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Trapping of quantum particles and light beams by switchable potential wells
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We consider basic dynamical effects in settings based on a pair of local potential traps that may be effectively
switched on and off, or suddenly displaced, by means of appropriate control mechanisms, such as scanning
tunneling microscopy or photo-switchable quantum dots. The same models, based on the linear Schrödinger
equation with time-dependent trapping potentials, apply to the description of optical planar systems designed for
the switching of trapped light beams. The analysis is carried out in the analytical form, using exact solutions of the
Schrödinger equation. The first dynamical problem considered in this work is the retention of a particle released
from a trap which was suddenly turned off, while another local trap was switched on at a distance—immediately
or with a delay. In this case, we demonstrate that the maximum of the retention rate is achieved at a specific
finite value of the strength of the new trap, and at a finite value of the temporal delay, depending on the distance
between the two traps. Another problem is retrapping of the bound particle when the addition of the second trap
transforms the single-well setting into a double-well potential (DWP). In that case, we find probabilities for the
retrapping into the ground or first excited state of the DWP. We also analyze effects entailed by the application of
a kick to a bound particle, the most interesting one being a kick-induced transition between the DWP’s ground
and excited states. In the latter case, the largest transition probability is achieved at a particular strength of the
kick.
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I. INTRODUCTION

Advances achieved in the development of scanning tunnel-
ing microscopy (STM) have made it feasible to image and
manipulate individual atoms [1–3]. One of the remarkable
results that were produced by this technology is controllable
atom hopping [4–6]: the atom disappears at its original
location and reappears at a new position. While this apparently
instantaneous translation mode agrees with the principles of
nonrelativistic quantum mechanics, it raises a question—how
far the atom can hop as a whole, without losing electrons from
its outer shell. This question is especially relevant to Rydberg
atoms (see, e.g., Ref. [7]).

The problem of maintaining the wholeness of the suddenly
displaced atom against ionization may be reduced, in the
simplest form, to the consideration of a particle trapped in a
potential well, which instantaneously hops to a new position.
In this approximation, the particle represents the loosely bound
electron, while the inner part of the atom is represented by the
hopping well. Then, one can calculate the probability for the
initially trapped particle to remain trapped in the suddenly
displaced potential.

The consideration of the same problem is also relevant in
a different physical setting, when the particle is realized as
the atom, while the potential well represents either the STM
needle or optical tweezers (that were developed, on the basis of
the laser technologies, as a tool for the trapping and release of
cold atoms [8–10]). In this case, the atom is originally trapped
at a certain location by the needle or the laser beam. Then,
one switches off the voltage applied to the original needle,
simultaneously applying the voltage to a needle pointing at
another position. In the case of the optical trap, the original
beam may be shut while focusing another beam (that may be
generated by a different laser, or outcoupled from the original
one) onto the new target position.

The latter problem may be readily generalized, by switching
on the second local potential with a delay after the first one
was switched off. In this work, we consider the delayed
switch for the case of equal trapping strengths of both
wells. Another physically relevant situation is that when the
second well is switched on without shutting the first one,
i.e., a sudden transition from the single-well setting to a
double-well potential (DWP). In the latter case, we consider
the symmetric setting, with equal strengths of both trapping
potentials.

It is relevant to mention that dynamical effects for a
quantum particle trapped in a decaying or moving potential
well were recently considered in Refs. [11] and [12]. These
are examples of the general class of transient quantum
processes, which occur in diverse physical settings and have
numerous applications, as reviewed in a recent article [13]. One
interesting application is the production of low-atom-number
Fock states in the Tonks-Girardeau gas by a sudden attenuation
of the potential trap [14]. The transfer of a trapped wave
packet (actually, a soliton) was also studied in terms of the
nonlinear Gross-Pitaevskii equation [15], with an application
to manipulations of Bose-Einstein condensates by means of
laser beams [16].

The difference in the present work is that we address the
dynamical situations related to the instantaneous shift of the
well. For this purpose, we introduce a simple one-dimensional
model, which emulates these scenarios, representing the two
local potentials by δ functions (generally speaking, with
different strengths). The initial configuration is the bound
state in a localized potential well, the model allowing us to
investigate all the dynamical effects in an analytical form. In
particular, a noteworthy result is that the largest probability
for the retention of the particle by the instantaneously hopping
well is attained at a particular finite value of its depth (which
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depends on the hopping distance), rather than monotonously
increasing with the depth.

