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Modifying the high-energy part of the above-threshold-ionization spectrum
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We show that the high-energy part of the above-threshold-ionization spectrum can be modified considerably if
a driving laser pulse composed of several harmonic frequencies is used. To find such a pulse we rely on classical
calculation. We present results of the quantum-mechanical calculation confirming classical results.
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I. INTRODUCTION

Processes of above-threshold ionization (ATI) [1] and
high harmonic generation (HHG) [2,3] occur for atoms
interacting with long-wavelength high-intensity laser pulses.
An appealing feature of both phenomena is that their essential
features can be understood using the following well-known
classical model [1,2,4,5].

First, at some moment of time t0 atomic ionization event
occurs. As a result, the electron emerges into the continuum
with zero velocity. This event defines initial conditions for the
subsequent electron motion which in this model is considered
entirely classical. For some moments of time t0 the electron
can eventually return to the nucleus. The electron can then
either recombine emitting a photon, or rescatter and acquire
subsequently yet more energy from the laser field. The first
possibility gives us a classical description of the HHG process;
the second provides an explanation of the appearance of high-
energy electrons in the ATI spectrum. This classical model
predicts that electron kinetic energy at the moment of return to
the nucleus cannot exceed the value of approximately 3.2Up.
If the rescattering event occurs, the classical model gives
another bound for the maximum kinetic energy the electron
can acquire—10Up. Here, Up = F 2

0 /4ω2− ponderomotive
potential, and F0 and ω− are the amplitude and frequency
of the driving electromagnetic (EM) field. These bounds
give the well-known cutoff rules for ATI and HHG spectra,
giving correspondingly the maximum photon energy which
the recombination event can produce if the HHG scenario
occurs, or the maximum electron energy in the ATI spectrum
if the electron rescatters. Existence of these cutoffs has been
demonstrated by quantum-mechanical calculations [3,6,7].

Success of the classical model in reproducing essential
features of these phenomena can be related to the fact that for
the field parameters typically considered, electron motion is
essentially semiclassical [3,8]. That gives us reason to believe
that the classical calculation outlined previously can be used
as a reliable guide for the solution of the problems, which
otherwise would be quite challenging computationally. We
may, for example, inquire which particular pulse shape can
be used to increase the cutoffs values for the HHG or ATI
processes. Of course, for such a problem to make sense, we
must impose some constraints, such as the requirement that the
solution is sought for the pulses carrying a given fixed amount
of energy.
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Such questions belong to the field of the quantum optimal
control theory [9]. Solution of such problems using purely
quantum mechanical methods, such as the genetic algo-
rithm [10], or variational formulation of the time-dependent
Schrödinger equation (TDSE) and the constraints [9], demand
multiple solutions of the TDSE. This may present a consider-
able computational burden if one is interested in applications to
real atomic systems, and no approximations, such as reducing
the problem to a one-dimensional one, are made.

We may use the previously mentioned fact of considerable
predictive power of the classical model to facilitate this task.
The classical model described above can easily be applied for
any pulse shape of the driving EM field as was done, for exam-
ple, in [11], or will be done in the following. The classical cal-
culation must, of course, be supplemented with the quantum-
mechanical calculation to verify that the desired goal, such as
extension of the cutoff value, has indeed been achieved. We
cannot accept the results of the classical calculation completely
unreservedly since the classical model described above ne-
glects the effect of the atomic potential on the electron motion.

For the HHG process, such a program has been realized
in Refs. [12,13] and in our recent paper [14]. In Ref. [12]
a classical wave form was found allowing one to maximize
the classical cutoff value for the HHG process in the class of
wave forms which are periodic with a given period T = 2π/�.
Such a wave form was found to contain a dc component. If
the presence of dc component in the pulse is not desirable,
it was shown [13] that the effect of the dc component can
to some extent be mimicked by including the subharmonic ac
field of �/2 frequency. Adding such subharmonic components
to the pulse allows one to increase the HHG cutoff value
considerably. Classical results were confirmed in these works
by the quantum-mechanical calculation. In our paper [14] we
restricted the class of the possible wave forms to the wave
forms which are periodic with a period T = 2π/� and do
not contain the subharmonic frequencies. In this case, as the
classical calculation presented in our paper shows, increase
of the HHG cutoff value is also possible. Results of the
quantum-mechanical calculation taking into account the effect
of the atomic potential, which we presented in that work,
confirm the classical result.

