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Electron-impact study of the SO radical using the R-matrix method
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The SO radical with an even number of electrons belongs to an open-shell system due to its π2 ground-state
electronic configuration. This configuration gives rise to three low-lying states X 3�−, a 1�, and b 1�+. The
inclusion of these target states in a trial wave function of the entire scattering have important implications in
the resonances that may be detected in this open-shell molecule. The R-matrix method is a well-established
ab initio formalism which is employed to calculate elastic differential and integral cross sections, momentum-
transfer cross sections, and inelastic cross sections. The Hartree-Fock ground-state configuration of SO is
1σ 22σ 23σ 24σ 21π 45σ 26σ 27σ 22π 43π 2. We have included 28 target states in the trial wave function of the
scattering system. In our configuration-interaction (CI) model, we freeze 12 electrons in orbitals 1σ , 2σ , 3σ ,
4σ , and 1π , the remaining 12 electrons are free to move among the eight orbitals 4σ , 5σ , 6σ , 7σ , 8σ , 9σ ,
2π , and 3π . We have carried our scattering calculations in static-exchange, one-state with CI wave function,
and 28-state models. We have detected a stable anionic bound state 2B1 of SO at various bond lengths of SO
molecule. The vertical electron affinity value is 0.970 eV, which is comparable to the experimental value of
1.125 eV. We also detected two core-excited shape resonances, both of 2� symmetry and with 1� and 1�+ as
the parent states.
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I. INTRODUCTION

Sulfur-containing compounds are important in many pro-
cesses. It is well known that SO2 is one of the major
atmospheric pollutants to cause acid rain. During the eruption
of volcanoes or the use of fossil fuels, a large amount of this
gas is thrown into the Earth’s atmosphere. The SO2-containing
plasmas also play an important role in planetary atmospheres
[1,2]. The low-temperature processing plasmas containing
SO2 have been employed in the plasma-assisted surface
treatment of biocompatible material and biomedical devices
[3], the SO radical is an abundant byproduct of the plasma
remediation of SO2 from any combustion source using fossil
fuels [4,5]. Sulfur oxide is a species of both astrochemical [6]
and technological importance [7]. Technologically, it is used as
a laser in the near-ultraviolet region. At the molecular level, the
a 3�–X 3�− transition is the one involved in the lasing process
in SO. In the literature, the determination of partial and total
ionization cross sections have been reported [8]. Recently, a
study on electron collision with SO and some other sulfur-
containing molecules using a spherical complex potential was
reported [9], and in that study, elastic integral and grand-total
cross sections and total ionization cross sections for incident
energies ranging from ionization threshold to 2000 eV were
computed. In the theoretical area, a very recent calculation
was performed at the static-exchange-polarization-absorption
level of approximation using a combination of the iterative
Schwinger variation method [10] and the distorted-wave
approximation. More specifically, in that study, differential
cross sections (DCSs), integral cross sections (ICSs), and
momentum-transfer cross sections (MTCSs) were computed
in the 1–500 eV energy range.
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The present study applies the ab initio R-matrix method to
low-energy scattering of the SO molecule in the fixed nuclei
approximation. The calculations use code developed by the
UK Molecular R-Matrix Group [11,12]. The R-matrix method
has the advantage over other scattering methods in efficiently
providing cross sections at a large number of scattering
energies. It also has the ability to include correlation effects
and give an adequate representation of several excited states of
the molecule [13]. We are interested in the low-energy region
(�10 eV) which is a favorite ground for the R-matrix method.
The incoming electron can occupy one of the many unoccupied
molecular orbitals or can excite any of the occupied molecular
orbital as it falls into another one. These processes give
rise to the phenomenon of resonances forming a negative
molecular ion for a finite time before the resonance decays
into energetically open channels.