As concerns the situation with the sudden switch from the
single-well potential to the DWP, the symmetric set of two δ

functional traps may support an odd bound state, in addition
to the even ground state, if the distance between the traps is
not too small. Accordingly, in this case the switch may result
in the retrapping of the originally trapped particle into either
of the two bound states (even or odd), both probabilities being
found in this work.

Additionally to the above-mentioned dynamical problems,
we also consider the sudden application of a kick to the trapped
particle, in both cases of the single- and double-well traps. In
that case, we calculate the probability of releasing the particle,
as well as of the kick-induced transition between the even and
odd bound states in the DWP.

The dynamical settings outlined above are also relevant
for the consideration of electrons trapped by photo-switchable
quantum dots; see, e.g., Ref. [17]. In particular, the settings
may be used for the controllable transfer of electrons in arrays
of quantum dots.

The rest of the paper is structured as follows. In Sec. II
we formulate the model, in terms of local traps for the
particle induced by focused laser beams. In fact, exactly
the same mathematical model, based on the corresponding
linear Schrödinger equation, applies to the description of a
completely different physical system, viz., transmission of
optical beams in waveguiding channels; see, e.g., Ref. [18].
In this connection, we also discuss realizations and potential
applications of the models, considered in the present work, in
terms of the guided optical propagation. In Sec. III we report
the main analytical results obtained for the model based on
the instantaneous or delayed switch between two potential
wells. The switching from the single well to the DWP is
considered in Sec. IV. Section V deals with the application
of the kick to the bound particle, and Sec. VI concludes the
paper.

II. THE MODEL

For the quantum particle trapped in the potential induced
by a focused laser beam, the sudden shift of the trap by
finite distance l is illustrated by Fig. 1. If the particle’s
de Broglie wavelength is essentially larger than the width
of the potential well, both the original and displaced traps
may be approximated by the Fermi potential in the form of
a δ function [11,12,19]. Thus, the model is based on the
Schrödinger equation for wave function ψ , written in the
scaled form

i
∂ψ

∂t
= −∂2ψ

∂x2
+ V (x,t)ψ (1)

with the potential represented by the combination of two δ

functions—generally speaking, with different strengths, one
scaled to be 2 and the other one being 2µ:

V (x,t) =
{

−2δ(x + l) at t � 0,

−2µδ(x) at t > 0.
(2)

+V

SWITCH

particle

Laser source2Laser source1

x0-l

FIG. 1. A sketch of the system, realized in terms of optical
beams trapping the quantum particle. Abruptly switching the pump
from the left laser source to the right one implies the instantaneous
displacement of the potential well by distance l.

The generalization of this potential for the switch delayed
by time τ corresponds to

V (x,t) =

⎧⎪⎨
⎪⎩

−2δ(x + l) at t � 0,

0 at 0 < t � τ,

−2δ(x) at t > τ,

(3)

where we assume the symmetric configuration, with µ = 1.
The other scenario that will be considered below, with the
switching from the single-well trap to the DWP, is described
by the following potential:

V (x,t) =
{

−2δ(x + l) at t � 0,

−2δ(x) − 2δ(x + l) at t > 0.
(4)

The initial state, ψin(x,t), is taken as the single bound state,
with energy E = −1, which is supported by the δ-functional
potential set at x = −l, i.e.,

ψin(x,t) = exp(−|x + l| + it) (5)

(the norm of this wave function is 1). In the case of potential
(2), the normalized wave function of the finite bound state
(with energy E = −µ2), shifted to point x = 0, is

ψfin(x,t) = √
µ exp(−µ|x| + iµ2t). (6)

