
PHYSICAL REVIEW A 82, 033416 (2010)

Strong-field phenomena caused by ultrashort laser pulses: Effective one- and two-dimensional
quantum-mechanical descriptions
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In this article, we address two strong-field phenomena which attract much attention and can be observed under
similar experimental conditions, namely when a gas is ionized by ultrashort laser pulses. The first phenomenon
is the excitation of high-order harmonics of the driving field frequency in the electron current, which leads to
the generation of extreme UV and soft-x-ray radiation. The second phenomenon is the excitation of a quasi-dc
residual current in the laser-produced plasma, which results in the generation of radiation having a frequency
below the laser one, e.g., THz waves. We present alternative one- and two-dimensional quantum-mechanical
models for the description of such phenomena for the gas consisting of H atoms and the generalization of these
models to the various noble gases. The shape of the electrostatic potential produced by an atomic ion is shown
to influence significantly the rates of the processes in the dynamics of atomic electron and, even more, the rate
of tunneling ionization, which is of utmost importance for the considered phenomena. The results of solving the
time-dependent Schrödinger equation with the proposed model potentials are compared with the results of the
ab initio three-dimensional calculations for the H atom. We find that in a wide range of laser pulse parameters
the results obtained with proposed models have much better accuracy than the results provided by the models
used earlier.
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I. INTRODUCTION

An important problem in the description of the interaction
of strong laser fields with the ionizable medium is calculation
of the electron currents excited in the process of this inter-
action. It is important, e.g., for the description of high-order
harmonic generation (HHG) [1–3], which is well-known as
a very useful tool for the generation of coherent radiation in
the vacuum UV and soft-x-ray wavelength ranges, as well
as for the attosecond pulse production [4,5]. The calculation
of the electron currents is important also for the description
of another phenomenon intensively studied now, namely the
generation of coherent terahertz (THz) waves triggered by
ionization of the gas by few-cycle laser pulses [6–14].

For the HHG process, one usually calculates the high-
frequency spectrum of the dipole acceleration [15], which
is proportional to the time derivative of the electron current
density. The main physical mechanism leading to the appear-
ance of high frequencies in the dipole acceleration spectrum is
the recombination of photoelectrons during their recollisions
with the parent ions [16]. This spectrum has a wide plateau
ending with a pronounced cutoff in the frequency region,
which usually corresponds to the extreme UV or soft-x-ray
radiation. In the case of few-cycle laser pulses, in which the
field amplitude differs considerably between the adjacent half-
periods, spectral selection of the highest harmonics, which are
phase-synchronized, allows one to generate single attosecond
pulses [17,18]. For the implementation of this generation,
stabilization of the carrier-envelope phase (CEP) of few-cycle
laser pulses is of the great importance [19].

For the case of the generation of waves having a frequency
much lower than the laser one, e.g., THz waves, the key point
in the theoretical description is to find the residual current
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density (RCD) of free electrons, which is proportional to
the zeroth harmonic in the Fourier spectrum of the dipole
acceleration. This RCD is the initial impact for the polarization
of the laser-produced plasma and the excitation of emitting
oscillations in it [7–14]. In the general case, the frequencies
of these oscillations are determined by the gas pressure and
the density of the generated plasma. For a wide range of gas
pressure and plasma density, the frequencies of the waves
emitted by the plasma lie in the THz frequency band. The
recent studies based on both semiclassical [7–14] and ab initio
quantum-mechanical [12,13] calculations have shown that
RCD is strongly dependent on CEP of few-cycle laser pulses,
which can be used to monitor CEP by detecting low-frequency
(THz) waves. For other laser pulse parameters fixed, there is
an optimal CEP, at which the value of RCD is maximum. In
case of the optimal CEP, RCD increases exponentially as the
duration of the laser pulse decreases, which can yield very high
values of the optical-to-THz conversion efficiency [7,12,13].

One of the main approaches to studying the above-
mentioned and other strong-field phenomena is based on
solving numerically the time-dependent Schrödinger equation
(TDSE) for the electron wave function. In early articles
dealing with the numerical TDSE solution, usually reduced-
dimensionality problems were considered, in which the
Coulomb interaction between charged particles is described
by means of one-dimensional (1D) or two-dimensional (2D)
model potentials. Wider popularity has been gained by the
1D model potential proposed by Javanainen et al. [20] for
numerical calculations of energy spectra of photoelectrons
when studying above-threshold ionization (ATI) of atoms. Far
from the charged particle, with which the electron interacts,
this potential is asymptotically close to the exact Coulomb
potential. At the point where the charged particle is located,
neither the potential nor its derivatives have discontinuities or
become infinite, therefore this potential was called the “soft-
core” potential. Later, Rae et al. [21] suggested to refine this
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potential according to the requirement that the particle binding
energy is equal to the experimentally measured value. One-
dimensional soft-core potentials were used to simulate various
strong-field phenomena including HHG [21,22], generation of
attosecond pulses [23,24], atom stabilization [25,26], and en-
hanced ionization of diatomic molecules [27–29]. Later the 2D
analog of the soft-core potential was proposed [30,31]. The use
of the 2D soft-core potential allowed one to perform extensive
studies in different basically multidimensional problems, for
instance, to perform the description of strong-field phenomena
in arbitrarily polarized laser fields [30–32] or beyond the dipole
approximation [24,33–35].

Due to the rapid advance in the computer capabilities,
growing amount of publications presents the description of
strong-field phenomena based on numerical solutions of three-
dimensional (3D) TDSE in the single-active electron (SAE)
approximation. There are also examples of solving the exact
TDSE for the two-electron systems such as the He atom [36].
However, the use of the 1D and 2D models has not lost its
significance and is still the only one real toolkit to solve many
physical problems. Model soft-core potentials are used now
to consider the problems which require solving the TDSE
repeatedly, e.g., those dealing with spatially inhomogeneous
fields including the cases of coupled solutions of the TDSE
and the Maxwell equations [37]. The range of such problems
includes also the cases of systems with a great number of the
degrees of freedom. For example, they may be the problems
related to the dissociative ionization of molecules [38–41]
or to the nonsequential multielectron processes [42–45]. In
addition, low-dimensional effective potentials are used in the
studies having little to do with conventionally considered
strong-field phenomena [46–48].