In the present work we apply this strategy for the ATI
process. We shall look for the pulse shape among a certain
class of the pulse shapes for which classical calculation yields
the maximum possible increase of the classical cutoff value
for the ATI spectrum. We shall present results of an ab initio
calculation of the ATI spectrum for the laser pulse having this
shape. We shall see that considerable increase in the spectral
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intensity in the region of high electron energies can be achieved
using such a laser pulse.

II. THEORY

In this section we consider motion of an electron driven by
the laser pulse of the following form:

F (t) = 2f (t)Re
K∑

k=1

ake
ik�t , (1)

where envelope function is chosen to be f (t) = sin2 πt
T1

, T1 =
10T is total duration of the pulse, and T = 2π/� is an optical
cycle corresponding to the frequency �. Summation in Eq. (1)
starts with k = 1 which ensures that the EM field given by this
equation does not contain a dc component. Field is assumed
to be linearly polarized along the z axis.

We shall be interested below in finding the set of the
coefficients ak describing the field, for which the ATI spectrum
can be extended beyond the cutoff value of 10Up as far as
possible. Obviously, for this problem to be legitimately posed,
we have to impose restrictions on the possible choices of the
coefficients ak . We shall consider only the pulses which carry
a given fixed amount of energy, that is, we impose the restric-
tion

∫ T1

0 F 2(t) dt = ∫ T1

0 E2(t) dt . Here E(�) is a “standard”
pulse E(t) = E0f (t) cos �t , where f (t) is the same envelope
function as in Eq. (1). The “standard” pulse E(t) is obtained
if we put a1 = E0/2 and ak = 0 for k > 1 in Eq. (1). We
chose parameters of the “standard” pulse as follows. The peak
strength was chosen to be E0 = 0.1068 a.u., corresponding to
the peak intensity of 4 × 1014 W/cm2, the base frequency was
� = 0.114 a.u, corresponding to the wavelength of 390 nm.
We have to retain only a reasonably small number of harmonic
frequencies in Eq. (1). The calculation described below shows
that the increase in photoelectron energies, which can be
achieved by adjusting parameters ak , reaches a plateau rapidly
when K exceeds the value K = 5; choosing larger values
for this parameter produces no appreciable effect. We shall,
therefore, use the value K = 5 for the permissible pulse shapes
in all calculations in the following.

The problem we shall tackle can thus be reformulated as
follows. Find the set of the coefficient ak in Eq. (1) for which
the ATI cutoff value obtained classically attains a maximum,
provided that total energy carried by the pulse is the same as
that of the “standard” pulse of the central wavelength 390 nm
and 4 × 1014 W/cm2 peak intensity. In the next section we
give a solution to this problem using purely classical analysis
of the electron trajectories. For brevity, we shall call below the
pulse characterized by this set of ak’s the “maximum” pulse.

To confirm, for the pulse thus found, that the ATI spectrum
does extend beyond the cutoff value of 10Up, we will
subsequently perform a quantum-mechanical calculation of
the ATI spectra for the “standard” and “maximum” pulses for
the hydrogen atom.

A. Classical calculation

We shall follow below the standard classical treatment of
the ATI process described in [4,11]. This treatment is based on
the analysis of the classical trajectory which originates at some

moment of time t0 in the interval (0,T1) of the duration of the
pulse, and for which electron returns to the nucleus at some
later time t1. For the purpose of determination of the maximum
kinetic energy of photoelectrons it is sufficient to consider
classical motion only along the z coordinate, which is assumed
to be the direction of the pulse polarization. Also, as the
standard classical model prescribes, we neglect any influence
of the atomic potential on the electron motion, considering
only the effect of the laser field.

Initial conditions for classical equations of motion for each
such trajectory are z = 0, v = 0. Let the velocity of an electron
at the moment t1 of return to the nucleus be v1. An electron
can acquire maximum kinetic energy if a backscattering event
occurs. The velocity of an electron then becomes −v1, and
for the final velocity which the electron acquires after the end
of the pulse, one may write [4,11] vfin − Afin = −v1 − A(t1),
where A(t1) is the value of the vector potential at the moment
t1, Afin is the value of the vector potential after the end of
the pulse. The latter statement is a consequence of the fact
that combination v − A is a canonical momentum and is an
integral of motion if the atomic potential is neglected. If the
vector potential is calibrated so (as in the present work) that
its value after the end of the pulse is zero, then for the final
velocity of the electron one gets vfin = −v1 − A(t1). We can
thus determine the kinetic energy which the electron possesses
after the end of the pulse.