As said above, the models may also find physically relevant
interpretations in terms of guided-wave optics, in addition to
the applications to quantum particles. Indeed, Eq. (1) with
t replaced by the propagation distance, z, is the standard
model for the paraxial transmission of light beams in planar
waveguides (see, e.g., Ref. [18]), with potential V (x,z)
representing an effective guiding structure in the plane. In
that context, all the potentials introduced above, viz., those
represented by Eqs. (2), (3), and (4), may find their applications
to optics, in terms of the switching or splitting of light signals
between different channels; see, e.g., Ref. [20]. Accordingly,
the results reported below may be interpreted in terms of the
guided waves in linear optics.
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III. ANALYTICAL RESULTS FOR THE SINGLE-WELL
POTENTIALS

A. The instantaneous shift of the potential well

The probability for the particle, which was originally
trapped in bound state (5), to get retrapped into state (6) after
the sudden shift of the potential well and the change of its
strength from 1 to µ, can be calculated in an obvious way, as
the square of the respective overlap integral:

P (µ) ≡ |A(µ)|2 = 4µ(µe−l − e−µl)2

(µ2 − 1)2
, (7)

where A(µ) ≡ ∫ +∞
−∞ ψ∗

in(x)ψfin(x)dx, with the asterisk stand-
ing for the complex conjugation. Expression (7) is not defined
for the symmetric configuration, with µ = 1. However, it is
easy to resolve this case, taking the limit of µ − 1 → 0:

P (µ = 1) = (1 + l)2e−2l . (8)

Note that Eqs. (7) and (8) yields P < 1 for any l > 0.
The probability given by these expressions is plotted in Fig. 2
versus µ, for several fixed values of distance l between the
initial and final positions of the trap. A noteworthy feature of
the plots is that the maximum of the retention probability is
attained at a finite value of µ, and the probability vanishes
at µ → ∞, i.e., an extremely strong shifted potential trap
is inefficient in retaining the particle in the bound state.
Accordingly, the value µmax, at which the maximum of the
probability (Pmax) can be found by means of a straightforward
analysis of expression (7), and Pmax itself, are plotted in Fig. 3
versus l. In particular, in the limit of l � 1 one can easily
obtain the following analytical approximations from Eq. (7):

P (µ) ≈ 4µ exp(−2µl), µmax ≈ (2l)−1, Pmax ≈ (2/e)l−1.

(9)

In particular, the asymptotic relation µmax ≈ (2l)−1 in
Eq. (9) may be understood as indicating that the strongest
retention is provided by the matching of two momenta which
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FIG. 2. The probability of the particle to remain trapped after the
instantaneous shift of the potential well by distance l is shown versus
relative strength µ of the shifted well, on the logarithmic scale.
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FIG. 3. The relative strength of the shifted trap (µmax), which
provides for the maximum of the retention probability, Pmax, and the
maximum itself, are shown as functions of the shift,

are determined, via the Heisenberg’s uncertainty relation, by
the displacement of the potential well, pl ∼ 1/l, and by the
localization length of the final bound state, pµ ∼ µ.

A solution for the temporal evolution of the wave function
in the course of the retrapping is available too. The time-
dependent solution to Schrödinger equation (1) with potential
(2) and initial conditions given by Eq. (5) at t = 0 can be
written, at t > 0, by means of the Green’s function (kernel)
K(x,x ′; t):

ψ(x,t) =
∫ +∞

−∞
K(x,x ′; t)ψin(x ′,t = 0) dx ′. (10)

In the presence of the final potential, V (x) = −2µδ(x) (while
the original potential is switched off), the relevant Green’s
function is [21]

K(x,x ′; t) = Kfree(x,x ′; t) + µ

2
e−µ(|x|+|x ′ |−iµt)

× erfc

( |x| + |x ′| − 2iµt

2
√

it

)
, (11)

where erfc(x) is the standard complementary error function,
and the free-space kernel is

Kfree(x,x ′; t) ≡ 1

2
√

iπt
exp

(
i
(x − x ′)2

4t

)
. (12)

The solution given by Eqs. (10)–(12) can be evaluated
explicitly, although the eventual form is cumbersome:

ψµ(x,t) = M(x + l, − i,2t) + M(−x − l, − i,2t)

+ 2µ

1 − µ2
M(|x| + l,iµ,2t) − 2µ2e−l

1 − µ2
M(|x|,iµ,2t)

− µ

1 + µ
M(|x| + l,− i,2t) − µ

1 − µ
M(|x| + l,i,2t)