Electron scattering calculations are performed at static
exchange, one-state CI and close-coupling approximation in
which we have retained 28 target states in the R-matrix
formalism. The integrated elastic, differential, and momentum
cross sections for electron impact on the SO molecule from
its ground state are reported. The excitation cross sections
from the ground state to few low-lying excited states have also
been calculated. We have also computed the binary-encounter-
Bethe (BEB) ionization cross section [14,15]. The BEB cross
sections depend only on the binding energies, kinetic energies,
and the occupation number of the occupied molecular orbitals
of the target and on the energy of the incident electron. The
momentum-transfer cross sections calculated in the R-matrix
approximation have been used to calculate effective collision
frequency over a wide electron temperature range. We must
point out that the R-matrix approach is not the only scattering
method that allows the ab initio inclusion of correlation effects
and is applicable to studies of open-shell targets. The complex
Kohn variational method has been successfully employed for
polyatomic targets [16].
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II. METHOD

A. Theory

In an R-matrix approach [17,18], the configuration space
of the scattering system is divided into two spatial regions:
an inner region and an outer region. These regions are treated
differently in accordance with the different interactions in
each region. The center of the R-matrix sphere coincides
with the center of mass of the molecule. When the scattering
electron leaves the inner region, the other target electrons
are confined to the inner region. In the present work, the
R-matrix boundary radius dividing the two regions was
chosen to be 10a0, centered at the SO center of mass. This
sphere encloses the entire charge cloud of the occupied
and virtual molecular orbitals included in the calculation.
At 10a0, the amplitudes of the molecular orbitals are less
than 10−5a

−3/2
0 . However, the continuum orbitals have finite

amplitudes at the boundary. Inside the R-matrix sphere,
the electron-electron correlation and exchange interactions
are strong. Short-range correlation effects are important for
accurate prediction of large-angle elastic scattering, and
exchange effects are important for spin-forbidden excitation
cross sections. A multicentered CI wave-function expansion
is used in the inner region. The calculation in the inner region
is similar to a bound-state calculation, which involves the
solution of an eigenvalue problem for (N + 1) electrons in
the truncated space, where there are N target electrons and a
single scattering electron. Most of the physics of the scattering
problem is contained in this (N + 1) electron bound-state
molecular-structure calculation. Outside the sphere, only
long-range multipolar interactions between the scattering
electron and the various target states are included. Because
only direct potentials are involved in the outer region, a
single center approach is used to describe the scattering
electron via a set of coupled differential equations. The
R matrix is a mathematical entity that connects the two regions.
It describes how the scattering electron enters and leaves the
inner region. In the outer region, the R matrix on the boundary
is propagated outward [19,20] until the inner-region solutions
can be matched with asymptotic solutions, thus yielding the
physical observables such as cross sections. We include only
the dipole and quadrupole moments in the outer region.

In the polyatomic implementation of the UK molecular
R-matrix code [11,12], the continuum molecular orbitals
are constructed from atomic Gaussian-type orbitals (GTOs)
using basis functions centered on the center of gravity of
the molecule. The main advantage of GTOs is that integrals
involving them over all space can be evaluated analytically
in closed form. However, a tail contribution is subtracted to
yield the required integrals in the truncated space defined by
the inner region [11].

The target molecular orbital space is divided into core
(inactive), valence (active), and virtual orbitals. The target
molecular orbitals are supplemented with a set of continuum
orbitals, centered on the center of gravity of the molecule.
The continuum basis functions used in polyatomic R-matrix
calculations are Gaussian functions and do not require fixed
boundary conditions. First, target and continuum molecular
orbitals are orthogonalized using Schmidt orthogonaliza-
tion. Then symmetric or Löwdin orthogonalization is used

to orthogonalize the continuum molecular orbitals among
themselves and remove linearly dependent functions [11,21].
In general and in this work, all calculations are performed
within the fixed-nuclei approximation. This is based on the
assumption that electronic, vibrational, and rotational motions
are uncoupled.

In the inner region, the wave function of the scattering
system, consisting of target plus scattering electron, is written
using the CI expression

�N+1
k = A

∑
i

φN
i (x1, . . . ,xN )

