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Controlling molecular scattering by laser-induced field-free alignment
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We consider deflection of polarizable molecules by inhomogeneous optical fields and analyze the role
of molecular orientation and rotation in the scattering process. It is shown that molecular rotation induces
spectacular rainbowlike features in the distribution of the scattering angle. Moreover, by preshaping molecular
angular distribution with the help of short and strong femtosecond laser pulses, one may efficiently control
the scattering process, manipulate the average deflection angle and its distribution, and reduce substantially the
angular dispersion of the deflected molecules. We study the problem both classically and quantum mechanically
and arrive at the same conclusions in both treatments. The effects of strong deflecting field on the scattering
of rotating molecules are considered by the means of the adiabatic invariants formalism. The suggested control
scheme opens new ways for many applications involving molecular focusing, guiding, and trapping by optical
and static fields.
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I. INTRODUCTION

Optical dipole forces acting on molecules in nonresonant
laser fields is a hot subject of many recent experimental studies
[1–4]. By controlling molecular translational degrees of
freedom with laser fields [5–10], novel elements of molecular
optics can be realized, including molecular lens [1,2] and
molecular prism [3]. The mechanism of molecular interaction
with a nonuniform laser field is rather clear: the field induces
molecular polarization, interacts with it, and deflects the
molecules along the intensity gradient. As most molecules
have anisotropic polarizability, the deflecting force depends
on the molecular orientation with respect to the deflecting
field. Previous studies on optical molecular deflection have
mostly considered randomly oriented molecules, for which
the deflection angle is somehow dispersed around the mean
value determined by the orientation-averaged polarizability.
The latter becomes intensity dependent for strong-enough
fields due to the field-induced modification of the molecular
angular motion [5,11]. This adds a new ingredient for
controlling molecular trajectories [4–8], which is important,
but somehow limited because of using the same fields for the
deflection process and orientation control.

In this work, we show that the deflection process can be
significantly affected and controlled by preshaping molecular
angular distribution before the molecules enter the interaction
zone. This can be done with the help of numerous recent
techniques for laser molecular alignment, which use single
or multiple short laser pulses (transform-limited or shaped)
to align molecular axes along certain directions. Short laser
pulses excite rotational wave packets, which results in a
considerable transient molecular alignment after the laser
pulse is over, i.e., at field-free conditions (for reviews on field-
free alignment, see, e.g., Refs. [12,13]). Field-free alignment
was observed both for small diatomic molecules as well as
for more complex molecules, for which full three-dimensional
control was realized [14–16].

We demonstrate that the average scattering angle of the
deflected molecules and its distribution may be dramatically
modified by a proper field-free prealignment. By separating
the processes of the angular shaping and the actual deflection,

one gets a flexible tool for tailoring molecular motion in
inhomogeneous optical and static fields.

The main principles of this new approach were briefly
introduced in our recent Letter [17]. Here we present a much
more elaborate analysis of the control mechanisms, including
also a detailed comparison between the quantum and classical
aspects of the problem and discussion of the strong field effects
in molecular scattering.

In Sec. II we present the deflection scheme, as well as
heuristic classical discussion on the anticipated role of molec-
ular rotation on the deflection process (both for thermal and
prealigned molecules). In Sec. III we verify these predictions
by means of the quantum treatment of the problem in the
limit of the relatively weak deflecting field (that does not
disturb significantly the rotational motion). The strength of
the prealigning field is not restricted here. Full classical
treatment of the molecular deflection at such conditions
(including thermal effects) is given in Sec. IV, where we find
a good correspondence between the classical and quantum
calculations. Motivated by this agreement, we provide in
Sec. V a full classical analysis of the molecular scattering by
strong deflecting field using the adiabatic invariants formalism.
Finally, we summarize our results in Sec. VI.

II. DEFLECTION OF FIELD-FREE
ALIGNED MOLECULES

Although our arguments are rather general, we follow
for certainty a deflection scheme that brings to mind the
experiment by Stapelfeldt et al. [1], who used a strong IR
laser to deflect a CS2 molecular beam and then addressed
a portion of the deflected molecules (at a preselected place
and time) by an additional short and narrow ionizing pulse.
Consider the deflection (in z direction) of a linear molecule
moving in x direction with velocity vx and interacting with a
focused nonresonant laser beam that propagates along the y

axis (Fig. 1).
The spatial profile of the laser electric field in the xz

plane is:

E = E0 exp
[−(x2 + z2)/ω2

0

]
exp[−2 ln 2t2/τ 2]. (1)
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FIG. 1. The deflection scheme. A polarized (in the z direction)
laser field propagates toward the plane of the paper (y direction). The
linear molecules, initially moving along the x direction (with velocity
vx), are deflected by the potential gradient (deflection velocity vz).