However, Rae et al. [21] demonstrated that the use of the 1D
soft-core potential for calculating the high-frequency spectrum
of the dipole acceleration (HHG spectrum) could yield spectral
intensities differing by several orders of magnitude from
those found by exact solution of the 3D TDSE. A similar
conclusion was made by Gordon et al. [49], who suggested
that a different 1D model potential, which has a cusp at the
point of ion location, should be used for calculations of the
HHG spectra. At this point, the first derivative of the 1D
potential has a discontinuity. For this potential, the scaling of
the recombination amplitude [49–51] with the kinetic energy
of the electron recolliding with the parent ion is the same
as for the Coulomb potential. As was shown in Ref. [49]
by comparing with the results of the 3D TDSE calculations
for the H atom driven by highly intense (∼1015 W/cm2)
single-cycle laser pulse, the use of this potential gives more
accurate HHG spectrum than when the 1D soft-core potential
is used. This potential, which could be called “solid-core”
because of the singularity, was used in later work for testing
the approximate semianalytical [52] methods developed to
describe the dynamics of Coulomb single- and multielectron
systems in a strong laser field and for testing the description
of the atom stabilization phenomenon in one dimension [53].

Note that the soft-core and solid-core potentials had been
considered long before they were proposed in Refs. [20,49]
for calculations of ionization-induced phenomena in strong
laser fields. As early as 1959, in Ref. [54], as well as in
later works [55,56], wave functions of the stationary states

in the solid-core potential were studied. Later, the solid-
core potential was used to describe the Coulomb interaction
between charge carriers encapsulated in quasi-1D nanos-
tructures, which are quantum dots and quantum wires (see
Refs. [57–59] and references therein). The soft-core potential
was used already in 1986 to describe the Coulomb interac-
tion between the electrons in a two-dimensional degenerate
electron gas when the fractional quantum Hall effect was
studied [60].

In this article, we show that the use of both the solid-core
and soft-core potentials to calculate the HHG spectra in
the region of laser pulse parameters, which is rather wide
and interesting from the viewpoint of practical applications,
can lead to significant errors. Specifically, the use of these
potentials yields the values of spectral intensities differing
near the cutoff from those yielded by the exact 3D TDSE
solution by more than an order of magnitude. When applied
to the calculations of RCD, the use of the soft-core and
solid-core potentials can also lead to serious disagreement
with the results of solving the 3D TDSE. More specifically, the
calculations employing these potentials result in serious errors
in the determination of the CEP optimal for RCD generation,
as well as to an overestimation of the RCD value per se by more
than an order of magnitude at the optimal CEP value. Precise
determination of these parameters is of a great importance for
the determination of the conditions optimal for the generation
of THz waves and for future experiments aimed at determining
CEP of few-cycle laser pulses [6–8,12–14]. We explain the
above-mentioned errors by analyzing ionization probabilities
and electron recombination amplitudes in these potentials, as
well as the motion of electrons in the continuum. Here, we
propose new 1D and 2D model potentials, which differ from
the potentials proposed earlier near the location of a charged
particle, with which the electron interacts. One type of these
potentials, which we call “pliant-core” ones, is suggested to
be used in calculations of the HHG spectra. It is demonstrated
for the pliant-core potentials applied to the H atom that the
values of spectral intensities in the HHG spectra agree well
with the results yielded by the solution of the 3D TDSE
in a rather wide range of intensities (∼1014–1015 W/cm2),
durations (∼2–5 cycles at full width at half maximum of
intensity), and wavelengths (∼1–2 µm) of the laser pulses.
This article also studies the spectral intensities of HHG as
functions of the laser pulse wavelength, which is a rather
topical problem nowadays [61–67]. Its topicality is due to the
recent advance in the development of infrared laser sources that
allow one to increase the maximum energy of the generated
XUV and soft-x-ray photons considerably [68]. The other type
of proposed potentials, which we call “supersolid-core” ones,
is suggested to be used for RCD calculations. It is shown that
the probability of tunneling and above-barrier ionization from
the supersolid-core potentials agrees with the probability of
ionization from the Coulomb potential with high accuracy.
As a result, the RCD value calculated with the use of the
supersolid-core potentials agrees well with the RCD calculated
on the base of the 3D TDSE in a wide range of considered
intensities and durations of the laser pulses. We also present the
parameters of the pliant-core and supersolid-core potentials, at
which the absolute values of the ground-state energy coincide
with the ionization potentials of noble-gas atoms, which are
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conventionally used in experimental investigations of various
strong-field phenomena.

The article is organized as follows. In Sec. II, we describe
the statement of the problem and the method of finding HHG
spectrum and RCD. In Sec. III, new 1D and 2D potentials
are presented, which simulate the electrostatic potential of
the ion in the atoms of hydrogen and various noble gases.
In Sec. IV, we present the results of numerical calculations
obtained by using the 1D and 2D models and compare them
with the results of the 3D calculations. Section IV A presents
the details of the numerical methods used for solving 1D, 2D,
and 3D TDSEs. In Sec. IV B, we calculate the HHG spectra,
as well as the dependencies of the HHG spectrum integrated
over the specified frequency intervals on the intensity and
central wavelength of the laser pulse. In Sec. IV C, we present
the results of RCD calculations. In Sec. V, to explain the
obtained results, we calculate the static-field ionization rates
as well as the recombination amplitudes for the 1D and 2D
potentials and compare these results with those for the exact
3D Coulomb potential. The numerical results are discussed in
Sec. VI. Section VII contains the summary and conclusions of
the research.

II. STATEMENT OF THE PROBLEM

Consider an unperturbed atom placed in a linearly polarized
laser pulse with the electric field E(t), which is assumed to be
a specified function of time t and directed along the z axis. Let
the laser pulse has the intensity I ∼ 1013–1015 W/cm2 and the
wavelength λL ∼ 0.8–2 µm. For these parameters, the dipole
approximation is valid for the description of the laser-atom
interaction [69]. The TDSE for the electron wave function ψ

in the length gauge is written as follows:

ih̄
∂ψ(r,t)

∂t
=

[
p̂2

2m
+ V (r) − eE(t)z

]
ψ(r,t), (1)

where h̄ is the Planck constant, e = −|e| and m are the
charge and mass of the electron, respectively, p̂ = −ih̄∇ is the
momentum operator, r is the distance between the electron and
ion, and V (r) is the electrostatic potential of the ion. Within
the 1D problem, the distance is r = |z|, in the 2D problem,
r = √

x2 + z2, and in the 3D one, r =
√

x2 + y2 + z2, where
x, y, and z are the Cartesian coordinates. The initial wave
function is specified as the normalized to unity ground-state
eigenfunction of the Hamiltonian Ĥ0 = p̂2/2m + V (r).