∑
j

ξj (xN+1)aijk

+
∑
m

χm(x1, . . . ,xN ,xN+1)bmk, (1)

where A is an antisymmetrization operator, xN is the spatial
and spin coordinates of the N th electron, φN

i represents the
ith state of the N -electron target, ξj is a continuum orbital
spin-coupled with the scattering electron, and k refers to
a particular R-matrix basis function. Coefficients aijk and
bmk are variational parameters determined as a result of
the matrix diagonalization. To obtain reliable results, it is
important to maintain a balance between the N -electron target
representation, φN

i , and the (N + 1) electron-scattering wave
function. The summation in the second term of Eq. (1) runs
over configurations χm, where all electrons are placed in
target-occupied and virtual molecular orbitals. The choice of
appropriate χm is crucial in this [22]. These are known as
L2 configurations and are needed to account for orthogonality
relaxation and for correlation effects arising from virtual
excitation to higher electronic states that are excluded in
the first expansion. The basis for the continuum electron is
parametrically dependent on the R-matrix radius and provides
a good approximation to an equivalent basis of orthonormal
spherical Bessel functions [23]. In the one-state CI model,
we have included ground state only but have used a CI wave
function to describe it. In the 28-state model calculation, each
target state is represented by a CI wave function.

B. SO target model

The molecule SO is a linear open-shell system that has
ground state X 3�− in the C∞v point group which is reduced
to the C2v point group when the symmetry is lowered. In
the R-matrix suite of programs, the highest Abelian group is
D2h, and therefore we work in the C2v point group, which is
a subset of the D2h point group. The results are reported in
the natural symmetry point group as well as in the C2v point
group for the sake of convenience. We used a double zeta plus
polarization (DZ + P) Gaussian basis set [24] contracted as
(12,8,1)/(6,4,1) for S and (9,5,1)/(4,2,1) for O. We avoided
using diffuse functions, as these would extend outside the
R-matrix box. We first performed a self-consistent-field (SCF)
calculation for the ground state of the SO molecule with the
chosen DZP basis set and obtained a set of occupied orbitals
and a virtual set of orbitals.

The Hartree-Fock electronic configuration for the ground
state is 1σ 22σ 23σ 24σ 21π45σ 26σ 27σ 22π43π2 that gives rise
to lowest-lying X 3�−, a 1�, and b 1�+ states correlating
with the first dissociation channel [S(3P ) + O(3P )]. The
energy of the occupied 3π orbital is −11.12 eV, and by
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TABLE I. Properties of the SO target, ground-state energy, and dipole moment (in a.u.) and the ionization potential (IP, in eV), SCF at bond
length Re = 2.777a0, and CI at bond length Re = 2.9a0.

Present work Previous theory ISVM
SCF CI SCFa CIa CSP-icb DWAc

E −472.333 53 −472.380 80 −472.333 54 −472.511 70 −472.137 52
µ 0.96 0.79 0.95 0.77 0.61 0.73
IP 11.12 11.12 10.29

aW. C. Swope et al. [26].
bJoshipura and Gangopadhyay [9].
cLee et al. [10].

Koopman’s theorem it is the first ionization energy. Since the
SCF procedure is inadequate to provide a good representation
of the target states, we improve the energy of the ground as well
as the excited states by using CI wave functions. This lowers
the energies, and the correlation introduced provides a better
description of the target wave function and excitation energies.
In our limited CI model, we keep 12 electrons frozen in the
1σ 22σ 23σ 24σ 21π4 configuration and allow the remaining
12 electrons to move freely in molecular orbitals 4σ , 5σ ,
6σ , 7σ , 8σ , 9σ , 2π , and 3π . The CI ground-state energy
for the SO molecule is −472.3808 hartrees, at a bond length
of Re = 2.9a0. We computed the value of vertical electronic
affinity (VEA) by performing a bound-state calculation of SO−
by including the continuum electron basis functions centered
at the origin. The VEA is equal to the difference between
the total energy of the neutral molecule and its anion at the
equilibrium geometry of the neutral molecule. We detect a
stable bound state of SO− with 2� symmetry having the con-
figuration 1σ 22σ 23σ 24σ 21π45σ 26σ 27σ 22π43π3 with a VEA
of 0.970 eV, which is in good agreement with the estimated
experimental (adiabatic) value of about 1.125 eV [25].

To provide additional information on the charge distribution
in the SO molecule, we have also calculated the dipole and
quadrupole moments. In our CI model the dipole moment
and the absolute values of the quadrupole component Q20

for the ground state are 0.7945 and 0.86 a.u., respectively.
The values of the ground-state energy, dipole moment, and

the ionization potential are compared with other work in
Table I.