+ µe−l

1 − µ
M(|x|,i,2t) − µe−l

1 + µ
M(|x|, − i,2t),

(13)
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where the definition of the so-called Moshinsky function
[19,22,23] has been used:

M(x,k,t) ≡ 1

2
exp

(
i
x2

2t
− z2

)
erfc(iz),

(14)

z ≡ 1 + i

2

√
t

(
k − x

t

)
,

k being a complex parameter. Note that for µ = 0, i.e., after the
abrupt elimination of the original potential without switching
the new potential on, the explicit solution (13) simplifies in the
free space:

ψ0(x,t) = 1

2
eit

[
ex+lerfc

(√
it + x + l

2
√

it

)

+ e−x−lerfc

(√
it − x + l

2
√

it

) ]
. (15)

The asymptotic form of the free-space solution (15) for t → ∞
may be further simplified, making use of the known asymptotic
approximation, erfc(z) ≈ (

√
πz)−1e−z2

[24]:

ψ0(x,t) ≈ t3/2

√
iπ

e
i(x+l)2

4t

t2 + (
x + l

2

)2 . (16)

In the case of the symmetric pair of the δ functions, with
µ = 1, the general solution (13) looks singular. After some
algebra, one can resolve the singularity; cf. the transition from
Eq. (7) to Eq. (8). In that case, the explicit solution is

ψµ=1(x,t) = 1

2
eit

[
ex+lerfc

(√
it + x + l

2
√

it

)

+ e−x−lerfc

(√
it − x + l

2
√

it

)]

+
(

1

2
+ |x| + l − 2it

)
1

2
eit−|x|−l

× erfc

(
−

√
it + |x| + l

2
√

it

)
− 1

4
eit+|x|+l

× erfc

(√
it + |x| + l

2
√

it

)

+ e−l

(
1

2
− |x| + 2it

)
1

2
eit−|x|

× erfc

(
−

√
it + |x|

2
√

it

)
− e−l

4
eit+|x|

× erfc

(√
it + |x|

2
√

it

)

−
√

it

π
e− (|x|+l)2

4it +
√

it

π
e− x2

4it
−l . (17)

Using the explicit result (13), one can produce probability
density distributions which illustrate the evolution of the wave
function in the course of the retrapping; see typical examples
of intermediate and nearly final configurations in Fig. 4. In
addition, the evolution of the probability density of the exact
solution at x = 0 (the point at which the new potential trap
was created) is plotted, for the same case, in Fig. 5.
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|ψ
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,t)
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x

|ψ
(x

,t)
| 2

FIG. 4. The top and bottom panels display the distribution of
the probability density in space at two different moments of times,
t = 0.07 and 15, respectively, in the course of the switching with µ =
3,l = 1, and τ = 0 (zero delay). The dotted line represents the initial
state, |ψ(x,t = 0)|2, and the solid curve depicts |ψ(x,t)|2. The final
retention probability is given by Eq. (7), P (µ = 3,l = 1) ≈ 0.21.

In the case of the symmetric pair of the δ functions, with
µ = 1, Eq. (17) makes it possible to find a simple asymptotic
expression for the wave function at x = 0, ψµ=1(0,t → ∞) =
eit−l(1 + l). As follows from Eq. (6), this result complies with
the retention probability (7) obtained above for µ = 1.

B. The delayed retrapping of the particle

In the model based on the time-dependent potential in the
form of Eq. (3), one can use the free-space solution (15) to
find the wave function at the moment of t = τ , and then the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

|ψ
(x

=
0,

t)
|2

FIG. 5. The temporal evolution of the probability density at x =
0, for µ = 3 and l = 1 (the oscillating curve), in the case of the
switching with the zero delay. The horizontal (dotted) line stands for
the final value, |ψ(0,t → ∞)|2.
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FIG. 6. The probability of the delayed retrapping of the quan-
tum particle as a function of the delay time, at fixed values of
displacement l.

delayed retrapping probability can be found via the following
overlap integral:

P = |A(τ )|2 where A(τ ) ≡
∫ +∞

−∞
ψ∗

fin(x,0)ψ(x,τ ) dx,

(18)

where expression (6) for ψfin(x,0) is taken with µ = 1. Using
Eq. (15), one can explicitly evaluate this integral:

A(τ ) = −2iτe−l[M(0, − i,2τ ) + M(0,i,2τ )]

+ (1 − 2iτ − l)M(l, − i,2τ )

− (1 − 2iτ + l)M(l,i,2τ ) + 2

√
iτ

π
exp

(
il2

4τ

)
+ (1 + l) exp(iτ − l). (19)

The probability given by Eqs. (18) and (19) is plotted
versus delay time τ in Fig. 6, at several fixed values of shift
l. A noteworthy feature of this dependence is the existence of
well-pronounced maxima of the retrapping probability at finite
values of τ , provided that l is not too small (l > 1). Moreover,
it is seen that the delay gives rise to the strong enhancement
of the retention rate of the particle at large values of the shift,
such as l = 4 and 5.

IV. THE DOUBLE-WELL POTENTIAL

Proceeding to the consideration of the model based on the
switching from the single well to the DWP, as per Eq. (4), we
first consider static bound states supported by the symmetric
DWP. It is easy to find the even stationary wave function of the
ground state, φeven(x), and its counterpart for the first excited
state, φodd(x) (provided that the latter one exists) [25]:

φeven(x) = Ceven

⎧⎪⎨
⎪⎩

eαeven(x+l) at x � −l,

cosh[αeven(x+l/2)]
cosh(αevenl/2) at − l < x � 0,

e−αevenx at x > 0;

(20)

φodd(x) = Codd

⎧⎪⎨
⎪⎩

−eαodd(x+l) at x � −l,

sinh[αodd(x+l/2)]
sinh(αoddl/2) at − l < x � 0,

e−αoddx at x > 0,

(21)

where the respective normalization constants are

Ceven =
√

2αeven cosh2(αevenl/2)

2 cosh2(aevenl/2) + sinh(αevenl) + αevenl
,

Codd =
√

2αodd sinh2(αoddl/2)

2 sinh2(aoddl/2) + sinh(αoddl) − αoddl
.

αeven,odd are related to the separation between the two wells, l,
by transcendental equations following from the integration of
Eq. (1) in infinitesimal vicinities of points x = −l and x = 0:

αeven[1 + tanh(αevenl/2)] = 2,
(22)

αodd coth(αoddl/2) = 2 − αodd.

As follows from Eqs. (22), the even wave function represents
the single solution at l < 1, while at l > 1 the odd wave
function exists too. Finally, the energies of the ground state
and first excited states can be written as

Eground = −α2
even, Eexcited = −α2

odd. (23)

Absolute values of energies (23) are displayed as functions of
l in Fig. 7.

Getting back to the model with the full time-dependent
potential (4), the probabilities of retrapping the particle from
the initial state (5) into the even and odd bound modes, which
are supported by the DWP, are given, respectively, by the
following expressions:

Peven, odd(l) =
∣∣∣∣
∫ +∞

−∞
ψ∗

in(x,t = 0)φeven, odd(x) dx

∣∣∣∣
2

. (24)
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odd

FIG. 7. The absolute values of the energies of the ground state
and first excited states (alias even and odd ones) in the double-well
potential, found as per Eqs. (22) and (23). The odd wave function
exists at l > 1.
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FIG. 8. The probabilities for the retrapping of the original state
(5) into the ground (even) state (“e”) and the first excited (odd) state
(“o”), evaluated as per Eqs. (20)–(22) and (24) in the model based on
Eq. (4). Recall that the excited state exists at l >1.

These probabilities are shown, as functions of l, in Fig. 8. Note
that the two probabilities become practically equal at l > 6.

V. THE RELAXATION OF THE KICKED
TRAPPED PARTICLE

Dynamical effects of another type are induced by the
application of a kick to a trapped particle, i.e., imparting
momentum k (or kinetic energy k2) to it, instantaneously
multiplying the stationary wave function by exp(ikx). A
natural realization of the kick is provided by the situation
when the trapping potential is abruptly set into motion with
velocity v = −2k, and the Schrödinger equation is set in the
reference frame moving along with the trap. On the other hand,
if the above models are interpreted in terms of the guided-wave
transmission in optics, as outlined above, the application of
the kick is tantamount to a sudden turn (“refraction”) of the
guiding channel.