Under the action of the electric field, the electron wave
packet acquires a time-dependent dipole acceleration [15],
which is directed along the z axis. The dipole acceleration
(understood here as the expectation value of the electron
acceleration) can be expressed as [15]:

a(t) = e

m
E(t) − 1

m
〈ψ |∂V

∂z
|ψ〉. (2)

The knowledge of the dipole acceleration allows one to
calculate local macroscopic parameters of the medium, in
particular, the density of the electron current excited in the
laser-produced plasma. The z component of the electron
current density, which is equal to

j (t) = eNg

m
〈ψ |p̂z|ψ〉, (3)

is related to the dipole acceleration via the equation

j (t) = eNg

∫ t

−∞
a(t ′) dt ′. (4)

Here, Ng is the initial density of neutral atoms and p̂z is the
z component of the momentum operator. Those components
of the current density, which are transverse to the direction of
the electric field, are zero, since the wave-packet spreading
is symmetric relative to the z axis. As mentioned above,
the dipole-acceleration spectrum |aω|2 has a plateau at high
frequencies, which exceed by far the laser frequency [4,5].

Along with the high-frequency plateau, the dipole-
acceleration spectrum has also the low-frequency part. In what
follows, we will consider the zeroth harmonic a0 of the dipole
acceleration, since it is proportional to RCD of free electrons,
jRCD = eNga0. When calculating RCD, it is necessary to
allow for the fact that after the passage of the laser pulse
the total current density j (t) includes, along with RCD, the
fast-oscillating current density jb(t) of the electrons staying
in the bound states in the atoms [12,13]. For a low degree
of ionization, the contribution of the electrons staying in the
bound states to the total current density can be significant.
The frequencies of oscillations of jb(t) are determined by
the energies of transitions between the most populated bound
states. We calculate the current density jb(t) as follows. The
wave function ψ is multiplied by the window function f (r),
which decreases smoothly from unity to zero with increasing
r on the scale of several Bohr radii rB = 5.29 × 10−9cm
(as shown by numerical calculations, 10rB is sufficient for the
account of all the most populated bound states contributing
significantly to the current density). The function obtained,
ψb(r,t) = f (r)ψ(r,t), is dominated by the bound states, since
they are localized near the ion, whereas the ionized wave
packet went away from the ion to a significant distance after
the passage of the laser pulse. The value of the current density
jb(t) is found as

jb(t) = eNg

m
〈ψb|p̂z|ψb〉. (5)

The value of jRCD is found as the difference between the total
and bound-state current densities:

jRCD = j (t) − jb(t). (6)

III. MODEL POTENTIALS

A. 1D model potentials

To simulate the strong-field phenomena by solving the 1D
TDSE, one frequently uses the soft-core potential [20,21]. At
the point of origin, neither the potential nor its derivatives
have discontinuities or become infinite. For the H atom, the
1D soft-core potential is [21]

V1D(z) = − e2√
z2 + 2r2

B

, (7)

where 2r2
B is the parameter of Coulomb singularity smoothing,

chosen so that the absolute value of the ground-state energy
in the potential coincides with the ionization potential of
the atom [21]. Far from the point of origin this potential is
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asymptotically close to the exact Coulomb potential. The same
conditions are met with the potential presented in Ref. [49],
which has a cusp at the point of origin and could be called
the solid-core potential. For the H atom, the 1D solid-core
potential is

V1D(z) = − e2

|z| + rB

. (8)

In this work, we propose two new 1D model potentials
simulating the electrostatic potential of the H atom ion, as
well as the generalization of these potentials to five different
noble-gas atoms. We propose to use one of these potentials for
the calculations of the HHG spectra. The second potential is
proposed for the RCD calculations. We chose these model
potentials from the following family of the 1D potentials,
which are asymptotically close to the Coulomb potential far
from the point of origin:

V1D(z) = − e2(|z|α + βrα
B

)1/α
. (9)

Here, α and β are the parameters which determine the
sharpness of the function V1D(z) near the point of origin
and smoothing of the Coulomb singularity, respectively. They
determine also the value of the ground-state energy in this
potential. We calculated the relation between the parameters α

and β at which the absolute value of the ground-state energy
in potential (9) coincides with the H atom ionization potential,
Ip = 13.6 eV. This relation is shown in Fig. 1(a). The circles
in the figure mark the values of α and β corresponding to the
1D soft-core and solid-core potentials as well as to the 1D
potentials proposed in this work.

To calculate the HHG spectra, we propose using the
potential (9) with α = 3/2. This choice is motivated by the
following simple considerations. As will be shown below
by an example of the H atom, for the laser-pulse intensities
I ∼ 5 × 1014 W/cm2, at the cutoff region the spectral intensity
|aω|2 found by using the soft-core potential (7) turns out
to be underestimated compared with its precise value found
from the 3D calculations. The use of solid-core potential (8)
yields overestimated values of |aω|2 for the same parameters
of the laser pulse. It is evident that the potential ensuring a
good agreement with the 3D calculations should be something
“in between” the soft-core and solid-core potentials. In the
class of potentials defined by Eq. (9), it could be the potential
for which α = 3/2 [see Fig. 1(a)]. In what follows, the poten-
tials of this kind will be called pliant-core potentials. For the
H atom, the 1D pliant-core potential is

V1D(z) = − e2(|z|3/2 + 1.45r
3/2
B

)2/3 . (10)

To calculate RCD, we suggest using potential (9) with α =
1/2. At the point of origin it is sharper than solid-core potential,
because at this point the first derivative becomes infinite.
We will refer to this kind of potentials as supersolid-core
potentials. For the H atom, the 1D supersolid-core potential is:

V1D(z) = − e2(|z|1/2 + 0.6r
1/2
B

)2 . (11)

FIG. 1. (Color online) Dependences relating the parameters α

and β in the formulas for (a) the 1D and (b) the 2D model potentials
[Eqs. (9) and (12)], which were found under the assumption that the
absolute value of the ground-state energy in this potential coincides
with the hydrogen atom ionization potential. The circles mark
the values of the parameters corresponding to the soft-core and
solid-core potentials [Eqs. (7), (13) and (8), (16), respectively], as
well as the pliant-core and supersolid-core potentials proposed in this
work [Eqs. (10), (14) and (11), (15), respectively].

As will be shown below, for this choice of the potential, the
probability of tunneling and above-barrier ionization agrees
with the ionization probability from the 3D Coulomb potential
to a very high accuracy. Therefore, as we will see further, the
potentials of this kind are well suited to calculate RCD.

To study the strong-field phenomena in gases consisting of
multielectron atoms (such as noble gases), the single-active
electron approximation [70] is generally used. Within the
SAE approximation, all electrons except one are considered
frozen in their orbitals and the field of the parent ion is
treated as a simple potential well [70]. The formula for the
potential of the parent ion is found from the requirement that
the energy of several lowest bound states coincides with the
corresponding experimentally measured values [71–73]. We
generalize the proposed potentials (10) and (11) to the case of
noble-gas atoms. For each species, we fixed the parameter α

and calculated the value of the parameter β in order to reach the
agreement between the ground-state energy in potential (9) and
the experimentally measured value of the ionization potential.
Table I presents the results of calculations of the parameter β,
rounded to the second significant decimal digit, for α = 3/2
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TABLE I. Values of the parameter β for the proposed 1D and 2D
pliant-core and supersolid-core potentials for hydrogen and noble-gas
atoms found under the assumption that the absolute value of the
ground-state energy coincides with the atom ionization potential Ip .
General expression for the 1D potentials is given by Eq. (9), and for
the 2D potentials, by Eq. (12).