The interaction potential of a linear molecule in the laser field
is given by:

U = − 1
4E2(α‖ cos2 θ + α⊥ sin2 θ ), (2)

where E is defined in Eq. (1) and α‖ and α⊥ are the components
of the molecular polarizability along the molecular axis and
perpendicular to it, respectively. Here θ is the angle between
the electric field polarization direction (along the laboratory
z axis) and the molecular axis. A molecule initially moving
along the x direction will acquire a velocity component vz

along the z direction. We consider the perturbation regime
corresponding to a small deflection angle, γ ≈ vz/vx . We treat
z as a fixed impact parameter and substitute x = vxt . By doing
this, we concentrate on the molecules reaching the focal spot
at the moment of the maximum of the deflecting pulse, like in
Refs. [1,4]. The deflection velocity is given by:

vz = 1

M

∫ ∞

−∞
Fzdt = − 1

M

∫ ∞

−∞
(
→
∇ U )z dt. (3)

Here M is the mass of the molecules and Fz is the deflecting
force. The time dependence of the force Fz (and potential U )
in Eq. (3) comes from three sources: pulse envelope, projectile
motion of the molecule through the laser focal area, and time
variation of the angle θ due to molecular rotation. For sim-
plicity, we start with the case of the relatively weak deflecting
field that does not affect significantly the rotational motion.
Such approximation is justified, say, for CS2 molecules with
the rotational temperature T = 5K, which are subject to
the deflecting field of 3 × 109 W/cm2. The corresponding
alignment potential U ≈ − 1

4 (α‖ − α⊥)E2
0 ≈ 0.04 meV is an

order of magnitude smaller than the thermal energy kBT ,

where kB is Boltzmann’s constant. This assumption is even
more valid if the molecules were additionally subject to
the aligning pulses prior to deflection. The case of a strong
deflecting field will be considered later in Sec. V.

Since the rotational time scale is the shortest one in the
problem, we average the force over the fast rotation and arrive
at the following expression for the deflection angle, γ = vz/vx :

γ = γ0 [α||A + α⊥(1 − A)]/α. (4)

Here α = 1/3α|| + 2/3α⊥ is the orientation-averaged molec-
ular polarizability, and A = cos2 θ denotes the time-averaged
value of cos2 θ . This quantity depends on the relative orienta-
tion of the vector of angular momentum and the polarization
of the deflecting field. It differs for different molecules of
the incident ensemble, which leads to the randomization of
the deflection process. The constant γ0 presents the average
deflection angle for an isotropic molecular ensemble:

γ0 = αE2
0

4Mv2
x

(−4z

ω0

) √
π

2

(
1 + 2ω2

0 ln 2

τ 2v2
x

)−1/2

exp

(
−2z2

ω2
0

)
.

(5)

We provide below some heuristic classical arguments on the
anticipated statistical properties of A and γ (both for thermal
and prealigned molecules).

Consider a linear molecule that rotates freely in a plane that
is perpendicular to the vector

−→
J of the angular momentum (see

Fig. 2). The projection of the molecular axis on the vertical
z direction is given by:

cos θ (t) = cos(ωt) sin θJ , (6)

where θJ is the angle between �J and z axis and ω is the
angular frequency of molecular rotation. Averaging over time,
one arrives at:

A = cos2 θ = 1
2 sin2 θJ . (7)

In a thermal ensemble, vector �J is randomly oriented in space,
with isotropic angular distribution density 1/2 sin(θJ ). The
mean value of the deflection angle is 〈γ 〉 = γ0. Equation (7)
allows us to obtain the distribution function, f (A) for A
(and the related deflection angle), from the known isotropic
distribution for θJ . Since the inverse function θJ (A) is
multivalued, one obtains

f (A) =
2∑

i=1

1

2
sin θ

(i)
J

∣∣∣∣ dA
dθ

(i)
J

∣∣∣∣
−1

= 1√
1 − 2A

, (8)

FIG. 2. A molecule rotates with the angular momentum �J
forming an angle θJ with the laboratory z axis.
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where we summed over the two branches of θJ (A). This
formula predicts a unimodal rainbow singularity in the
distribution of the scattering angles at the maximal value
γ = γ0(α|| + α⊥)/2α (for A = 1/2) and a flat step near
the minimal one γ = γ0α⊥/α (for A = 0).

