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Interference effects in two-color high-order harmonic generation
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We study high-order harmonic generation in argon driven by an intense 800 nm laser field and a small fraction of
its second harmonic. The intensity and divergence of the emitted even and odd harmonics are strongly modulated
as a function of the relative delay between the two fields. We provide a detailed analysis of the underlying
interference effects. The interference changes drastically when approaching the cutoff region due to a switch of
the dominant trajectory responsible for harmonic generation.
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High-order harmonic generation (HHG) from the inter-
action of an intense infrared (IR) laser field and a gas
target provides a coherent table-top radiation source in the
extreme ultraviolet (XUV) range, of interest for a number of
applications, in particular the production of attosecond light
pulses [1,2]. The underlying physics of HHG is well described
by the so-called three-step model [3–5]: an electron wave
packet is created by tunneling through the Coulomb barrier
deformed by the laser field; it is subsequently accelerated by
the laser field; and returns to the atom where it recombines to
the ground state, leading to the production of an XUV light
burst. This process is repeated every half-cycle of the IR laser
field, resulting in an attosecond pulse train (APT) with a pulse
separation of one-half IR period and to a spectrum of odd
harmonics.

There is a growing interest to achieve even better control
of the generation process [6], e.g., to obtain higher conversion
efficiency or to tailor attosecond pulses or pulse trains for
specific applications. Two-color HHG driven by an IR laser
and its second harmonic (blue) provides subcycle control
of the generating electric field, with the interesting property
that two consecutive half-cycles become different, and not
simply opposite in sign. This breakdown of the electric field
inversion symmetry has been used for several applications,
e.g., the generation of even and odd high-harmonics with
increased conversion efficiency [7,8] and the production of
attosecond pulse trains with one pulse per IR cycle [9,10]. In
some conditions, when the intensity of the second harmonic
is much weaker than that of the fundamental laser field,
even harmonics can be used to provide information about the
generation process [11–13].

In this article, we investigate both experimentally and
theoretically high-order harmonic generation driven by a
two-color laser field consisting of a 800 nm fundamental
and a fraction of its second harmonic. The even and odd
harmonic intensities are found to be modulated as a function
of IR-blue delay, forming in some cases a rich interference
pattern (Fig. 1). We investigate how these oscillations depend
on harmonic energy and intensity of the blue field and how
the spatial profiles of the emitted harmonics are affected. We
provide an interpretation based on quasiclassical calculations.

Experiments were performed using an amplified 10 Hz
titanium sapphire laser system delivering 40 fs pulses at
800 nm with energy up to 1 J. The results presented in this
article are obtained with only a small fraction (less than 10 mJ)

of this energy. The laser beam was sent through a 1.3 mm-thick
type I KDP (potassium dihydrogen phosphate) crystal to
generate the second harmonic. A Michelson interferometer
was used to separate and delay the second harmonic and to
make the polarizations of the two laser fields parallel to each
other. The relative delay was adjusted with a 500 µm-thick
glass plate. After recombination of the two colors, the beam
was focused by a spherical mirror with a 2 m focal length
into a cylindrical gas cell with 1 mm diameter and 15 mm
length, filled with Ar gas. Variable apertures were placed
in the fundamental and second harmonic beams to adjust
intensities and focusing geometries. These conditions are
such that phase matching is optimized and pulse energies per
harmonic reaching 100 nJ have been measured. The harmonic
spectra were detected by a flat-field XUV spectrometer, located
1.5 m from the source and allowing us to obtain spatial and
spectral information simultaneously [14].

Figures 1(a)–1(c) presents the spectra of the 21st to 24th
harmonics as a function of relative delay (τ ) in units of the
period of the blue field TB = 1.3 fs. The color code indicates
the intensity of the emitted light. When the blue intensity is
less than a percent of the IR [panel (a)], the odd and even
harmonics oscillate with opposite phase twice per blue cycle
[11–13]. When the blue intensity is increased to a few percent
[Figs. 1(b) and 1(c)], even and odd harmonics become
comparable in strength and vary more strongly with the IR-blue
delay.

Figure 2 compares the intensities of the 22nd (a) and
23rd (b) harmonics as a function of τ for the three different
intensities of the blue field used in Fig. 1. At low intensity (thin
red line), the odd and even harmonics oscillate out of phase.
When the blue intensity is increased, the patterns become more
complex, exhibiting multiple maxima per half blue period.
The number and position of these maxima depend on the blue
intensity, as well as harmonic order. These results arise from
the interferometric nature of the HHG process, which will be
analyzed in more detail in the following.