In Table II, we list the dominant configuration, the transition
moments, number N of configuration state functions (CSFs),
dipole moments, and vertical excitation energies (VEEs) for
the target states. We have good agreement with the calculation
of Borin et al. [27] for VEEs and dipole and transition
moments, who employed a state-averaged complete active
space self-consistent field, internally contracted multirefer-
ence configuration interaction approach using quintuple-zeta
basis sets.

C. Scattering model

We have included 28 target states (three of 1A2, four of
3A2, four of 1A1, two of 3A1, three of 1B1, five of 3B1, three of
1B2, and five of 3B2) in the trial wave function describing the
electron plus target system. However, excitation cross sections
are reported only for the four excited states (a 1�, b 1�+,
B 3�−, and C 3�) that lie below the first ionization threshold.
Calculations were performed for doublet and quartet scattering
states with A1,A2,B1, and B2 symmetries. Continuum orbitals
up to l = 4 (g-partial wave) were included in the scattering
calculation. Due to the presence of the long-range dipole in-
teraction, the elastic cross sections are formally divergent in the
fixed-nuclei approximation, because the differential cross sec-
tion is singular in the forward direction. To obtain converged

TABLE II. Dominant configuration, transition moments (in a.u.), number N of configuration state functions (CSFs), the vertical excitation
energies (VEEs in eV), and dipole moments (µ in a.u.) for the target states of SO at bond length Re = 2.9a0.

State VEE (eV) Transition µ (a.u.)

C2v/C∞v Present Previousa moments (a.u.) N Present Previousa

X 3A2/X 3�− 0.0 – – 864 0.79 0.62
a(1A2,1A1)/a 1� 0.75 0.71 – 584 696 0.73 0.59
b(1A1)/b 1�+ 1.14 1.28 – 696 0.71 0.55
c(1A2)/c 1�− 3.95 4.20 – 584 0.04 0.03
A′(3A2,3A1)/A′ 3� 4.10 4.40 0.002 864 822 0.04 0.07
A′′(3A1)/A′′ 3�+ 4.21 4.50 – 822 0.04 0.06
A 3B1,

3B2/A
3� 5.53 4.92 0.013 858 0.38 0.25

C 3B1,
3B2/C 3� 5.84 5.70 0.173 858 0.37 0.26

d 1B2,
1B1/d

1� 6.62 5.62 – 620 0.36 0.18
e 1B2,

1B1/e
1� 6.71 6.65 – 620 0.33 0.21

B 3A2/B
3�− 7.06 5.90 0.645 864 0.22 0.28

aBorin et al. [27].
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FIG. 1. Ground-state potential energy curves of SO and SO−

molecules. Dashed curve, SO; solid curve, SO−.

cross sections, the effect of rotation must be included along
with a very large number of partial waves. The effects of partial
waves with l > 4 were included using a Born correction via a
closure approach [28]. Our g-partial wave cross section using
the R-matrix method nearly coincided with the g-wave Born
results. This establishes the correctness of our procedure to
use Born correction beyond the g-partial wave. The use of the
rotationally resolved Born closure procedure has also been put
forth in [29].

III. RESULTS

A. Elastic and inelastic total cross sections

The ground-state electronic configuration of SO has two
unpaired π electrons. Due to vacancy in the 3π orbital of
the ground state of SO, the scattering electron can occupy it,
forming a stable anionic ground state of SO with symmetry
2�. In our 28-state model, we found an R-matrix pole at
−472.4164 a.u. at Re in the scattering symmetry 2� which is
lower than the energy −472.3808 a.u. of ground state X 3�−
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FIG. 2. Elastic cross sections of the electron impact on the SO
molecule. Dotted curve, SCF at a bond length Re = 2.777a0; dashed
curve, one-state CI, and solid curve, 28-state CI calculations at a bond
length Re = 2.9a0.
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FIG. 3. Elastic cross sections of the electron impact on the SO
molecule at Re for 28-state calculations. Dash-dot curve, doublets
sum ; dashed curve, quartets sum; thin solid curve, total (doublets +
quartets); dotted curve, Born correction; thick solid line, Born
corrected (sum of doublets, quartets, and Born correction).