We can perform this procedure for any set of the coefficients
ak in Eq. (1). For each set of ak’s we consider all returning
trajectories originating at various times t0 inside the interval
(0,T1) of the duration of the pulse. For a trajectory originating
at a given moment of time there may be several subsequent
return events in the interval (0,T1). Among those we choose
that for which final kinetic energy is the largest. This gives us
final kinetic energy E(t0,a) as a function of the moment of time
t0 when the ionization event occurs, and a set of coefficients
ak . For a given set of ak’s we seek a maximum of E(t0,a)
with respect to t0- time when ionization occurs. The resulting
quantity is a function of the set of ak’s only. We now maximize
this quantity in the five-dimensional complex space of the
coefficients ak , imposing the restriction of the constant total
energy carried by the pulse.

This strategy gives us the set of coefficients ak listed in
Table I.

These pulses can be visualized with the help of Fig. 1,
where central parts of both “standard” and “maximum” pulses
are shown.

TABLE I. Coefficients in Eq. (1) for the “standard” pulse and for
the pulse for which the classical ATI cutoff attains the largest value
(“maximum” pulse). Second column shows the “standard” pulse;
third column is the “maximum” pulse.

Standard pulse Maximum pulse
k ak × 102 ak × 102

1 5.34 4.672 + 0.262i

2 0 0.356 − 1.979i

3 0 −1.017 − 0.023i

4 0 −0.543 + 0.645i

5 0 0.654 + 0.588i
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FIG. 1. (Color online) EM field for the “standard” pulse (blue)
dashed line, and “maximum” pulse (red) solid line.

Figure 2 illustrates the classical calculation we described
above for “standard” and “maximum” pulses.

In Fig. 2 we plot the quantity E(t0,a) we introduced
previously—the largest final kinetic electron energy for all
classical trajectories starting at the moment of time t0 for two
sets of ak’s from Table I, corresponding to the “standard”
and “maximum” pulses. Figure 2 shows the ratio of the
kinetic energy and the ponderomotive potential, defined as
Up = E2

0 /(4ω2), where E0 = 0.1068 a.u. is the peak strength
of the “standard” pulse.

One can see that the “standard” pulse maximum kinetic
energy, which the electron can attain, is approximately
10Up. This is, of course, a visualization of the well-known
classical cutoff rule. For the “maximum” pulse the energy
of approximately 13.5Up can be attained. In both cases, the
maxima are attained for the trajectories starting near the center
of the pulse. This is, of course, to be expected, since it is there
the EM field attains the peak strength. Interestingly enough,
for the “maximum” pulse, the trajectories starting as early
as 3.5T can lead to the final maximum kinetic energies only
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FIG. 2. (Color online) Classical dependence of the maximum
final electron kinetic electron energy on the moment of time when the
ionization event occurs. “Standard” pulse, (blue) boxes; “maximum”
pulse, (red) crosses.

slightly smaller than the trajectories starting near the middle
of the pulse.

The foregoing discussion was based entirely on classi-
cal arguments, and neglected completely any effect of the
atomic potential on the electron motion. Only the quantum-
mechanical calculation, fully taking into account atomic
structure, can confirm that the pulse obtained as described
above indeed allows one to reach the desired goal of extension
of the ATI spectrum beyond the classical cutoff value. Such
calculation for the hydrogen atom is described in the next
section.

B. Quantum-mechanical calculation

We seek a solution of the time-dependent Schrödinger
equation for the hydrogen atom in the presence of the external
EM field:

i
∂�

∂t
= [Ĥatom + Ĥint(t)]�, (2)

where Ĥatom is the Hamiltonian of the field-free atom, and
operator Ĥint(t) describes the interaction of the atom and
the EM field. We use below the velocity form of this
operator:

Ĥint(t) = A(t) · p̂. (3)

Here, A(t) = − ∫ t

0 F(τ ) dτ . The EM field F(t) is given
by Eq. (1) with sets of coefficients ak from Table I. We shall
present below results of the calculations for both sets given in
the table: the ”standard” pulse and the ”maximum” pulse.