Assume now that the molecules are prealigned (before
entering the deflection zone) by an additional strong, short,
and tightly focused laser pulse. The latter is, of course, much
shorter than the (nanosecond) deflecting pulse. The arrival
time and the location of the focal spot of the aligning pulse are
chosen such that the aligned molecules reach the center of the
deflection zone at t = 0 (i.e., at the maximum of the deflecting
pulse). If the aligning pulse is polarized perpendicular to
the polarization direction of the deflecting field (e.g., in the
x direction), it forces the molecules to rotate preferentially
in the planes containing the x axis. As a result, the vector �J
of the angular momentum is confined to the yz plane, and
angle θJ becomes uniformly distributed in the interval [0,π ]
with probability density 1/π . The corresponding probability
distribution for A takes the form

f (A) =
√

2

π

1√
A(1 − 2A)

(9)

In contrast to Eq. (8), Eq. (9) suggests a bimodal rainbow
in the distribution of deflection angles, with singularities
both at the minimal and the maximal angles. Finally, we
proceed to the most interesting case when the molecules
are prealigned by a short strong laser pulse that is polarized
parallel to the direction of the deflecting field. After excitation
by such a pulse, the vector of the angular momentum of
the molecules is preferentially confined to the xy plane, and
the angle θJ takes a well-defined value of θJ ≈ π/2 which
corresponds toA = 1/2. In this way, the molecules experience
the maximally possible time-averaged deflecting force which
is the same for all the particles of the ensemble. As a result, the
dispersion of the scattering angles is reduced dramatically. The
distribution of the deflection angle γ transforms to a narrow
peak (asymptotically, i.e., a δ function) near the maximal value,
γ = γ0(α|| + α⊥)/2α.

III. QUANTUM TREATMENT

For a more quantitative treatment, involving analysis of the
relative role of the quantum and thermal effects, on the one
hand, and the strength of the prealigning pulses, on the other
hand, we consider quantum mechanically the deflection of a
linear molecule described by the Hamiltonian:

H = Ĵ 2/(2I ). (10)

Here Ĵ is operator of angular momentum, and I is the moment
of inertia, which is related to the molecular rotational constant,
B = h̄/(4πIc) (c is speed of light). Assuming again that the
deflecting field is too weak to modify molecular alignment,
we consider scattering in different |J,m〉 states independently.
The deflection angle is given by Eq. (4), in which A is
replaced by

AJ,m = 〈J,m| cos2 θ |J,m〉 = 1

3
+ 2

3

J (J + 1) − 3m2

(2J + 3) (2J − 1)
.

(11)

FIG. 3. Quantum distribution of AJ,m in the thermal case. Panels
(a) and (b) correspond to JT = 5 and JT = 15, respectively. His-
togram in panel (c) shows a coarse-grained version of the distribution
in panel (b).

In the quantum case, the continuous distribution of the angles
γ is replaced by a set of discrete lines, each of them weighted
by the population of the state |J,m〉. Figure 3 shows the
distribution of AJ,m in the thermal case for various values
of the dimensionless parameter JT = √

kBT /(hBc) that
represents the typical “thermal” value of J (for JT � 1).
For CS2 molecules, the values of JT = 5,15 correspond to
T = 3.9K and T = 35K, respectively.

The distribution of discrete values of AJ,m demonstrates
a nontrivial pattern. In particular, the values exceeding the
classical limit 0.5 correspond to the states |J,m = 0〉 [see
Eq. (11)], and they rapidly approach that limit as J grows.
After the coarse-grained averaging, however, the distribution
shows the expected unimodal rainbow feature [see Eq. (8)] for
large-enough JT .