of SO, which indicates the detection of an anionic bound
state. We calculated the bound-state energies of this anionic
2� state at different bond length by performing an L2-type
calculation. The potential-energy curves of the 3�− state of
the SO molecule and 2� state of the SO− anion are shown in
Fig. 1. The anion is stable at all the bond lengths. This yields
a vertical electron affinity of 0.97 eV at Re. From Fig. 1, we
find that the equilibrium bond length for the ground state of
the anion SO− is 3.1a0. The S–O bond length is about 6.9%
elongated in the anionic state SO− because the extra electron
is in a �∗ orbital. Our value of electron affinity is 0.970 eV,
which is in good agreement with the estimated experimental
(adiabatic) value of about 1.125 eV [25].

In Fig. 2, we have summed the contribution of doublet and
quartet symmetries for SCF, one-state CI, and 28-state calcu-
lations. In this figure, we have shown the elastic cross section
calculated by including only the ground state which is corre-
lated, where the active space spans orbitals up to 9σ and 3π .

3 3.5 4 4.5 5
Energy (eV)

-4

-3

-2

-1

0

E
ig

en
 p

ha
se

 s
um

2
B

1
2
B

2

28-states CI

FIG. 4. Eigenphase sum of 2B1 and 2B2 symmetries for 28-state
CI calculation. Solid curve, 2B1; dotted curve, 2B2.
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FIG. 5. Comparison of total elastic cross sections (TCSs). Dashed
curve, Lee et al. [10]; solid curve, R-matrix results for 28-state CI
calculation.

We notice one peak in the cross sections at 0.77 eV in the SCF
calculation and which is shifted to 0.25 eV in the one-state cal-
culation due to inclusion of extra correlation effects. The eigen-
phase sum shows a sudden jump of π radian centered at this
position. This resonance belongs to degenerate (2B1/

2B2)2�

symmetry. To investigate whether this resonance is real, we
performed the calculation in a 28-state model. The resonance
seen in the SCF and one-state CI model is washed out in this
28-state model due to the inclusion of higher excited states.

The retention of a large number of closed electronic exci-
tation channels in the 28-state model provides the necessary
polarization potential in an ab initio way; this polarization
potential is critical in determining the resonance parameters of
the detected resonances. In Fig. 3, we have present the elastic
cross sections of the electron impact on the SO molecule at Re

for the 28-state calculation. We have shown the contribution
of doublet and quartet symmetries separately. We notice one
peak in the cross sections of doublets around 4 eV which is due
to degenerate (2B1/

2B2)2� symmetry. The eigenphase sum
shows a sudden jump of π radian centered at this position.
The Born correction shown in Fig. 3 is added to the sum

of doublets and quartets to get an elastic cross section that
includes the contribution of higher partial waves neglected in
the R-matrix calculation. In Fig. 4, we show the eigenphase
sum of 2B1 and 2B2 symmetries in the 28-state model. Figure 5
shows the comparison of total elastic cross sections (TCSs)
for the 28-state CI calculation with the calculation of Lee
et al. [10], who applied the Born-closure approximation at
the amplitude level to account for the contribution of the high
angular momentum state. We observe that at all values of
electron-impact energies, our values lie higher than those of
Lee et al. [10].

In Figs. 6–8, we show the inelastic cross sections from
the ground state to the four physical states whose vertical
excitation thresholds along with their dipole moments and the
number of CSFs included in the CI expansion are given in
Table II.

In Fig. 6 we notice sharp peaks at 4.06 eV, having widths of
0.170 and 0.164 eV in the cross sections of the X 3�−–a 1�

and X 3�−–b 1�+ transitions, respectively. These resonances
belong to degenerate (2B1/

2B2)2� symmetries. We assign a
common configuration 2π43π23π to these core excited shape
resonances which decay to different parent states a 1� and
b 1�+, respectively, by dissociating a 3π molecular orbital. The
resonance properties of these peaks are also given in Table III.
We have also shown the electronic excitation results for e-O2

scattering using the R-matrix method [30]. In contrast to the
O2 results for both the excitation processes, there is a marked
resonance structure in the case of SO around 4 eV. In general,
the cross sections for SO are slightly larger because SO is a
bigger molecule than O2.