A natural question is the probability of the retention of the
kicked particle in the bound state. For instance, if the kick
is applied to the stationary wave function (5), the holding
probability can be readily calculated as

P (k2) = |A(k)|2,
A(k) ≡

∫ +∞

−∞
eikx |ψin(x,t = 0)|2dx = 4

4 + k2
. (25)

In the DWP setting, an interesting possibility is the kick-
induced transition between the even ground state and its odd
excited counterpart. The probability of this transition (in either
direction) can be evaluated as per the following expression
[cf. Eq. (25)]:

Ptrans(k
2) = |A(k)|2, A(k) ≡

∫ +∞

−∞
eikxφ∗

even(x)φodd (x)dx,

(26)
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FIG. 9. The probability for the transition of the particle trapped
in the double-well potential between the ground state and first excited
state under the action of the kick, shown versus the kinetic energy,
k2, imparted to the particle.

where φeven(x) and φodd(x) are the stationary wave functions
given by Eqs. (20) and (21). The result of the numerical
calculation of this probability is presented in Fig. 9, which
features a noteworthy fact: the transition probability attains a
maximum, Pmax, at a finite value of the kinetic energy lent
to the originally quiescent particle. The latter value, along
with the respective maximum, Pmax, are shown as functions
of the DWP size, l, in Fig. 10. In the same figure, the energy
difference between the even and odd states is shown too, for
comparison.

In addition to the presence of the maxima, Fig. 9 demon-
strates vanishing of the transition probability at particular
values of k. Both the maxima and zeros of Ptrans(k2) can be
easily explained. Indeed, the product φeven(x)φodd(x) takes
opposite values at points x = −l and x = 0. Then, in the
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∆E

FIG. 10. (Color online) The kinetic energy, k2
max, of the kick,

which gives rise to the maximum of the probability of the transition
between the ground state and first excited state in the DWP, is plotted
versus the distance between the two potential wells. The maximal
probability, Pmax, is shown too, as well as the energy difference, �E,
between the two bound states [see Eq. (23)].
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combination with the phase shift of kl = π (2n − 1) or kl =
2πn, where n = 1,2,3 . . . , the corresponding expression (26)
clearly predicts, severally, maxima and zeros of Ptrans(k2). In
particular, the maxima and zeros observed in Fig. 9 are well
explained by these formulas with n = 1 and 2.

VI. CONCLUSIONS

In this paper we have addressed several dynamical effects
occurring in switchable configurations of local traps for quan-
tum particles. These include retention of the particle released
from a trap which was shut down, followed by switching on
another trap at a distance from the original one—immediately,
or with a finite delay; retrapping of the particle into the ground
state, or its first-excited-state counterpart, in the case when
the addition of the extra potential well suddenly turns the
single-well potential into the DWP (double-well potential);
and effects produced by the application of the kick to a trapped
particle, such as the transition between the ground and excited

states in the DWP. The results have been obtained in the
analytical form and were given physical explanations. Besides
atoms or electrons trapped in scanning-tunneling-microscopy
settings, or captured by switchable quantum dots, the same
models, and the results produced by the analysis, apply to the
problem of switching of light beams in planar waveguiding
structures.

A challenging generalization of the dynamical problems
considered in this work may be extending them to non-
linear systems, including those with uniform nonlinear-
ity [26] and models with the trapping provided by nonlinear
potential wells, such as those considered in Refs. [25]
and [27]. Another potentially interesting extension may be
expected in two-dimensional settings with switchable potential
wells.
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[15] R. Carretero-González, P. G. Kevrekidis, D. J. Frantzeskakis,

and B. A. Malomed, in Optical Trapping and Optical Microma-
nipulation II, edited by K. Dholakia and G. C. Spalding (SPIE,
Bellingham, WA, 2005).

[16] H. J. Davies and C. S. Adams, J. Phys. B 33, 4079 (2000);
M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, Phys. Rev.
A 63, 031401 (2001).