If the molecules are subject to a strong femtosecond
prealigning pulse, the corresponding interaction potential is
given by Eq. (2), in which E is replaced by the envelope ε of
the femtosecond pulse. If the pulse is short compared to the
typical periods of molecular rotation, it may be considered as
a delta pulse. In the impulsive approximation, one obtains the
following relation between the angular wave function before
and after the pulse applied at t = 0 (see, e.g., Ref. [18], and
references therein):

	(t = 0+) = exp(iP cos2 θ )	(t = 0−), (12)

where the kick strength, P , is given by:

P = (1/4h̄) (α|| − α⊥)
∫ ∞

−∞
ε2(t) dt. (13)

Here we assumed the vertical polarization (along z axis) of the
pulse. Physically, the dimensionless kick strength, P equals
to the typical amount of angular momentum (in the units of h̄)
supplied by the pulse to the molecule. For example, in the case
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of CS2 molecules, the values of P = 5,25 correspond to the
excitation by 0.5 ps (FWHM) laser pulses with the maximal
intensity of 4.6 × 1011 W/cm2 and 2.3 × 1012 W/cm2,
respectively. For the vertical polarization of the laser field,
m is a conserved quantum number. This allows us to consider
the excitation of the states with different initial m values
separately. In order to find 	(t = 0+) for any initial state, we
introduce an artificial parameter ξ that will be assigned the
value ξ = 1 at the end of the calculations and define

	ξ = exp[(iP cos2 θ )ξ ]	(t = 0−) =
∑

J

cJ (ξ )|J,m〉. (14)

By differentiating both sides of Eq. (14) with respect to ξ ,
we obtain the following set of differential equations for the
coefficients cJ :

ċJ ′ = iP
∑

J

cJ 〈J ′,m| cos2 θ |J,m〉, (15)

where ċ = dc/dξ . The diagonal matrix elements in Eq. (15)
are given by Eq. (11), and the off-diagonal ones can be
found using recurrence relations for the spherical harmonics
[19]. Since 	ξ=0 = 	(t = 0−) and 	ξ=1 = 	(t = 0+) [see
Eq. (14)], we solve numerically this set of equations from
ξ = 0 to ξ = 1 and find 	(t = 0+). In order to consider the
effect of the field-free alignment at thermal conditions, we
repeated this procedure for every initial |J0,m0〉 state. To find
the modified population of the |J,m〉 states, the correspond-
ing contributions from different initial states were summed
together weighted with the Boltzmann’s statistical factors:

f (AJ,m0 ) =
∑
J0,J̄

exp(−EJ0/kBT )

Qrot
|cJ̄ |2δ(AJ,m0 ,AJ̄ ,m0

), (16)

where cJ are the coefficients [from Eq. (15)] of the wave
packet that was excited from the initial state |J0,m0〉, δ is the
Kronecker delta, and Qrot is the rotational partition function.
It worth mentioning that different combinations of J and m

may correspond to the same value of AJ,m, which necessitates
the presence of the Kronecker delta in Eq. (16). For symmetric
molecules, statistical spin factor should be taken into account.
For example, for CS2 molecules in the ground electronic and
vibrational state, only even J values are allowed due to the
permutation symmetry for the exchange of two bosonic sulfur
atoms (that have nuclear spin 0).

In the case of an aligning pulse in the x direction, the
operator in Eq. (12) becomes:

	(t = 0+) = exp(iP cos2 φ sin2 θ )	(t = 0−), (17)

and a similar procedure as described above is used to find the
deflection distribution. One should pay attention that m is no
longer a conserved quantum number for a pulse kicking in the
x direction.

Using this technique, we considered deflection of initially
thermal molecules that were prealigned with the help of
short pulses polarized in x and z directions (Figs. 4 and 5,
respectively). In the case of the alignment perpendicular to
the deflecting field (Fig. 4), the coarse-grained distribution of
AJ,m (and that of the deflection angle) exhibits the bimodal
rainbow shape, Eq. (9) for strong-enough kicks (P � 1 and
P � JT ). Finally, and most importantly, prealignment in the

FIG. 4. Distribution of AJ,m for molecules prealigned with the
help of a short laser pulse polarized in the x direction. The left column
(a–b) presents directly the AJ,m values, while the right column (c–d)
shows the corresponding coarse-grained histograms [as in Fig. 3(c)].
Panels (a) and (c) are calculated for JT = 5 and P = 5; (b) and (d)
are for JT = 5 and P = 25.

direction parallel to the deflecting field allows for almost
complete removal of the rotational broadening. A considerable
narrowing of the distribution can be seen when comparing
Fig. 3(a) and Figs. 5(b) and 5(d). The conditions required for
the considerable narrowing shown at Fig. 5(d) correspond to
the maximal degree of field-free prealighment 〈cos2 θ〉max =
0.7. This can be readily achieved with the current experimental
technology, even at room temperature [20].