We omitted the quadratic A2(t) term in the interaction
Hamiltonian (3). This term can always be removed through
a gauge transformation [15], which amounts to multiplying
the wave function by a phase factor. This is unimportant as
long as we rely on the dipole approximation which is adopted
in the present work.

We discretize the TDSE on a spatial grid with the step
size δr = 0.05 a.u. using a box of the size Rmax = 1700 a.u.
Temporal grid is equidistant; for each layer tn the wave function
is represented as

�(r,tn) =
∑

l

fl(r,tn)Yl0(θ ), (4)

where functions fl(r,tn) are defined in the points of the grid,
and summation in Eq. (4) is restricted to l = 0 − Lmax; the
particular value of this parameter will be specified below.

The Hamiltonian is discretized on the spatial grid using
the three-point finite difference formulas for the second and
first (for the interaction Hamiltonian) spatial derivatives.
Transparent boundary conditions [16] are imposed on the
functions fl on the boundary of the box.

The choice of the gauge we use to describe atom-EM
field interaction was dictated by the desire to keep the size
of the expansion (4) relatively small. It is known [17,18]
that for the two most commonly used gauges, length and
velocity, expansion (4) exhibits very different convergence
properties with respect to the number of the partial waves
included. To achieve convergence with respect to the number
of the partial waves in Eq. (4), a much smaller number of
partial waves is needed if we use the velocity gauge. We used
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FIG. 3. (Color online) Electron spectrum P (E) for Lmax = 25, Rmax = 1700 a.u. for the “standard” pulse from Table I (left panel).
Relative error [P (E) − P1(E)]/P (E), where P1(E) has been computed with Lmax = 20, Rmax = 1300 (middle panel). Relative error [P (E) −
P1(E)]/P (E), where P1(E) has been computed with Lmax = 25, Rmax = 1700 and time stepsize δ = 0.005 a.u. (right panel).

Lmax = 25 in Eq. (4) for the calculations presented below. We
will show below that this number is quite sufficient to obtain
well-convergent results.

To propagate the wave function (4) in time we use the
so-called matrix iteration method (MIM) developed in [18]. It
has been shown [19] that this technique can be used for the
efficient solution of the TDSE in strong EM fields.

The starting point for the development of the MIM
procedure is the expression for the short-time Crank-Nicholson
(CN) propagator [20]:

�(r,tn + δ) = 1 − iĤ (tn + δ/2)δ/2

1 + iĤ (tn + δ/2)δ/2
�(r,tn). (5)

The operator in the denominator in Eq. (5) can be
partitioned as 1 + iĤ (tn + δ/2)δ/2 = Â + B̂, where Â = 1 +
iĤatomδ/2 and B̂ = iĤint(tn + δ/2)δ/2.

Using the Neumann expansion for the (Â + B̂)−1,

(Â + B̂)−1 = Â−1 − Â−1B̂Â−1 + Â−1B̂Â−1B̂Â−1 . . . ,

(6)

one reduces the problem of computing an inverse of the
operator 1 + iĤ (tn + δ/2)δ/2 in the expression for the CN
short-time propagator to the repeated computation of the
inverse of the operator Â introduced previously.

For a function given by the expansion Eq. (4), where each
fl(r,tn) is represented on the spatial grid (rn), this is a simple
problem since Â is diagonal in l and tridiagonal in n. Finding
the inverse of Â thus amounts to computing the inverse of
a tridiagonal matrix, which can be done fast and efficiently.
Convergence of the Neumann expansion (6) can be monitored
choosing the time step size δ appropriately [18,19].

The electron spectrum P (E) is obtained by projecting the
solution of the TDSE at the end of the pulse on the set of the
continuous spectrum wave functions of the hydrogen atom.

III. RESULTS

Before presenting results of the quantum-mechanical cal-
culation described previously, we will discuss briefly issues
related to the convergence of the calculation with respect to
various parameters. We have performed several calculations
varying parameters Lmax, Rmax, and time step size δ. As we
mentioned previously, the results which we present as our final

results have been obtained for Lmax = 25, Rmax = 1700 a.u.
The time step size was δ = 0.0075 a.u. and we retained the
first six terms of the Neumann expansion (6).