Figure 7 depicts the excitation cross section for the
optically allowed transition X 3A2(X 3�−)–b 3A2(b 3�−). The
contribution of quartet and doublet symmetries is shown
separately. The contribution of quartets is more than that of
doublet symmetries due to their higher spin multiplicity by a
factor of nearly 2 than that of doublet symmetries. The Born
correction is also included for this dipole transition.

Figure 8 depicts the excitation cross section for the
optically allowed transition X 3A2(X 3�−)–C3B1/

3B2(C 3�).
The contribution of quartet and doublet symmetries is shown
separately. The contribution of quartets is once again higher
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FIG. 6. Electron-impact excitation cross sections from the ground state: X 3�− (3A2) of the SO molecule to the a 1� a(1A2/
1A1) and b 1�+

b(1A1), solid line; X 3�−
g of the O2 molecule to the a 1�g and b 1�+

g , dotted curve, from Noble and Burke [30].
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TABLE III. Resonance properties of SO at bond length R = 2.9 a0.

Electronic configuration Er 
r Type of Parent
of resonant state (eV) (eV) resonance state

1σ 2-7σ 2 1π 4 2π 4 3π 2 (a 1�)(3π ) : 2� 4.06 0.170 Core-excited shape a 1A1/
1A2 (a 1�)

1σ 2-7σ 2 1π 4 2π 4 3π 2 (b 1�+)(3π ) : 2� 4.06 0.164 Core-excited shape b 1A1 (b 1�+)

than that of doublet symmetries. The Born correction is also
included for this dipole transition.

B. Ionization cross section

Figure 9 shows electron-impact ionization cross sections
of SO from threshold 11.12 eV to 5000 eV by using the
standard formalism of the binary-encounter-Bethe (BEB)
model [14,15]. This formalism requires the binding energy and
kinetic energy of each occupied orbital in a molecular structure
calculation. The ionization cross section rises from threshold
to a peak value of 4.8 Å2 at 77.8 eV and then shows ln(E/E)
behavior as E approaches higher values. We have also shown
the results of previous theoretical work [8–10]. The molecular
orbital data used in the calculation of the BEB cross section is
given in Table IV, which is generated at SCF level. The BEB
ionization cross section σ is obtained by summing over each
orbital cross section σi , where

σi(t) = s

t + u + 1

[
1

2

(
1 − 1

t2

)
ln t +

(
1 − 1

t

)
− ln t

t + 1

]
,

(2)

where t = T/B, u = U/B, and s = 4πa0
2N (R/B)2. Here, R

is the Rydberg energy, T is the kinetic energy of the incident
electron, U is the orbital kinetic energy, N is the electron
occupation number, and B is the binding energy of the orbital.
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FIG. 7. Electron-impact excitation cross sections from the ground
X 3�− (3A2) state of the SO molecule to the b 3�− (3A2) state for
the 28-state calculation. Dash dot curve, doublets sum; dashed curve,
quartets sum; thin solid line, total (doublets + quartets); dotted curve,
Born correction; thick solid line, Born corrected (sum of doublets,
quartets, and Born correction).

C. Differential cross section

The evaluation of the differential cross sections (DCSs)
provides a more stringent test for any theoretical model. The
rotational excitation cross sections for electron impact on a
neutral molecule can be calculated from the scattering param-
eters of elastic scattering in the fixed nuclei approximation
provided the nuclei are assumed to be of infinite masses [31].
In particular, starting from an initial rotor state J = 0, the sum
of all transitions from the J = 0 level to a high enough J value
for convergence is equivalent to the elastic cross section in the
fixed nuclei approach. We have employed this methodology
to extract rotationally elastic and rotationally inelastic cross
sections from the K-matrix elements calculated in the one-state
R-matrix model. The DCS for a general polyatomic molecule
is given by the familiar expression

dσ

d�
=

∑
L

ALPL(cos θ ). (3)

where PL is a Legendre polynomial of order L. The AL

coefficients have already been discussed in detail [32]. For
a polar molecule, this expansion over L converges slowly. To
circumvent this problem, we use the closure formula

dσ

d�
= dσB

d�
+

∑
L

(
AL − AL

B
)
PL(cos θ ). (4)