IV. CLASSICAL TREATMENT: WEAK
DEFLECTING FIELD

Consider a classical rigid rotor (linear molecule) described
by a Lagrangian

L = 1
2I (θ̇2 + φ̇2 sin2 θ ), (18)

FIG. 5. Distribution of AJ,m for molecules prealigned in the
z direction. The left column (a–b) presents directly the AJ,m values,
while the right column (c–d) shows the corresponding coarse-grained
histograms. Panels (a) and (c) are calculated for JT = 5 and P = 5;
(b) and (d) are for JT = 5 and P = 25.
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where θ and φ are Euler angles and I is the moment of inertia.
The canonical momentum for the φ angle

Pφ = I φ̇ sin2 θ (19)

is a constant of motion as φ is a cyclic coordinate. The
canonical momentum Pθ is given by

Pθ = I θ̇ . (20)

The Euler-Lagrange equation for the θ variable is

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0, (21)

which leads to

θ̈ = P 2
φ

I 2

cos θ

sin3 θ
. (22)

When considering a thermal ensemble of molecules, it is
convenient to switch to dimensionless variables, in which the
canonical momenta are measured in the units of pth = Iωth,
with ωth = √

kBT /I , where T is the temperature [18]. By
setting P ′

φ = Pφ/pth, P ′
θ = Pθ/pth, and t ′ = ωtht , one gets the

following solution of Eq. (22):

cos θ (t ′) = 1

2

[
1 − P ′

θ (0)

ω

]
cos[θ (0) − ωt ′]

+ 1

2

[
1 + P ′

θ (0)

ω

]
cos[θ (0) + ωt ′], (23)

where

ω =
[
P ′2

θ (0) + P ′2
φ (0)

sin2 θ (0)

]1/2

. (24)

As in Sec. III, if at t = 0 the molecules are subject to
a femtosecond aligning pulse polarized in z direction, the
corresponding interaction potential is given by Eq. (2), in
which E is replaced by the envelope ε of the femtosecond
pulse. We assume again that such a pulse is short compared to
the rotational period of the molecules and consider it as a delta
pulse. The rotational dynamics of the laser-kicked molecules
is then described by Eq. (23), in which P ′

θ (0) is replaced by

P ′
θ (0) → P ′

θ (0) − P ′
s sin(2θ (0)). (25)

Here P ′
s = Ph̄/

√
kBT I is properly normalized kick strength

[18] with P given by Eq. (13).
In the case of an aligning pulse in the x direction, both

P ′
θ (0) and P ′

φ(0) are replaced by:

P ′
θ (0) → P ′

θ (0) + P ′
s cos2 φ(0) sin(2θ (0))

(26)
P ′

φ(0) → P ′
φ(0) − P ′

s sin2(θ (0)) sin(2φ(0))

Averaging cos2 θ (t ′) over time, we obtain:

A = cos2 θ = 1

4

[
1 +

(
P ′

θ (0)

ω

)2 ]

+ 1

4

[
1 −

(
P ′

θ (0)

ω

)2 ]
cos(2θ (0)), (27)

FIG. 6. Classical distribution of A for JT = 15. No prealignment
is assumed (P = 0). One can observe a rainbowlike feature at the
right edge of the distribution, and a flat step at the left edge.

and the probability distribution of the time-averaged alignment
factor A can be obtained by:

f (A) =
∫ ∫ ∫ ∫

dθ (0) dφ(0) dP ′
θ (0) dP ′

φ(0)δ(A − cos2 θ )

×F (θ (0),φ(0),P ′
θ (0),P ′

φ(0)), (28)

where

F = 1

8π2
exp

[
−1

2

(
P ′2

θ + P ′2
φ

sin2 θ

)]
(29)

is the thermal distribution function.
The probability distribution of A in the thermal case is

plotted in Fig. 6. Its shape is well described by Eq. (8), and it
is in good agreement with the quantum result of Fig. 3(c).

Figures 7 and 8 show the distribution of A value for
molecules that were prealigned in the direction perpendicular
and parallel to the deflection field, respectively. In the case
of perpendicular prealignment by a sufficiently strong kick
(P � JT ), the distribution shown in Fig. 7(a) demonstrates
the bimodal rainbow shape predicted by Eq. (9). Figure 7(b) is
similar to the corresponding quantum histogram in Fig. 4(d).

In the case of parallel prealignment, the predicted narrow
distribution is seen in Fig. 8. In what follows, we provide an
asymptotic estimate of the width, 
A, of this distribution, and
the mean value 〈A〉 of A in the limit of P/JT � 1.