On the left panel of Fig. 3 we present the electron spectrum
P (E) obtained for these values of the parameters for the
“standard” pulse from Table I. The middle panel of the
figure shows the relative error (P (E) − P1(E))/P (E), where
P1(E) has been obtained using smaller values Lmax = 20,
Rmax = 1300 a.u. in the calculation. Finally, on the right panel
of the figure we show relative error (P (E) − P1(E))/P (E),
where P1(E) has been obtained using Lmax = 25, Rmax =
1700 [the same as for P (E)] and a smaller time step size
δ = 0.005 a.u.

One can see that we have achieved very good convergence
with respect to the number of partial waves and the box size.
Relative error of the calculation when these parameters are
varied does not exceed 3 × 10−4. More restrictive is an error
bound we obtain if we vary the time step size. We see that when
time step size is reduced to 0.005 a.u. results for the most part
of energy spectrum change by less than half of a percent except
the energy region in the vicinity of E = 4 a.u., where results
differ by approximately one percent. We can conservatively
adopt the latter figure as an estimate of the accuracy of
the calculation. The accuracy could be further improved by
retaining a larger number of terms in the Neumann expansion,
or reducing the time step size, but it is quite sufficient for the
purpose of the present work.

In Fig. 4 we present results for electron spectra obtained for
the “standard” and “maximum” pulses from Table I.

For the field parameters we use, the classical theory predicts
for the “standard” pulse cutoff in the electron spectrum at
energy of 10Up ≈ 2.5 a.u. The quantum calculation shows that
in agreement with the classical theory, spectral intensity indeed
starts dropping fast for the energies exceeding this value.
Again, in agreement with the classical predictions shown
in Fig. 2, the electron spectrum for the “maximum” pulse
extends into the region of higher energies. Spectral intensity
in the case of the “maximum” pulse is indeed much higher
for large electron energies, especially for the energies above
the classical cutoff of 2.5 a.u. For the energies exceeding the
classical cutoff the spectral intensity for the “standard” pulse
drops sharply, and for the energies in the vicinity of 4 a.u. it is
several orders of magnitude smaller than the intensity for the
“maximum” pulse.
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FIG. 4. (Color online) Electron spectra for the “maximum” [(red)
solid line] and “standard” [(blue) dashed line] pulses.

The set of coefficients ak characterizing the “maximum”
pulse was found on the basis of a purely classical calculation
neglecting any effect of the atomic potential on the electron
motion. As we described previously, this set was obtained
using the procedure which maximized the quantity E(a)—
the highest kinetic energy which the electron may acquire
upon leaving the field. In addition, fixed intensity constraint
was imposed on the set of coefficients ak . In other words, we
searched for the maximum of E(a) on the surface defined by
the fixed intensity constraint in the space of the coefficients
ak . To find the maximum we used the gradient ascent method.
For a given set of the starting values of ak’s this procedure
converges to a local maximum of E(a). The procedure was
repeated many times with various sets of ak’s lying on the
fixed intensity surface serving as starting values, until we were
reasonably sure that the maximum we found was indeed the
global maximum. In fact, the character (local or global) of this
maximum is not very important for the following reasons.

We have found the maximum of the classically defined
function E(a). Figure 2 shows, that for the set of ak’s found
in this way the spectral intensity of the high-energy part of
the ATI spectrum also increases. To explain this fact, it will
be convenient to give more precise meaning to the somewhat
vague notion of the increase of the spectral intensity for high

energies. We may, for example, introduce the function I (a),
defined as I (a) = ∫ ∞

10Up
P (E) dE. Here, P (E) is the energy

distribution which the quantum TDSE calculation gives for a
laser pulse characterized by a given set of ak’s lying on the
fixed intensity surface.

Figure 2 shows that increasing E(a), we increase simul-
taneously I (a). It is not guaranteed, of course, that at the
point a on the fixed intensity surface, where E(a) attains the
global maximum, global (or even local) maximum of I (a) is
attained. What Fig. 2 demonstrates is that I (a) shares with
E(a) some essential features, such as directions of growth.
In the directions on the fixed intensity surface in which E(a)
grows, I (a) can generally be expected to grow, though their
maxima need not coincide. This is, of course, a consequence of
the fact that the classical model neglecting effect of the atomic
potential reproduces many features of the ATI phenomenon
very well. We may expect that if we use a slightly more
refined classical model e.g., the model taking into account the
effect of the core potential on the electron motion) and repeat
the same maximization procedure, we shall obtain another
function E1(a), reproducing behavior of I (a) on the fixed
intensity surface even more closely. We may be able then to
get yet closer to the true maximum of the function I (a) on the
fixed intensity surface.