To understand the interference structure shown in Figs. 1
and 2, let us consider the radiation emitted every IR cycle
over a certain energy range. It comprises predominantly two
bursts, one each half-cycle. In absence of the blue field, they
are identical except for a change of sign. We further assume
that the emitted bursts are identical from one IR cycle to the
next. The radiation emitted from the interaction of an intense
laser field comprising n periods with an atom can be generally
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FIG. 1. (Color online) 21st to 24th harmonic spectra as a function
of the relative delay between the IR and blue fields for different
intensity ratios, increasing from about half a percent in (a) to a few
percent in (b) and (c). The IR intensity is estimated to be 1.8 ×
1014 W/cm2, based on the cutoff position. The color code indicates
the harmonic intensities in arbitrary units.

expressed as

s(t) =
j=n∑
j=1

a+(t) ⊗ δ(t − jT ) + a−(t) ⊗ δ

(
t − jT − T

2

)
,

(1)

where a+(t) and a−(t) are the fields emitted in the first and
second half period, respectively, and T is the IR field period.
If the blue field is weak, it mainly affects the phase of the
emitted radiation. a±(t) ≈ ±a(t) exp[±iσ (t)], where a(t) is
the pulse emitted from the first (positive) half period due to
the interaction with the fundamental field only, and σ (t) is a
slow function over time. The Fourier transform of the pulse
train can then be approximated as

S(�) ≈ A(�)
j=n∑
j=1

eij�T +iσ (�) − eij�T +i �T
2 −iσ (�), (2)
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FIG. 2. (Color online) Intensities of the 22nd (a) and 23rd
harmonics (b), normalized to the maximum value of the 23rd
harmonic for the three cases in Fig. 1. The thin red line, green dashed
line, and thick blue line correspond to (a), (b), and (c).

where A(�) is the Fourier transform of a(t) and σ (�) =
σ [tr (�)]. tr (�) represents the time at which the component
at frequency � of the light burst is emitted, i.e., the return
time of the corresponding classical electron trajectory. The �

dependence accounts for the chirp of the emitted radiation [15].
The power spectrum reduces to the form

|S(�)|2 ≈4 |A(�)|2
∣∣∣∣∣ sin

(
n�T

2

)
sin

(
�T

2

)
∣∣∣∣∣
2∣∣∣∣sin

[
�T

4
− σ (�)

]∣∣∣∣
2

, (3)

which has a straightforward interpretation. The first factor is
the spectrum emitted by a single attosecond pulse, the second
factor modulates this broad spectrum, leading to a comb of
even and odd harmonics. Finally the last factor cancels the
even harmonic components when there is no second harmonic
(σ = 0). When a second harmonic field is present, it modulates
the amplitude of both even and odd harmonics. For the even
harmonics (� = qω where ω is the IR frequency and q is
an even integer), |S(qω)|2 ∝ |sin[σ (qω)]|2, while for the odd
harmonics (q odd), |S(qω)|2 ∝ |cos[σ (qω)]|2.

The phase change induced by the blue field can be estimated
using the classical limit, Ip → 0. By treating the blue field as
a perturbation, σ (�) is found to be [13]

σ (�) = e

h̄

∫ tr

ti

dt ′xR(tr ,t
′)EB(t ′), (4)

where ti is the ionization time and e the electron charge. xR

denotes the position at time t ′ of an electron that starts its
motion in the IR field [ER(t) = E0

R sin(ωt)] at time ti . Finally,
EB is the second harmonic field EB(t) = E0

B sin(2ωt + φB).
Equation (4) can be rewritten as

σ (�) = σ0 sin[φB + δ(�)], (5)

with σ0 = eE0
B�(�)/h̄. �(�) and δ(�) are the frequency-

dependent modulus and argument of the Fourier transform at
2ω of the electron trajectory in the IR field.

Figures 3(a) and 3(b) shows the calculated intensity of
two consecutive harmonics (even and odd) as a function
of σ0 and delay, expressed here as (φB + δ)/2π , while
(c), (d) present lineouts at three different σ0, indicated by the
corresponding lines in (a) and (b). The odd and even harmonic
intensities strongly varies with delay in opposite phase with
each other, so that the total intensity remains constant. The
number of maxima increases with σ0, i.e., with the blue field
intensity.

When the blue field is weak (σ0 � 1), the intensity of
the even harmonic varies as |σ0 sin(φB + δ)|2, while the odd
harmonic intensity varies as 1 − |σ0 sin(φB + δ)|2 [thin red
line in Fig. 3(d)]. At moderate blue intensity, corresponding
to the conditions of Fig. 1(b), the even harmonic intensity
(green dashed line) show two peaks of equal strength over
a delay of TB/2, while the odd harmonics show one strong
and one weak peak. This behavior compares well to that
observed experimentally in Fig. 2 where two (one) peaks are
visible in the even (odd) harmonics. We estimate σ0 to be
just above π/2 in this case. At higher blue intensity, as in
Fig. 1(c), the even harmonic intensity (thick blue line) show
two peaks (1,2), while the odd harmonics presents a broad
peak with two maxima (1,2) and an additional sharp peak
(3). The same qualitative behavior is observed experimentally
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FIG. 3. (Color online) Harmonic intensity as a function of σ0

and IR-blue delay for even (a) and odd (b) harmonics. The σ0

corresponding to the intensities used in Figs. 1(a)–1(c) are indicated
by the thick blue solid (1a), green dashed (1b), and thin red lines (1c).
(c) and (d) show the corresponding lineouts.