FIG. 7. Classical distribution of A for (a) JT = 0.5 and (b) JT =
5 after the molecules were prealigned by a laser pulse (P = 25) in
the x direction (i.e., perpendicular to the deflecting field). Panel (a)
corresponds to the case P � JT , and it is in good agreement with the
analytical result, Eq. (9).
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FIG. 8. Narrow classical distribution of A results from prealign-
ment by means of a laser pulse polarized parallel to the deflecting
field (P = 25 and JT = 5).

For strong-enough kicks, Eq. (27) shows that A approaches
the value of 1

2 , unless θ (0) is close to π
2 . Therefore, we define

δA ≡ A − 1
2 , (30)

which differs from zero only for small values of β = θ (0) − π
2 .

For θ (0) ≈ π
2 , Eqs. (25), (27), and (30) yield:

δA ≈ 1

2

{
− P ′

φ(0)2

[P ′
θ (0) + 2βP ′

s ]2 + P ′
φ(0)2

}
. (31)

The thermal averaging provides:

〈δA〉 ≈ −1

2

∫ ∞

−∞
dP ′

θ (0) dP ′
φ(0)

×
∫ ξ

−ξ

dβ
P ′

φ(0)2

[P ′
θ (0) + 2βP ′

s ]2 + P ′
φ(0)2

× exp
{− 1

2 [P ′
θ (0)2 + P ′

φ(0)2]
}

Qrot
, (32)

where Qrot is the rotational partition function, and [−ξ, + ξ ] is
the interval of the β values for which the approximation (31) is
valid. We continue manipulating the expression by introducing
γ = 2βP ′

s :

〈δA〉 ≈ − 1

4P ′
s

∫ ∞

−∞
dP ′

θ (0) dP ′
φ(0)

×
∫ 2P ′

s ξ

−2P ′
s ξ

dγ
P ′

φ(0)2

[P ′
θ (0) + γ ]2 + P ′

φ(0)2

× exp
{− 1

2 [P ′
θ (0)2 + P ′

φ(0)2]
}

Qrot
. (33)

In the limit of P ′
s → ∞, the leading term in the asymptotic

expansion of 〈δA〉 can be obtained by expanding the limits
of the internal integration ±2P ′

s ξ to ±∞ (as the integrand
vanishes for large values of P ′

s ξ ):

〈δA〉 ≈ − 1

4P ′
s

∫ ∞

−∞
dP ′

θ (0) dP ′
φ(0)|P ′

φ(0)|

×
∫ ∞

−∞
dγ

1

γ 2 + 1

exp
{ − 1

2 [P ′
θ (0)2 + P ′

φ(0)2]
}

Qrot

= − 1

P ′
s

√
π

32
. (34)

Recalling Eq. (30), we conclude that:

〈A〉 ≈ 1

2
− 1

P ′
s

√
π

32
. (35)

In order to estimate the width of the A distribution, we need
to consider the dispersion and, accordingly, the average value
of A2. Following the same procedure as above, we define:

δ(A2) ≡ A2 − 1
4 . (36)

and find:

δ(A2) ≈ 1

4

{
−P ′

φ(0)4 + 2P ′
φ(0)2(P ′

θ (0) + 2βP ′
s )2

[(P ′
θ (0) + 2βP ′

s )2 + P ′
φ(0)2]2

}
. (37)

By thermally averaging this, and taking only the leading term
in the asymptotic expansion, we arrive at

〈δ(A2)〉 ≈ − 1

8P ′
s

∫ ∞

−∞
dP ′

θ (0) dP ′
φ(0)|P ′

φ(0)|

×
∫ ∞

−∞
dγ

1 + 2γ 2

(γ 2 + 1)2

exp
{− 1

2 [P ′
θ (0)2 + P ′

φ(0)2]
}

Qrot

= − 3

16P ′
s

√
π

2
, (38)

and

〈A2〉 ≈ 1

4
− 3

16P ′
s

√
π

2
. (39)

The variance can be calculated from Eqs. (35) and (39) by
using (
A)2 = 〈A2〉 − 〈A〉2. Recalling the relations P ′

s =
Ph̄/

√
kBT I and JT = √

kBT /(hBc), we have:

〈A〉 ≈ 1

2
−

√
π

8

JT

P (40)

(
A)2 ≈
√

π

32

JT

P
.