We can easily include atomic potential in the classical
calculation. Previously, we considered electron motion only in
the direction of the EM field. For this one-dimensional problem
Coulomb potential is too singular. We can, however, include
in the calculation regularized Coulomb potential (the so-called
soft-core potential), defined as V (z) = − 1√

z2+b
, where we

chose b = 2.5. This choice of the parameter b gives us the
value of 10Up for the classical cutoff energy in the case of the
pure monochromatic driving field. With the core potential thus
included in the classical equations of motion, the maximization
procedure described previously was repeated.

The results are shown in Fig. 5. “Maximum” pulse on this
figure is a pulse obtained using the maximization procedure
with the soft-core Coulomb potential included in classical
equations of motion.

A comparison of Fig. 5 and Fig. 4 shows, for the
“maximum” pulse obtained if soft-core Coulomb potential
is included in classical calculations, that the effect of the
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FIG. 5. (Color online) (Left) EM field for the “maximum” pulse obtained if the core potential is included in classical calculations. (Right)
Electron spectra for the “maximum” [(red) solid line] and “standard” [(blue) dashed line] pulses.
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extension of the ATI spectrum into the high-energy region is
yet more pronounced than in the case of the “maximum” pulse
shown in Fig. 4. We may explain this fact on the basis of the
discussion presented previously. The function E1(a) obtained
if we take into account the effect of the core potential on
the electron motion probably reproduces essential features of
I (a), such as growth directions, better than the function E(a).
Therefore, at the point a, where E1(a) attains a maximum on
the fixed intensity surface we are closer to a local maximum
of I (a).

The local maxima of I (a) which we approached with the
help of the study of the extremum properties of functions E(a)
and E1(a), are probably two different local maxima. As a
comparison of Figs. 1 and 5 (left) shows, “maximum” pulses
are different in both cases.

The approach which we used brings us sufficiently close to
a local maximum of I (a), though not giving its exact position.
Determination of the exact position of such a maximum, or
search for the global maximum of this function constitutes, of
course, a far more difficult and time-consuming task.

IV. CONCLUSION

We demonstrated that the ATI spectrum can be extended
considerably into the high-energy region if we modify the
driving pulse following prescriptions which the classical
model provides. We saw that for the “maximum” pulse with
the parameters summarized in Table I, which carries the same
energy as the “standard” pulse, the spectral intensity for large
electron energies (especially for energies above the classical
cutoff) is indeed much higher.

The “space” of the permissible pulse shapes used to find
the “maximum” pulse was given by Eq. (1), where we have
put K = 5. Increasing the number of harmonic frequencies in

this equation beyond this limit adds very little to the classical
cutoff value, so the pulse shape with the coefficients from
Table I provides the maximum cutoff value which can be
achieved if we restrict the trial wave form to that given by
Eq. (1) under condition of a fixed total energy carried by the
pulse.

In finding the parameters of the “maximum” pulse we
were governed by the purely classical notions, neglecting
completely the effect of the atomic potential. As we have seen,
results of the ab initio quantum TDSE calculation confirm
the predictions of the classical theory. This is a gratifying
feature of the present problem, which avoids using time-
consuming techniques such as the genetic algorithm [10,21]
requiring multiple solutions of the TDSE. We needed to
include approximately 20 partial waves in the expansion (4) to
achieve convergence. Repeating such a calculation many times
would have been a rather serious computational challenge.
Fortunately, the fact that classical model works so well saves
us a lot of computing time.

Another goal we pursued in doing this work was testing the
capabilities of the MIM method. It is known [18,19] that use of
the MIM procedure and the velocity gauge for description of
the atom-EM field interaction allows one to treat accurately the
processes of multiphoton ionization in strong infrared fields,
where a large number of photons can be absorbed from the
laser field. We confirmed this fact for the EM fields described
by Eq. (1), containing several harmonic frequencies.
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