β

1D pliant 1D supersolid 2D pliant 2D supersolid
core core core core

Atom Ip (eV) (α = 1.5) (α = 0.5) (α = 1.5) (α = 0.5)

H 13.60 1.45 0.60 0.52 0.24
He 24.59 0.49 0.38 0.089 0.095
Ne 21.56 0.62 0.42 0.14 0.12
Ar 15.76 1.11 0.54 0.35 0.20
Kr 14.00 1.37 0.58 0.48 0.23
Xe 12.13 1.78 0.65 0.69 0.27

(pliant-core potential) and α = 1/2 (supersolid-core potential)
for noble gases: He, Ne, Ar, Kr, and Xe. We assume that
the use of these model potentials for calculation of the HHG
spectra and RCD leads to qualitatively accurate results in
the region of parameters of laser pulses, at which the SAE
approximation is applicable. This assumption can be checked
further by comparing the obtained results with the results
of the 3D simulation. There are works where the compar-
ison with the experimental results is used to demonstrate
that the 3D simulation within the framework of the SAE
approximation allows one to perform qualitatively accurate
calculations of the ATI and HHG spectra in the conditions,
when the recolliding electrons have moderate kinetic energies,
Ekin < 60 eV [74,75]. Note that for higher energies of the
recolliding photoelectrons in the gases consisting of heavy
atoms (e.g., Xe), the HHG process can be strongly influenced
by multielectron effects [62], which are not taken into account
within the framework of the SAE approximation. Note also
that due to the existence of only one degree of freedom of
the electron, 1D models are unable to describe the features of
the atomic response arising from the details of the atomic
valence orbital related to the electron angular momentum.
For example, 1D simulations are not expected to describe
the Cooper minimum in the HHG spectra [62,75,76] from
atoms (Ar, Kr) ionized from p orbitals. On the other hand,
the dependence of the continuum electron wave packet on
the atomic orbital may be rather weak (see, e.g., Ref. [77]).
That is why one can expect sufficiently good performance
of proposed reduced-dimensionality models in calculations of
RCD for different atoms.

B. 2D model potentials

By analogy with 1D model potentials, we consider the
following class of the 2D model potentials:

V2D(x,z) = − e2

(
(x2 + z2)α/2 + βrα

B

)1/α
, (12)

where α and β are the parameters related by the condition
of the equality between the ground-state energy and the atom
ionization potential. Figure 1(b) shows this relation for the

H atom. The generalization of the 1D soft-core potential to the
2D case for the H atom is [31]:

V2D(x,z) = − e2√
x2 + z2 + 0.64r2

B

. (13)

Like in the 1D case, we propose to use the 2D pliant-core
potential [Eq. (12) with α = 3/2] and the 2D supersolid-core
potential [Eq. (12) with α = 1/2] in the calculations of the
HHG spectra and RCD, respectively. For the H atom, the 2D
pliant-core potential is

V2D(x,z) = − e2

(
(x2 + z2)3/4 + 0.52r

3/2
B

)2/3 , (14)

and the 2D supersolid-core potential is

V2D(x,z) = − e2

(
(x2 + z2)1/4 + 0.24r

1/2
B

)2 . (15)

In subsequent numerical calculations, to make the study more
comprehensive, we also consider the 2D solid-core potential
which is the generalization of 1D solid-core potential (8) to
the 2D space:

V2D(x,z) = − e2

√
x2 + z2 + 0.39rB

. (16)

In Table I we present the calculated values of the parameter
β for 2D pliant-core and supersolid-core potentials, which
correspond to different noble-gas atoms. Note that when one
solves the TDSE numerically by using spatial computation
grid, the value of the ground-state energy in the potential can
depend slightly on the spatial step of the grid and the location of
grid nodes relative to the point of origin. This fact can be rather
important for the case of 3D Coulomb potential as well as for
the 1D and 2D supersolid-core potentials since they are very
sharp near the point of origin. Possible disagreement between
the value of the ground-state energy in numerical calculations
and the experimentally measured value of ionization potential
arising from the finite size of the spatial step can be eliminated
by more fine adjustment of the parameter β.

IV. NUMERICAL RESULTS

In this section, we present the results of using the 1D and
2D models of the H atom for calculating the HHG spectrum and
RCD in a wide range of laser-pulse parameters and compare
them with the results given by the 3D approach. The time
dependence of the electric field E(t) of the laser pulse is
specified as

E(t) = 1

ωL

∂A

∂t
,

(17)

A(t) = E0 sin(ωLt +ϕCEP) exp

(
−(2ln2)

t2

τ 2
p

)
,

where ωL is the carrier frequency, E0 is the envelope
maximum, ϕCEP is CEP, and τp is the pulse duration
(the intensity full-width at half-maximum, FWHM). Setting
the field as Eq. (17) ensures that the zeroth harmonic in the
electric-field spectrum is equal to zero.
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A. Methods

The 3D TDSE is solved in the cylindrical system of
coordinates (ρ, θ , z). The use of cylindrical coordinates in
the case when the laser pulse is linearly polarized and the
electron is initially in the s state makes it possible to reduce
the computation time significantly compared with the solution
in the Cartesian coordinates. The 3D TDSE in the cylindrical
coordinates is written as follows:

ih̄
∂ψ(ρ,z,t)

∂t
= −

[
h̄2

2m

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2

)

+ e2√
ρ2 + z2

+ eE(t)z

]
ψ(ρ,z,t). (18)

The numerical solution of the 1D, 2D, and 3D TDSEs is found
by the split-step method [78]. To transform the wave function
from the coordinate representation into the momentum one
(and back), the fast Fourier transform (FFT) is used in the
1D and 2D problems. In the 3D problem, FFT with respect
to z and the discrete Fourier-Bessel transform with respect
to ρ are used. The calculations are performed in the regions
−zmax � z � zmax (1D TDSE), −zmax � z � zmax, −xmax �
x � xmax (2D TDSE), and −zmax � z � zmax, 0 � ρ � ρmax

(3D TDSE). To avoid reflections from the boundaries of the
computation domain, absorption of the wave function [79] is
used for z̃ � |z| � zmax, x̃ � |x| � xmax, and ρ̃ � ρ � ρmax

following the method proposed in Ref. [80]. The integration
with respect to time t is performed for −tmax � t � tmax with
the time step �t . The following parameters ensuring the
required accuracy of the calculations are used: zmax = 4rosc,
z̃ = 3rosc, xmax = 60rB , x̃ = 40rB , ρmax = 60rB , ρ̃ = 40rB ,
tmax = 4τp, �t = 0.02ta , where rosc = |eE0/mω2

L| is the
oscillatory radius of the electron corresponding to the peak
amplitude of the electric field, and ta = 2.42 × 10−17s is the
atomic unit of time. For 1D and 2D TDSEs, the spatial steps
are �z = 0.1rB and �z = �x = 0.2rB , respectively. When
the 3D TDSE is solved, the uniform grid with respect to z is
used with �z = 0.25rB , while the grid nodes with respect to
ρ are placed nonuniformly. The grid becomes denser toward
ρ = 0, and the total number of nodes is set equal to Nρ = 500.