The above asymptotic expressions for 
A and 〈A〉 are
plotted in Figs. 9(a) and 9(b), respectively (solid lines). The
× points refer to the direct numerical calculations based on
the distribution function given by Eq. (28). Although the
asymptotic results (40) are formally valid for JT � 1, and P �
JT , they provide a good agreement with the exact numerical
simulations already for P/JT = 2. Moreover, our classical
asymptotic estimate for the width of the distribution, 
A,
coincides within the 10% accuracy with the exact quantum
result for P = 25 and JT = 5 presented above.
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FIG. 9. Analytical asymptotic estimations of (a) 
A and (b) 〈A〉
(solid lines). The × points result from a direct numerical calculation
using Eq. (28).

V. CLASSICAL TREATMENT: STRONG
DEFLECTING FIELD

In the case of a strong deflecting field, the rotational
motion of the molecules may be disturbed by the field. The
Hamiltonian of a molecule in the vertically polarized optical
electric field of a constant amplitude E is:

H = 1
2I (θ̇2 + φ̇2 sin2 θ ) − 1

4E2(
α cos2 θ + α⊥). (41)

The conjugate momenta Pφ and Pθ are given by Eqs. (19)
and (20), where Pφ is a constant of motion for the chosen
polarization. It is convenient [21] to introduce a new variable

u ≡ cos2 θ (42)

that satisfies the equation(
du

dt

)2

= 4u

[
(1 − u)β −

(
Pφ

I

)2

+ (1 − u)αu

]
≡ g(u).

(43)

The coefficients α,β in the polynomial g(u) are given by

β ≡ 2

I

(
H + 1

4
E2α⊥

)
(44)

and

α ≡ 
αE2

2I
. (45)

Equation (43) can be immediately solved by separation of
variables

dt = du√
g(u)

. (46)

In the case of a free rotation (α = 0), there are only two
roots to the polynomial g(u), u2 = 0 and 0 � u3 � 1, and u

performs periodic oscillatory motion between them. When
α �= 0, g(u) generally has three roots (u1 < u2 < u3), one of
them is necessarily zero. For weak fields, the middle root (u2)
stays at zero and the molecule performs distorted full rotations.
When increasing the field, a bifurcation happens with the
roots of g(u): the smallest root u1 becomes stuck at u = 0, and
the system oscillates in the region 0 < u2 < u3 < 1, where
g(u) is positive. This corresponds to the so-called pendular

motion [5], when the molecular angular motion is trapped by
the external field.

Since molecules experience a time-varying amplitude of
the optical field while propagating through the deflecting
beam, the total rotational energy of the system and the position
of the roots u1,2,3 are changing with time. However, these
changes are adiabatic with respect to the rotational motion,
and therefore we can use adiabatic invariants to determine the
energy of the system [21–23]. The adiabatic invariant related
with the coordinate θ is:

Iθ =
∮

Pθdθ. (47)

It is easy to derive from Eqs. (20), (43), and (47) that:

Iθ = I

4

∫ u3

u2

√
g(u)

u(1 − u)
du. (48)

The energy H of the molecule inside the deflecting field as a
function of the initial energy H0 (before entering the field) is
obtained numerically by solving the Eq.:

Iθ = I 0
θ , (49)

where I 0
θ is calculated for α = 0, i.e., in the absence of the

external field.
Once the energy of the system H and the polynomial

g(u) have been found, the average alignment factor is simply
given by:

〈cos2 θ〉 = 〈u〉 =
∫ u3

u2
udu/

√
g(u)∫ u3

u2
du/

√
g(u)

. (50)

To illustrate the performance of the procedure at real
experimental conditions [1,4], we consider the deflection of
CS2 molecules at T = 5K (see Fig. 1), and plot the distribution
of A at the peak of the deflecting field. The results are given in
Figs. 10(a) and 10(b), for weak (3 × 109 W/cm2) and strong
(9 × 1011 W/cm2) deflecting fields, respectively.

In the case of weak field, we get a unimodular rainbow dis-
tribution similar to that derived by the various methods in the
previous sections. In the case of strong field we obtain a rota-
tionally trapped distribution, corresponding to the pendularlike
motion of the molecules at the top of the deflecting pulse [4].