The superscript B denotes that the relevant quantity is
calculated in the Born approximation with an electron-point
dipole interaction. The convergence of the series is now rapid,
since the contribution from the higher partial waves to the DCS
is dominated by the electron-dipole interaction. The quantity
dσ
d�

for any initial rotor state |Jm〉 is given by the sum over all

6 7 8 9 10 11 12 13 14
Energy (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6

E
xc

it
at

io
n 

cr
os

s 
se

ct
io

n 
(u

ni
ts

 o
f 

a 02 )

Doublets
Quartets
Sum (Doublets + Quartets)
Born correction
Born corrected

X 
3Σ-

 --> C 
3Π

FIG. 8. Same as Fig. 7, but for the ground X 3�− (3A2) state of the
SO molecule to the C3� (3B1/

3B2) state for the 28-state calculation.
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FIG. 9. Electron-impact BEB ionization cross sections of the SO
molecule. Dashed curve, Joshipura et al. [9]; dotted curve, Tarnovsky
et al. (theor.) [8]; dash-dot curve, Tarnovsky et al. (expt.) [8]; thin
solid curve, Lee et al. [10]; thick solid line, our BEB model.

final rotor states |J ′m′〉
dσ

d�
=

∑
J′m′

dσ

d�
(Jm → J′m′). (5)

where J is the rotational angular momentum, and m is its
projection on the internuclear axis. To obtain converged results,
the maximum value of J ′ = 5 and L = 30. We have calculated
DCS by using the POLYDCS program of Sanna and Gianturco
[33], which requires basic molecular input parameters along
with K matrices evaluated in a particular scattering calculation.
We have used this code to compute the DCS in the one-state
CI model. Since SO is an open-shell molecule having X 3�−
as its ground state, the spin coupling between this target state
and the spin of the incoming electron allows two spin-specific
channels, namely, the doublets (D) and quartets (Q) couplings.
The spin-averaged DCS for elastic electron scattering from the
SO radical are calculated by using the statistical weight 2/6
for doublet and 4/6 for quartet scattering channels. We then

TABLE IV. SO molecular orbital binding and average kinetic
energies for the DZ+P basis set at equilibrium geometry. |B| is binding
energy (eV), U is kinetic energy (eV), and N is occupation number.

Molecular orbital |B| (eV) U (eV) N

1σ (1a1) 2505.28 3296.87 2
2σ (2a1) 560.84 794.53 2
3σ (3a1) 246.64 509.37 2
4σ (4a1) 183.48 478.62 2
1π (1b1) 183.42 478.62 2
1π (1b2) 183.42 478.08 2
5σ (5a1) 38.34 77.00 2
6σ (6a1) 23.73 75.64 2
7σ (7a1) 16.45 66.39 2
2π (2b1) 15.81 61.22 2
2π (2b2) 15.81 61.22 2
3π (3b1) 5.56 54.42 1
3π (3b1) 5.56 54.42 1

TABLE V. Number of coupled channels for a doublet or a quartet
scattering symmetry of SO molecule for 28-state calculation.

Scattering symmetry Number of coupled channels

2A1 174
2B1 176
2B2 176
2A2 174
4A1 90
4B1 95
4B2 95
4A2 95

use Eq. (3) as follows to calculate the DCS:

dσ

d�
= 1

3

[
2

(
dσ

d�

)Q

+
(

dσ

d�

)D
]

, (6)

where ( dσ
d�

)Q,D represent DCS for quartet and doublet cases,
respectively. [The number of coupled channels for a doublet or
a quartet scattering symmetry are shown later in Table V.] The
number of closed channels depend upon the scattering energy
of the incident electron.

In Fig. 10, we show the spin-averaged DCSs calculated
in the one-state R-matrix model at different energies. We
have compared our results with results of Lee et al. [10],
who used the iterative Schwinger variational method at the
static-exchange-polarization absorption level. At 2 eV, as
we approach forward angles, the DCSs rise abruptly due to
the dipolar nature of the SO molecule. Our results are in
reasonable agreement with the results of Lee et al. [10] for
angles up to 40◦, beyond which our results are slightly lower,
this is due to large correlation effects included in the CI model
in the present calculations. We notice similar trends at 4, 6, 8,
and 10 eV, which are shown in Fig. 10.