B. HHG spectrum

Consider first a laser pulse with parameters close to those
used in Ref. [49]. Let the laser pulse contain one cycle of
the optical field (K = ωLτp/2π = 1, τp = 2.67 fs) with the
central wavelength λL = 800 nm and the intensity I = 1.14 ×
1015 W/cm2 (I = cE2

0/8π where c is the velocity of light).
The HHG spectra |aω|2 found with the 1D model potentials,
as well as by an exact 3D calculation are shown in Fig. 2. It
is seen that, in agreement with Ref. [49], the HHG spectrum
obtained by the use of the 1D solid-core potential is close to
the spectrum obtained by the 3D calculation, while for the 1D
soft-core and pliant-core potentials the spectral intensities are
underestimated by several orders of magnitude. However, as
we will show below, the performance of the solid-core potential
is typically not as good as in this particular case.

Let us consider a laser pulse with longer duration (K = 1.5,
τp = 4 fs) and lower intensity I = 5 × 1014 W/cm2 [see
Fig. 3(a)]. For these parameters, the best agreement with

FIG. 2. (Color online) The HHG spectrum found by solving the
1D TDSE with different model potentials and by solving the 3D
TDSE (thick curve). Laser pulse has the duration τp = 2.67 fs, the
intensity I = 1.14 × 1015 W/cm2 (E0 = 0.18Ea), the wavelength
λL = 800 nm, and the carrier-envelope phase ϕCEP = 0. (Dotted
curve) The solution of the 1D TDSE with solid-core potential, (thin
solid curve) with pliant-core potential, and (dash-and-dotted curve)
with soft-core potential.

FIG. 3. (Color online) The HHG spectrum found by solving
(a) the 1D and (b) the 2D TDSE with different model potentials and
by solving the 3D TDSE (thick curve). Laser pulse has the duration
τp = 4 fs, the intensity I = 5 × 1014 W/cm2, the wavelength λL =
800 nm, and CEP ϕCEP = 0. (Dotted curves) The results obtained
with solid-core potentials, (dash-and-dotted curves) with soft-core
potentials, and (thin solid curves) with our proposed pliant-core
potentials.
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FIG. 4. (Color online) Same as shown in Fig. 3 but for the
wavelength λL = 1200 nm, the pulse duration τp = 20 fs, and the
intensity I = 3 × 1014 W/cm2.

the exact 3D solution is achieved when using the proposed
1D pliant-core potential, whereas the use of the 1D solid-
core potential overestimates the spectral intensity near the
cutoff by an order of magnitude, and the use of the 1D
soft-core potential underestimates this value even more. This
regularity is observed also for the HHG spectra calculated
with the 2D TDSE [Fig. 3(b)]. For a higher laser wavelength,
λL = 1200 nm, and greater number of field cycles, K = 5
(τp = 20 fs), the HHG spectra calculated using pliant-core
potentials also agree well with the results of the 3D calculations
(see Fig. 4).

For a more detailed comparison of the HHG spectra
obtained using different potentials, we calculate the value of
the HHG power (the integral of the spectral intensity |aω|2
over the specified spectral interval) for different values of the
intensity, duration, and wavelength of the laser pulse. First, we
consider the integral of |aω|2 over the spectral interval at the
cutoff region:

P�ω =
∫ ωc+�ω

ωc−�ω

|aω|2dω, (19)

where ωc = (Ip + 3.17Up)/h̄ is the cutoff frequency [16,81],
Up = e2E2

0/(4mω2
L) is the maximum ponderomotive poten-

tial, and �ω is the half-width of the spectral interval, over
which the integration is performed. Figure 5 shows the

FIG. 5. (Color online) Integrated HHG spectrum over the interval
at the edge of plateau [Eq. (19) for h̄�ω = 38.7 eV] as a function of
the laser pulse intensity I for the wavelength λL = 800 nm, CEP
ϕCEP = 0, and different pulse durations: (a and b) τp = 2.67 fs,
(c and d) τp = 4 fs, and (e and f) τp = 8 fs. Results are obtained
on the basis of (a, c, and e) the 1D and (b, d, and f) the 2D TDSE
solution by using the soft-core (dash-and-dotted curves), solid-core
(dotted curves), and pliant-core (thin solid curves) potentials, as well
as on the basis of the 3D TDSE (thick solid curves).

dependences of the HHG power on the laser peak intensity I for
λL = 800 nm and different values of the pulse duration τp. We
set h̄�ω = 25h̄ωL ≈ 38.7 eV and specify CEP as ϕCEP = 0,
since we found that the change in CEP and small change
in �ω have almost no effect on the calculated dependence
P�ω(I ). One can see that the 1D solid-core potential gives most
accurate results for P�ω only for short durations, τp ∼ 2.67 fs,
and high intensities, I � 1015 W/cm2. For lower intensities
and longer pulse durations the HHG power calculated by
using the 1D solid-core potential is strongly overestimated.
It agrees well also with the results shown in Figs. 2 and 3. For
I � 5 × 1014 W/cm2 and τp � 4 fs the most accurate is the
1D pliant-core potential. In the 2D case, at high intensities, I �
1015 W/cm2, the 2D solid-core potential is most accurate for all
considered durations, τp ∼ 3–8 fs, while at lower intensities,
I ∼ (4–8) × 1014 W/cm2, the 2D pliant-core potential is the
most accurate.