FIG. 10. Distribution of A at the peak of the deflecting field. Two
cases are considered: (a) weak deflecting field 3 × 109 W/cm2 and
(b) strong deflecting field 9 × 1011 W/cm2. In (a) we observe the
unimodal-rainbow distribution discussed in the previous sections. In
(b), the effect of the alignment by the deflecting field is evident.
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FIG. 11. Distribution of velocities (or deflecting angles)
calculated from the trajectories of the molecules subject to weak
(a) and strong (b) deflecting fields. The fields characteristics are
given in the text.

To study the deflection of CS2 molecules by a focused laser
beam, we integrate numerically Eq. (3) to find the deflection
velocity. In the integrand of Eq. (3), we substitute the value of
〈cos2 θ〉 calculated by Eq. (50) in every point of time. As in the
previous sections, we assume that x ≈ vxt (vx = 500 m/s) and
consider z as a fixed impact parameter (z = −4 µm). These
assumptions are valid even for strong deflecting fields (that
align the molecules) since the deflection angle is still small. We
consider both weak and strong deflecting fields, as in Fig. 10,
and use the values of ω0 = 7 µm and τ = 14 ns [Eq. (1)] in
the calculation of the trajectories.

The distribution of deflected velocities for a thermal molec-
ular ensemble (without prealignment) is shown in Fig. 11. In
Fig. 11(a) (weak field) we essentially verify our assumption
from the previous sections that the deflection in weak fields is
linear withA [Eq. (4)]. This is seen by observing that Fig. 11(a)
may be indeed obtained by a linear transformation of the
distribution f (A) from Fig. 10(a). In Fig. 11(b) (strong field)
the distribution of deflection angles (or of deflection velocities)
is still quite broad. To our opinion, this results from two

FIG. 12. Distribution of deflection velocities for prealigned
molecules (P = 25). Case (a) is for weak deflecting field, and case (b)
is for strong deflecting field. In both cases the molecules were
prealigned parallel to the deflecting field, and this prealignment was
strong enough to ignore any aligning effect of the deflecting field
(thus reducing the broadening of the deflection, as was explained in
the previous sections).

different regimes of scattering that the molecules experience
while traversing the deflecting beam: weak deflection at the
periphery of the beam and deflection under partial alignment
of the molecular ensemble in the center of the beam.

Finally we consider scattering of molecules prealigned in
the z direction with the pulses having kick strength of P = 25.
The results are given in Figs. 12(a) and 12(b) for weak and
strong deflecting fields, respectively. In the case of weak de-
flection [Fig. 12(a)], the narrow peak is observed whose nature
was already explained above. More interestingly, the distribu-
tion of the deflection angles regained the narrow shape even in
the case of strong deflection field [Fig. 12(b)] as a result of pre-
alignment! In our example, the prealignment pulse was strong
enough to overcome the rotational trapping by the deflecting
field. As a result, all the molecules performed full rotations
(but not a pendular motion) despite the presence of the strong
deflecting field, and we obtain a narrow distribution as well.

VI. DISCUSSION AND CONCLUSIONS

Our results indicate that prealignment provides an effective
tool for controlling the deflection of rotating molecules, and
it may be used for increasing the brightness of the scattered
molecular beam. This increase was shown both for weak and
strong deflecting fields. This might be important for nanofab-
rication schemes based on the molecular optics approach [6].
Moreover, molecular deflection by nonresonant optical dipole
force is considered a promising route to separation of molecu-
lar mixtures (for a recent review, see Ref. [24]). Narrowing
the distribution of the scattering angles may substantially
increase the efficiency of separation of multicomponent beams,
especially when the prealignment is applied selectively to
certain molecular species, such as isotopes [25] or nuclear spin
isomers [26,27]. More complicated techniques for preshaping
the molecular angular distribution may be considered, such as
confining molecular rotation to a certain plane by using the
“optical molecular centrifuge” approach [28], double-pulse
ignited “molecular propeller” [29–33], or planar alignment
by perpendicularly polarized laser pulses [34]. In this case,
a narrow angular peak is expected in molecular scattering,
whose position is controllable by inclination of the plane
of rotation with respect to the deflecting field [35]. Laser
prealignment may be used to manipulate molecular deflection
by inhomogeneous static fields as well [36] (for recent exciting
experiments on postalignment of molecules scattered by static
electric fields see Ref. [37]). In particular, one may affect
molecular motion in relatively weak fields that are insufficient
to modify rotational states by themselves. Moreover, the
same mechanisms may prove efficient for controlling inelastic
molecular scattering off metalic and dielectric surfaces. These
and other aspects of the present problem are subjects of an
ongoing investigation.
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