Besides this, the data on DCS are further used to calculate
the momentum-transfer cross section (MTCSs), which show
the importance of backward angle scattering. Since the DCSs
are not very sensitive to correlation effects for backward
scattering, we expect our MTCSs to be quite reliable in the
0.01–10 eV range. These are calculated in the one-state CI
model with spin averaging. MTCS provides a useful input in
solving the Boltzmann equation for the electron distribution
function. In contrast to the diverging nature of DCS in the
forward direction, MTCS shows no singularity due to the
weighting factor (1 − cos θ ), where θ is the scattering angle.
This factor vanishes as θ → 0. The MTCS is useful in the
study of electrons drifting through a molecular gas. When a
swarm of electrons travel through a molecular gas under the
influence of an electric field, several transport observables such
as diffusion coefficient D and mobility µ can be obtained if we
have a knowledge of the momentum-transfer cross sections. In
Fig. 11, we show the comparison of calculated MTCSs with
those of [10]. We observe that at high energy, they both seem
to be converging.

D. Effective collision frequency of electrons

The effective electron-neutral collision frequency 〈v〉 which
is averaged over a Maxwellian distribution can be obtained
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FIG. 10. Comparison of differential cross sections (DCSs) at 2, 4, 6, 8, and 10 eV. Dotted curve, Lee et al. [10]; solid curve, present result
(with spin-average) for one-state CI model at Re.

from the momentum-transfer cross section Q(m)(v) as follows
[34]:

〈v〉 = 8

3π1/2
N

(
me

2kTe

)5/2 ∫ ∞

0
v5Q(m)(v) exp

(−mev
2

2kTe

)
dv,

(7)

where me and Te are the electron mass and temperature,
respectively, k is Boltzmann’s constant, v is the velocity, and
N is the number density of the gas particles. The averaging is

over a Maxwellian speed distribution function for an electron
temperature Te which is given by

f (v) = 4πv2

(
me

2πkTe

)3/2

exp

(−mev
2

2kTe

)
. (8)

This type of collision frequency is often used to evaluate the
energy transfer between particles. Alternatively, the effective
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FIG. 11. Momentum-transfer cross sections (MTCSs) at different
energies. Dotted curve, Lee et al. [10]; solid curve, with spin average
of the SO molecule ground state at the one-state CI level.

collision frequency for electrons can be defined from the dc
conductivity as follows [34,35]:

v̄−1 = 8

3π1/2N

(
me

2kTe

)5/2 ∫ ∞

0

v3

Q(m)(v)
exp

(−mev
2

2kTe

)
dv.

(9)

This explicit form of effective collision frequency v̄ is related
to the drift velocity of electrons in a gas, insofar as a Maxwell
distribution can be assumed. When Q(m)(v) is proportional
to v−1, the two effective collision frequencies 〈v〉 and v̄

agree. Figure 12 shows both types of effective collision
frequencies as a function of electron temperature. Note that
〈v〉 lies higher than v̄ in the entire electron temperature
range.
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FIG. 12. Effective collision frequency as a function of electron
temperature. Dashed curve, v̄; solid curve, 〈v〉.

IV. CONCLUSIONS

This is a comprehensive ab initio study of electron
impact on the SO molecule using the UK molecular R-
matrix codes. Elastic (integrated and differential), momentum-
transfer, excitation, and ionization cross-section have been
presented. The results of the SCF, one-state CI, and 28-
state close-coupling approximation are presented. We de-
tect a stable bound state of SO− having the configuration
1σ 22σ 23σ 24σ 21π45σ 26σ 27σ 22π43π3 with a vertical elec-
tronic affinity value of 0.970 eV, which is in good agreement
with the estimated experimental value of about 1.125 eV. The
target states are represented by including correlations via a
configuration-interaction technique. Our target calculations
give reasonable agreement with the calculated vertical exci-
tation spectrum of Borin et al. [27]. The derived MTCS from
DCS and two types of effective collision frequencies have also
been presented that may be useful to the scientific community.
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