We also studied the dependences of the HHG power P�ω

on the central wavelength λL of the laser pulse. The results
obtained for a fixed number K = 5 of field cycles and the
intensity I = 3 × 1014 W/cm2 are shown in Fig. 6. The HHG
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FIG. 6. (Color online) Dependence of the HHG power [Eq. (19)
for h̄�ω = 32 eV] on the laser pulse central wavelength λL. The
laser pulse has the intensity I = 3 × 1014 W/cm2, CEP ϕCEP = 0,
and contains five cycles at FWHM. Results are obtained on the basis
of solving (a) the 1D TDSE and (b) the 2D TDSE using the soft-core
(dash-and-dotted curves), solid-core (dotted curves), and pliant-core
(thin solid curves) potentials. Results obtained from the 3D TDSE
are shown by thick solid curves. The dashed line corresponds to the
power law λ−7.5

L .

power found by solving the 3D TDSE follows the power law
λ−7.5

L , which agrees well with the analytical result λ−7
L obtained

recently [62]. When reduced-dimensionality models are used,
the value of P�ω in the long-wavelength range decreases with
λL stronger than by the power law. However, it should be
noted that the use of the 1D pliant-core potential yields the
best agreement with the results of the 3D calculations in a
wide range of wavelengths. For the considered values of the
pulse intensity and duration, this interval is 1100 nm � λL �
2000 nm. When using the 1D solid-core potential, the value
of P�ω is overestimated by more than an order of magnitude
in the entire considered range of λL. When the 1D soft-core
potential is used, the value of P�ω corresponds approximately
with the exact value at λL = 800 nm and deviates from it
fast as λL grows. For λL = 1600 nm, it is underestimated

by more than two orders of magnitude. In the 2D case, the
curves P�ω(λL) lie generally much closer to the curve found
by solving the 3D problem. The curve P�ω(λL) calculated
using the 2D pliant-core potential agrees well with the exact
curve in the wavelength range λL ∼ 700–1800 nm.

Thus, the 1D and 2D pliant-core potentials, which we
propose, give high accuracy when spectral HHG intensities
are calculated near the cutoff. However, it is also of great
interest to study the λL scaling of the integral of the spectral
intensity |aω|2 over a fixed frequency interval, whose position
is independent of λL [62–67],

P�ω =
∫ ωf

ωi

|aω|2dω. (20)

Our calculations show that for this definition of P�ω, reduced-
dimensionality models yield the decrease of the HHG power
according to the power law, as it happens both in the 3D
calculations [63–65] and in the experiments [67]. Table II lists
the values for the exponent κ of the wavelength scaling law
P�ω ∝ λ−κ

L obtained using reduced-dimensionality models
and the 3D approach for the laser pulse parameters same
as in the previous paragraph; the integration was performed
over the harmonic energy interval between h̄ωi = 25 eV and
h̄ωf = 65 eV. In the case of reduced-dimensionality models,
the exponent κ is almost independent of the potential used.
When the dimensionality of the problem is increased by unity,
κ increases by approximately 0.5–0.7 rather than by unity, as
one could expect reasoning from the analysis of the influence
of spreading of the ionized wave packet on the values of
spectral HHG intensities [81]. This proves that the wave-packet
spreading is not the only important factor that determines the
dependences of the plateau height on the dimensionality of the
problem and on the laser wavelength. The value of κ found
by solving the 3D TDSE is equal to 4.3, approximately. Some
difference of this value from κ = 4.8 reported in Ref. [64]
can be due to the fact that our calculations were performed
for a different shape of the electric-field envelope, a higher
pulse intensity, and a wider spectral interval �ω = ωf − ωi .
The significant difference in the value of κ compared with
that obtained experimentally (κ = 6.3 − 6.5) [67] is caused,
on the one hand, by the fact that the experiment in Ref. [67]
was made in Xe and Kr, whereas our calculations described
herein were performed for the H atom. As it was shown in
Refs. [64,65], the wavelength scaling of the HHG power can
differ significantly for different atoms. On the other hand, in
many articles it has already been noted that in experiments,
the decrement of the harmonic yield with λL turns out to be

TABLE II. Exponent κ of the wavelength scaling law P�ω ∝ λ−κ
L

[Eq. (20) for h̄ωi = 25 eV and h̄ωf = 65 eV] found by solving the
1D and 2D TDSE with different model potentials and by solving the
3D TDSE with the Coulomb potential. The laser pulse contains 5
cycles at FWHM and has the intensity I = 3 × 1014 W/cm2.

Model potentials 3D Coulomb
Dimension Soft core Pliant core Solid core potential

1D 3.0 3.1 3.2 4.3
2D 3.7 3.75 3.8
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much higher than that predicted theoretically. This takes place
even despite the fact that the experiments in Ref. [67] were
performed under the conditions, when the collective effects
should not play any significant role. This fact has not been
given any solid explanation yet.

C. Residual current density

Below we present the results of calculating RCD. For the
normalization of the value of jRCD, we use the maximum
oscillatory-current density, josc = eNgVosc = e2NgE0/mωL,
where Vosc is the oscillatory velocity of the electron corre-
sponding to the peak amplitude of the electric field. The nor-
malized RCD jnorm = jRCD/josc found in this way is a dimen-
sionless factor, which characterizes the efficiency of generation
of RCD [7,12,13]. Note that jnorm is independent of the initial
gas density Ng and is related to the value of the zeroth harmonic
a0 of the dipole acceleration as jnorm = (mωL/eE0)a0. We
study the dependences jnorm(ϕCEP) = −jnorm(ϕCEP + π ) of the
normalized RCD on CEP for different fixed pulse durations
and intensities. Accurate calculation of these dependences can
be important for the monitoring of CEP of few-cycle laser
pulses by means of detection of the THz waves radiated by the
laser-produced plasma. Of greatest significance is to find the
exact value of optimal CEP ϕopt at which the absolute value
of jnorm has a maximum, as well as the maximum normalized
RCD jmax = |jnorm(ϕopt)| itself [12,13].

Figure 7 shows the dependencies jnorm(ϕCEP) calculated
for the pulses with τp = 4 fs, λL = 800 nm, and various
peak intensities. One can see that the best agreement with
the 3D calculations is reached when the proposed 1D and 2D
supersolid-core potentials are used. For all considered values
of laser intensity, the use of supersolid-core potentials yields
almost exact values of the maximum normalized RCD jmax.
The optimal CEP ϕopt, which is found from the calculations
involving the supersolid-core potentials, also agrees with
that found by the 3D calculation for considered values of
the intensity. Searching for the dependences jnorm(ϕCEP) by
means of the calculations involving the other 1D and 2D
model potentials results in a strong overestimation of jmax

compared with the 3D calculation. For low laser intensity, this
overestimation amounts to several times. The optimal CEP
found by using the soft-core and solid-core potentials agrees
well with its value found by the 3D calculation at sufficiently
low laser intensities and starts to differ at higher intensities,
I � 1014 W/cm2.