[17] E. Jares-Erijman, L. Giordano, C. Spagnuolo, K. Lidke, and
T. M. Joven, Mol. Cryst. Liq. Cryst. 430, 257 (2005); S. Acharya,
A. B. Panda, S. Efrema, and Y. Golan, Adv. Mater. 19, 1105
(2007).

[18] R. A. Sammut, C. Pask, and Q. Y. Li, J. Opt. Soc. Am. B 10,
485 (1993).

[19] E. Granot, Physica E 31, 13 (2006).
[20] A. Kaplan, B. V. Gisin, and B. A. Malomed, J. Opt. Soc. Am. B

19, 522 (2002).
[21] E. Granot, Phys. Rev. B 71, 035407 (2005).
[22] M. Moshinsky, Phys. Rev. 88, 625 (1952).
[23] M. Kleber, Phys. Rep. 236, 331 (1994).
[24] A. del Campo, J. G. Muga, and M. Kleber, Phys. Rev. A 77,

013608 (2008).
[25] T. Mayteevarunyoo, B. A. Malomed, and G. Dong, Phys. Rev.

A 78, 053601 (2008).
[26] D. Witthaut, S. Mossmann, and H. J. Korsch, J. Phys. A 38, 1777

(2005); K. Rapedius and H. J. Korsch, J. Phys. B: At. Mol. Opt.
Phys. 42, 044005 (2009).

[27] B. A. Malomed and M. Ya. Azbel, Phys. Rev. B 47, 10402
(1993).

033419-7

http://dx.doi.org/10.1103/RevModPhys.71.S324
http://dx.doi.org/10.1103/PhysRevB.31.805
http://dx.doi.org/10.1116/1.1990161
http://dx.doi.org/10.1103/PhysRevB.67.201402
http://dx.doi.org/10.1103/PhysRevB.67.201402
http://dx.doi.org/10.1103/PhysRevLett.79.697
http://dx.doi.org/10.1103/PhysRevLett.79.697
http://dx.doi.org/10.1038/nphys1183
http://dx.doi.org/10.1038/nphys1183
http://dx.doi.org/10.1088/0026-1394/22/4/006
http://dx.doi.org/10.1103/RevModPhys.70.721
http://dx.doi.org/10.1103/PhysRevLett.40.729
http://dx.doi.org/10.1103/PhysRevA.79.012106
http://dx.doi.org/10.1209/0295-5075/86/20007
http://dx.doi.org/10.1016/j.physrep.2009.03.002
http://dx.doi.org/10.1016/j.physrep.2009.03.002
http://dx.doi.org/10.1103/PhysRevA.78.023412
http://dx.doi.org/10.1088/0953-4075/33/19/318
http://dx.doi.org/10.1088/0953-4075/33/19/318
http://dx.doi.org/10.1103/PhysRevA.63.031401
http://dx.doi.org/10.1103/PhysRevA.63.031401
http://dx.doi.org/10.1080/15421400590946479
http://dx.doi.org/10.1002/adma.200602057
http://dx.doi.org/10.1002/adma.200602057
http://dx.doi.org/10.1364/JOSAB.10.000485
http://dx.doi.org/10.1364/JOSAB.10.000485
http://dx.doi.org/10.1016/j.physe.2005.08.014
http://dx.doi.org/10.1364/JOSAB.19.000522
http://dx.doi.org/10.1364/JOSAB.19.000522
http://dx.doi.org/10.1103/PhysRevB.71.035407
http://dx.doi.org/10.1103/PhysRev.88.625
http://dx.doi.org/10.1016/0370-1573(94)90029-9
http://dx.doi.org/10.1103/PhysRevA.77.013608
http://dx.doi.org/10.1103/PhysRevA.77.013608
http://dx.doi.org/10.1103/PhysRevA.78.053601
http://dx.doi.org/10.1103/PhysRevA.78.053601
http://dx.doi.org/10.1088/0305-4470/38/8/013
http://dx.doi.org/10.1088/0305-4470/38/8/013
http://dx.doi.org/10.1088/0953-4075/42/4/044005
http://dx.doi.org/10.1088/0953-4075/42/4/044005
http://dx.doi.org/10.1103/PhysRevB.47.10402
http://dx.doi.org/10.1103/PhysRevB.47.10402

