization of an s shell for different durations of the
XUV pulse (a) 1 fs, (b) 2 fs, and (c) 4 fs. Other parameters are the same as in Fig. 1.
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FIG. 5. The calculated photoelectron spectra of s subshell pho-
toionization for different detection angles, indicated near the spectra.
The XUV pulse duration is 4 fs. Other parameters are the same as in
Fig. 1.

For a longer XUV pulse [2 fs, Fig. 4(b)], the sidebands
have been partly formed, and the angular distribution becomes
more symmetrical; however, the influence of streaking is
still large. At the longest considered XUV pulse [4 fs,
Fig. 4(c)], the angular distribution for each of the side-
bands, which are close to the central maximum, contains
in general several oscillations, which shows that higher
powers of cos2 θ contribute. For the sidebands which are
far from the central maximum the angular distribution is
sharply peaked at 0◦ and 180◦ without additional maxima in
between.

In Fig. 5 we present the calculated spectra for some
particular angles indicated near the curves. The calculations
were performed for the 4 fs XUV pulse [compare with
Fig. 4(c)]. For clearness, the spectra are shifted along the
ordinate axis. To imitate the effect of acceptance angle in
real experiment, we averaged the calculated spectra over
the angles with the Gaussian weight of 15◦ width. One
sees that in the forward direction (0◦) the spectrum contains
many sidebands with clearly seen gross structure. When
the observation angle increases toward 90◦, the spread of

FIG. 6. (Color online) The calculated angle-energy distribution
of photoelectrons for primary ionization of a p(σ ) electron into d(σ )
partial wave. The duration of the XUV pulse is 4 fs, the parameters
of the laser pulse are the same as in Fig. 1.
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FIG. 7. The calculated photoelectron spectra for the primary
ionization transition into the d(σ ) partial wave for different angles of
detection, indicated near the spectra. The duration of the XUV pulse
is 4 fs, the parameters of the laser pulse are the same as in Fig. 1.

the sidebands decreases and the gross structure gradually
fades out.

It is instructive to consider the angular distributions for ion-
izations of subshells with nonzero orbital angular momentum,
for example, of the p subshell. In this case, the ionized electron
leaves the atom as an s or d wave. The case of an outgoing
s wave interacting with the IR field has been considered in our
articles [31–33]. Here we show the results for the d wave.
Figure 6 shows the energy-angular distribution of emitted
electrons for ionization from p(σ ) state, i.e., the projection
of orbital angular momentum onto the z axis is zero. The
XUV pulse duration is 4 fs. The angular distributions differ
drastically from the previous case of s subshell ionization
[compare with Fig. 4(c)]. Instead of zero at 90◦ one has a
maximum. But there are two deep “valleys” at about 55◦ and
125◦ in the angular distribution of each sideband which are
determined by the zeros of the spherical function Y20(cos ϑ).
In Fig. 7 the spectra of photoelectrons are shown for different
detection angles. As in the previous case, the well-developed
gross structure is clearly seen at small angles (similarly, at
large angles, close to 180◦). It gradually fades out outside
these regions. The sideband spectrum becomes narrower with
increasing angle. Closer to 90◦ the character of the spectrum
changes radically. One can see the big central maximum
surrounded by small number of weak sidebands.

IV. CONCLUSION

We have investigated the transition from the streaking
to the sideband regime in the angle-resolved spectra of
photoelectrons produced by a short XUV pulse in the presence
of a strong laser field. For a large energy of photoelectrons the
sidebands reveal the gross structure, i.e., the modulation of
the intensity of the sideband lines. This modulation is most
pronounced at observation angles close to the direction of the
light polarization. The gross structure is well described by
the analytical expression involving the Airy function. Both the
conventional sidebands and their gross structure are related
to the properties of the pulses. Specific properties of the
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ionized atom are substantially masked in the studied spectra
by the universal sideband structure. Therefore, in the planning
of any two-color XUV + IR experiment for studying the
photoionization dynamics, the existence of the sidebands has
to be taken into account. On the other hand, the study of the
sidebands and their structure can be used for the investigation
of the properties of the pulses.
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[4] J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and
P. B. Corkum, Phys. Rev. Lett. 88, 173903 (2002).

[5] M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec,
Phys. Rev. Lett. 88, 173904 (2002).

[6] M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider,
N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann,
M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).

[7] G. Sansone et al., Science 314, 443 (2006).
[8] E. Gouliemakis et al., Science 320, 1614 (2008).
[9] U. Frühling et al., Nature Photon. 3, 523 (2009).

[10] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph.
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A. L’Huillier, V. Véniard, R. Taı̈eb, A. Maquet, and M. Meyer,
Phys. Rev. A 69, 051401(R) (2004).

[15] M. Meyer et al., Phys. Rev. Lett. 101, 193002 (2008).
[16] A. Cionga, V. Florescu, A. Maquet, and R. Taı̈eb, Phys. Rev. A

47, 1830 (1993).
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