Figure 8 shows the dependences jnorm(ϕCEP) for longer
pulse duration, τp = 6 fs. Calculations of RCD using the 1D
and 2D supersolid-core potentials have high accuracy at high
intensities, I � 8 × 1014 W/cm2. At lower intensities, the use
of supersolid-core potentials leads to significant deviations
from the 3D calculations for ϕopt and jmax. The results of
calculations of jnorm(ϕCEP) using the other model potentials
differ strongly from the results of the 3D calculations for
all considered intensities. Note that for this duration of the
laser pulse the dependences jnorm(ϕCEP) have a jagged shape
with several maxima at 0 � ϕCEP < π . This is connected with
the fact that when the duration of the laser pulse is rather
long, the RCD value is strongly influenced by the processes of
the electron scattering on and recombination with the parent

FIG. 7. (Color online) Normalized residual current density
jnorm = jRCD/josc as a function of the carrier-envelope phase ϕCEP for a
laser pulse with the duration τp = 4 fs, the wavelength λL = 800 nm,
and different values of the intensity: (a and b) I = 6 × 1013 W/cm2,
(c and d) I = 9 × 1013 W/cm2, and (e and f) I = 8 × 1014 W/cm2.
Here, josc = e2E0Ng/(mωL) is the maximum oscillatory-current
density. Results are obtained on the basis of (a, c, and e) the 1D
and (b, d, and f) the 2D TDSE solution by using the soft-core (dash-
and-dotted curves), solid-core (dotted curves), and supersolid-core
(dashed curves) potentials, as well as the 3D TDSE solution
(solid curves).

ion [12]. The influence of these processes is most significant
for the 1D models, since the scattering and recombination
cross sections are the highest in the 1D problem (see also
Sec. VI).

V. PROBABILITIES OF STATIC-FIELD IONIZATION
AND RECOMBINATION AMPLITUDES

A. Probabilities of static-field ionization

Despite the same ground-state energy, different model
potentials give different rates of the atom ionization. Let us
show this by calculating the probability of atom ionization in a
static electric field. We consider a wide range of electric-field
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FIG. 8. (Color online) Same as shown in Fig. 7 but for the pulse
duration τp = 6 fs and intensities (a and b) I = 3 × 1014 W/cm2,
(c and d) I = 8 × 1014 W/cm2, and (e and f) I = 1.5 × 1015 W/cm2.

strengths, E < 0.16Ea , which includes the ranges relevant to
both the tunneling regime and the above-barrier regime of
ionization.

We calculate the probability w of atom ionization from the
ground state in the static electric field per time unit by solving
the time-independent Schrödinger equation

Ĥψ = εψ, (21)

with the Hamiltonian operator

Ĥ = − h̄2

2m
∇2 + V (r) − eEz. (22)

We find the spectrum of complex eigenvalues ε of the
Hamiltonian operator with the boundary conditions in the form
of the radiation condition for the wave function in the direction
of the electric field. The sought-for spectrum is continuous;
however, there is a set of long-living quasistationary states
[82]. The energy spectrum of these states consists of a series

FIG. 9. (Color online) Static-field ionization rate w (in atomic-
frequency units a) as function of the external electrostatic field
E (in atomic-field units Ea) for (a) the 1D and (b) the 2D model
potentials, as well as for the 3D Coulomb potential (thick solid curve).
Dependences w(|E|) calculated for soft-core potentials (dash-and-
dotted curves), pliant-core potentials (thin solid curves), solid-core
potentials (dotted curves), and supersolid-core potentials (dashed
curves).

of broadened quasidiscrete levels whose widths are associated
with their lifetimes. The probability of atom ionization per
time unit is proportional to the imaginary part of ε [83]. When
an electron is in the ground state initially, w = |2Im(ε0)/h̄|,
where ε0 is the complex energy of the lowest quasistationary
state. To find the dependence w(|E|), we use the method of
complex rotation of coordinates [83].

Figure 9 shows the ionization rates w(|E|) calculated
for the 1D and 2D model potentials as well as for the 3D
Coulomb potential. It is seen that rates for different 1D and
2D potentials differ rather strongly from each other, despite
the fact that all these potentials have equal ground-state
energies and the same asymptotic behavior far from the
ion. The ionization rates for the soft-core, solid-core, and
pliant-core potentials are significantly higher than that for the
3D Coulomb potential. The ionization rates calculated for the
supersolid-core potentials coincide almost precisely with that
for the 3D Coulomb potential in the entire considered range of
electric field values. As follows from results of the calculation,
this agreement holds with high accuracy for even lower and
higher electric fields.

A strong difference of the probability of the static-field
ionization for different model potentials is associated with
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FIG. 10. (Color online) The total electric potential created by the
parent ion and the external electric field for different 1D models of
the H atom and the electric-field strength |E| = 0.06Ea . The dashed
line denotes the energy of the field-free ground state in the potentials.

strong difference of these potentials near the point of origin.
The potential barriers, which the electron has to overcome in
order to be detached from the ion, have different widths and
heights. This is clearly seen in Fig. 10, which shows the total
electric potential created by the parent ion and the external
electric field for the 1D models.

B. Recombination amplitudes

Here we consider the stage of the recombination of the
electron with the parent ion. We calculate recombination
amplitude as a function of the kinetic energy of the recolliding
photoelectron. The amplitude of electron recombination into
the ground state ψ0 of the atom is determined as [49,51]

Arec = 〈ψ0|∂V (r)

∂z
|ψp〉. (23)

Here, ψp ∝ exp(ipz/h̄) is a plane wave that describes an
electron moving along the z axis and having the kinetic energy
Ekin = p2/2m. We normalize the function ψ0 to unity, and
the function ψp, to the momentum delta function. When such
normalizations are used, the recombination amplitudes for the
cases of 1D and 2D potentials are

A1D = 1√
2π

∫
exp

(
ipz

h̄

)
ψ∗

0 (z)
∂V1D(z)

∂z
dz (24)

and

A2D = 1

2π

∫
exp

(
ipz

h̄

)
ψ∗

0 (x,z)
∂V2D(x,z)

∂z
dxdz, (25)

respectively. For the exact Coulomb potential, V3D(r) =
−e2/r , the recombination amplitude is calculated analytically
[49]:

A3D = i
√

2e2h̄

πr
1/2
B

rBp − h̄ arctan(rBp/h̄)

(rBp)2
. (26)

FIG. 11. (Color online) Recombination amplitudes [Eqs. (24)–
(26)] squared as functions of the kinetic energy Ekin of the recolliding
electron for (a) the 1D and (b) the 2D model potentials, as well as
for the 3D Coulomb potential (thick solid curve). (Dashed curves)
The results obtained for supersolid-core potentials, (dotted curves)
solid-core potentials, (thin solid curves) pliant-core potentials, and
(dash-dotted curves) soft-core potentials.