(blue line in Fig. 2). σ0 is thus estimated to be slightly above
π . From this analysis, we can estimate the ratios of the blue
to IR intensities to be 0.4, 5, and 20 % in Figs. 1(a), 1(b),
and 1(c). The relative strength of the experimental peaks in
Fig. 2 is not accurately modeled using Eq. (3) since we include
neither amplitude effects nor propagation in our calculation.
In addition, experimental effects, such as dephasing between
the IR and the blue, could lead to decrease in contrast.

Complementary information on the generation process
can be obtained by studying the spatial distribution [16]. In
Figs. 4(a) and 4(b) we show the spatial distribution of the 22nd
and 23rd harmonics. In the one-color case, the divergence of
the qth harmonic 	q can be estimated using Gaussian optics
by the simple expression [14],

	q = λq

πwq

√
1 + 4α2

qI
2
R

w4
q

w4
R

≈ |αq |IR

λqwq

πw2
R

, (6)

where IR is the peak IR intensity, wR , wq are the radii of
the IR and qth harmonic fields and λq the qth harmonic
wavelength. αqIR is the single-atom phase, corresponding to
the phase accumulated by the electron on its trajectory, often
called “dipole phase”. When αqIR is large, it dominates the
diffraction limit in Eq. (6) and the divergence takes the simple
expression shown on the right side in Eq. (6). For the short
trajectory, we have |αq | ≈ 2.7 × 10−14 cm2/W for the 23rd
harmonic [14,17].

As shown in Eq. (2), the addition of a weak blue field affects
the phase of each half-cycle contribution by ±σ . The diver-
gence of the qth harmonic is then expected to vary between
	q(1 ± σ/|αq |IR), the limits being reached when one half-
cycle is dominant. These limits are indicated by the grey lines
in Figs. 4(c) and 4(d), calculated by using the experimentally
determined one-color divergence 	q = 0.33 mrad. The two
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FIG. 4. (Color online) Spatial profiles for the 22nd (a) and 23rd
(b) harmonics as a function of delay, in the conditions of Fig. 1(c).
The experimental divergence angles (red symbols) are compared to
the theoretical half-cycle divergences in (c) and (d) for the 22nd and
23rd harmonics, respectively.

lines (solid and dashed) show the variation of the divergence
for two (positive or negative) half-cycles. Our experimental
results for the 22nd and the 23rd harmonics are indicated by the
red symbols. As expected, the measured divergence angles are
comprised between the theoretical values for two consecutive
half-cycle contributions. The variation of the measured diver-
gence can be interpreted as follows: In (c), one half-cycle (cor-
responding to the dashed line) is dominant from τ = 0.3TB to
0.7TB , while the other half-cycle prevails for the other delays.
In contrast in (d), the measured divergence does not indicate
preferential emission during one particular half cycle since it is
well within the expected half-cycle values for almost all delays.

Finally, we investigate how the interference pattern depends
on �, i.e., harmonic order, from the plateau to the cutoff
region. Figure 5(a) shows the harmonic spectra as a function
of delay, in the weak blue intensity case [corresponding to
Fig. 1(a)]. The nodes of the oscillations of the even harmonics
are indicated by the white crosses. The position of the nodes
varies approximately linearly from harmonic order 22 to 28, in
agreement with the prediction of the simple model presented
above (see also [11,13]), for the short trajectory (see red line).
In Fig. 5(b), we examine the behavior of higher-order har-
monics, approaching the cutoff region. Surprisingly, the 30th
harmonic hardly oscillates, while the 32nd and 34th oscillate
almost out of phase with the 28th. To understand the apparent
lack of oscillation of the 30th harmonic, we analyze its spatial
profile. In Fig. 5(c), we present the 30th harmonic intensity
obtained by integrating over the outer (central) part of the
spatial profile, plotted as a thick blue (thin red) line. This allows
us to unravel two different oscillations almost opposite in phase
[see also + and ∗ symbols in Fig. 5(a)]. The phase obtained
by integrating the outer part of the spatial profile is close to
that obtained for the 32nd and 34th harmonics in Fig. 5(b).
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FIG. 5. (Color online) (a) Harmonic spectra as a function of delay.
(b) Corresponding high energy region using a saturated color scale.
The white crosses indicate the position of the nodes of the oscillations.
The red curve in (a) is δ(�) for the short branch. (c) 30th harmonic
intensity as a function of delay, spatially integrated (green dashed),
integrated over the central part (thick blue line); and over the outer
part (thin red line) of the spatial profile. The + and ∗ symbols in
(a) refer to the nodes of the central and outer part, respectively.

We interpret this result as due to the long trajectory which
becomes more important when approaching the cutoff region.
The switch between the two trajectories seems to occur at
the 30th harmonic in our experiment. If this harmonic has
comparable (and approximately out of phase) contributions
from the two trajectories, it would only weakly oscillate with
τ , which is what is observed experimentally. Phase matching
calculations performed using our experimental conditions
show a progressive switch from the short trajectory to the
long trajectory when approaching the cutoff region and thus
confirm this interpretation.

In summary, we have experimentally identified and theoret-
ically analyzed interference effects in two-color HHG. Adding
a weak blue field allows us to control the intensity and diver-
gence of the harmonic emission. An interesting switch between
the short and long trajectories of the harmonic emission has
been identified when approaching the cutoff region.
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