Note that the recombination amplitudes (24)–(26) have
different dimensionalities. Therefore, these values can be
correlated meaningfully only when their scaling with Ekin is
compared.

Dependences |A1D|2(Ekin), |A2D|2(Ekin), and |A3D|2(Ekin)
are shown in Fig. 11. The recombination amplitudes are
decreasing functions of Ekin for Ekin 
 Ip with the decrement
strongly dependent on the particular model potential used
in the problem. For the 1D and 2D soft-core potentials,
which are the smoothest at the point of origin, the decre-
ments of the functions |A1D|2(Ekin) and |A2D|2(Ekin) are
highest. For the pliant-core potentials, the recombination
amplitude decreases more slowly. For the solid-core poten-
tials, the scaling of the recombination amplitude is similar
to that for the 3D case. Finally, the decrement of the
recombination amplitude is the slowest for the supersolid-
core potentials, which are sharpest at the ion location
point.
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VI. DISCUSSION

Consider the results of calculating the HHG spectra. In
Sec. IV, we found that for a rather wide range of laser
pulse parameters such as the pulse duration (∼2–5 cycles
at FWHM), intensity (∼1014−1015 W/cm2), and wavelength
(∼0.8–2 µm), the best agreement with the 3D calculations
of the HHG spectra near the cutoff is achieved when the
proposed pliant-core potentials are used. This result may seem
rather surprising, since, as it was shown in Sec. V B, the
solid-core potentials yield a more accurate scaling of the
recombination amplitude with the electron kinetic energy, as
compared with the pliant-core potentials. Nevertheless, the
use of the solid-core potentials leads to an overestimation of
spectral intensities near the cutoff in the nearly entire range
of the considered intensities, up to 1015 W/cm2. In order
to explain this fact, one should take into account that the
harmonic yield is strongly influenced by the factors related
to the electron dynamics at all three stages [16] of the HHG
process, and not only at its third, final stage, namely the
recombination of the electron with the parent ion, which is
the focus of attention in Ref. [49]. At the first stage of the
HHG process, a great part is played by the probability of
atom ionization per time unit. Its value affects strongly both
the probability density of the returning wave packet and the
atomic ground-state population at the recollision moment. At
the second stage of the HHG process (motion of the electron
in continuum), the main factor which influences the HHG
yield is wave-function spreading. Additional factor that can
play a significant part at the second stage is the Coulomb
focusing of the wave packet [50,84], which results in an
increase of the probability density of the recombining wave
packet, including the contribution made into the HHG yield
by the electron trajectories with multiple returns. Generally
speaking, the influence of each of these factors on the harmonic
yield depends on both the dimensionality of the problem
and the shape of the ion potential. When the pliant-core
potentials proposed by us are used, the result of the interplay
between the above-mentioned factors is that the spectral HHG
intensities, as well as the wavelength scaling of the HHG
power at the cutoff region, agree well with the corresponding
values found by solving the 3D problem. The range of
the laser pulse parameters for which this agreement takes
place may seem not too wide, but this is indeed the range
which is in fact optimal for HHG and attosecond pulse
production.

The use of the supersolid-core potential yields the RCD
values agreeing well with those for the 3D case and gives
much higher accuracy than the calculations within other 1D
and 2D models. This does not hold only at low intensities
and long durations of the laser pulse. At such parameters,
first, the multiphoton ionization dominates over the tunneling
ionization [85] and, second, the evolution of the electron wave
packet in continuum is influenced greatly by the processes
of electron scattering on and recombination with the parent
ion [12,13]. Reduced-dimensionality models are unable of
describing these processes with the required accuracy, which
yields the errors of RCD determination. At high intensities of
laser pulses, atom ionization has the tunneling character and
the influence of these processes on the electron dynamics is

weaker. When the 1D and 2D supersolid-core potentials are
used, the tunneling ionization is modeled with high accuracy,
which yields correct results for RCD.

VII. CONCLUSIONS

We have considered two strong-field phenomena caused
by intense ultrashort laser pulses, which can be observed
under similar experimental conditions. The first phenomenon
is generation of high-order harmonics of the driving laser
field, which is interesting from the viewpoint of its use for
the generation of extreme UV and soft-x-ray radiation and,
specifically, attosecond pulses. The second phenomenon is
the generation of the residual current density in the plasma
produced by a few-cycle laser pulse, which can lead to the
generation of low-frequency radiation including THz waves.

We proposed new reduced-dimensionality models to find
solutions of the TDSE for the H atom and various noble-
gas atoms irradiated by ultrashort laser pulses. The reduced-
dimensionality models allow one to reduce significantly the
time required for the numerical TDSE solution as compared
with the full-dimensionality case, while retaining the quantum
description of all stages of the electron dynamics in its entirety.

To find the high-frequency part of the harmonic spectra,
the proposed 1D and 2D model pliant-core potentials for
the H atom are given by Eqs. (10) and (14), respectively. To
calculate the RCD of free electrons, the model supersolid-core
potentials for the H atom are given by Eqs. (11) and (15).
An advantage of the pliant-core potentials over the model
potentials proposed earlier is that their use for calculations
of the HHG spectrum yields the results agreeing well with the
results of 3D simulation in the range of laser pulse parameters
interesting to the experimentalists from the viewpoint of the
generation of the extreme UV radiation and attosecond pulses.
The use of the proposed 1D and 2D supersolid-core potentials
for RCD calculations results in a qualitatively good agreement
with the 3D calculation for almost all values of the intensity
and duration of laser pulses, which have been considered
here. We expect that, specifically, the use of the proposed 1D
and 2D supersolid-core potentials will allow one to perform
high-accuracy calculations of RCD excitation in the THz
generation schemes, which use mixing of the fundamental and
second harmonics of the laser pulse [86–88] and are discussed
actively now.

The values of spectral intensities of higher-order harmonics
are determined by three main factors, namely ionization rate,
transverse spreading of the electron wave packet as it moves
in the continuum, and electron-ion recombination amplitude.
Despite the fact that the proposed 1D and 2D pliant-core
potentials do not yield accurate results for calculations of each
of the above-mentioned factors individually, the use of these
models for the description of the entire HHG process allows
one to obtain much more accurate results in a rather wide range
of laser pulse parameters as compared with the use of other
1D and 2D model potentials.

We have demonstrated that under the conditions of a
sufficiently high intensity of the laser pulse, when the ioniza-
tion has the tunneling character, the processes of scattering
and recombination of the electron on the parent ion have
little influence on the value of the generated RCD. Under
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these conditions, the stage of the electron dynamics, which
determines the value of RCD, is ionization. The rate of
tunneling ionization yielded by the use of the proposed 1D
and 2D supersolid-core potentials agrees with the ionization
rate for the 3D problem with much better accuracy than when
other model potentials are used.
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