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Vibrational cross sections for positron scattering by nitrogen molecules
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We present a systematic study of low-energy positron collision with nitrogen molecules. Vibrational elastic
and excitation cross sections are calculated using the multichannel version of the continued fractions method in
the close-coupling scheme for the positron incident energy up to 20 eV. The interaction potential is treated within
the static-correlation-polarization approximation. The comparison of our calculated data with existing theoretical

and experimental results is encouraging.
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I. INTRODUCTION

The collision process of a charged particle with an atom
or molecule is a many-body problem. Quantum-mechanical
treatment of such a process consists in the resolution of the
time-independent Schrodinger equation of N + 1 particles,
which is in general very difficult. Therefore, the main goal
of theoretical efforts objectives new methodology that solves
this many-body equation in a most exact way as possible.
In this sense, positron-molecule scattering constitutes a very
interesting problem for such a purpose. Apparently, theoretical
treatment for the positron-molecule interaction seems to be
simpler than that for the electron, due to the distinguishability
between the projectile and the target particles. Consequently,
there is no need to account for the exchange effects in
the collision dynamics. On the other hand, it is known
that the static part (Vi) of the positron-molecule interaction
is repulsive whereas the correlation-polarization potential
(Vep) is predominantly attractive. Therefore, the scattering
parameters calculated using a static-polarization-correlation
(SPC) approach are very sensitive to the delicate balance
of the repulsive and attractive components of the interaction
potential [1], due to the cancellation of the two parts during
the computation. Small changes in V;;, may cause significant
variation in the calculated cross sections. Particularly if
the calculations are carried out using a model polarization
potential, the accuracy of the calculation would depend
directly on how realistic the proposed model can represent
the correlation-polarization interaction between the projectile
and the target. It is known that a complete description of the
positron-molecule interaction dynamics should also account
for the contributions due to the positron-annihilation and
the positronium-formation mechanisms. Even at very low
incident energies where the positronium-formation channel
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is closed, the contribution due to the virtual positronium
formation has still to be accounted for. In this sense, the V,
for positron-molecule scattering cannot be the same as that for
electrons. The construction of a model that can provide reliable
cross sections in a wide energy range for a variety of molecules
is still an open problem. Therefore, the comparison of the
theoretical scattering parameters with the measured values
would provide an estimate of the accuracy of the polarization
potential used [2—4].

The positron-molecule scattering calculations become even
more complicated when nuclear degrees of freedom are
also included into the scattering calculations. Especially in
the low-energy region where the projectile spends a longer
time with the target molecule, the coupling between the
electronic and rovibrational motions is relevant and must be
adequately treated. To tackle this situation, approaches with
different coupling schemes, namely, the adiabatic nuclei (AN)
model [5], the rotational laboratory-frame close-coupling
(LFCC) approximation [6-9], the body-frame vibrational
close-coupling (BFVCC) approximation [6-9], etc, can be
employed in such studies. However, the applicability of the
different theoretical methods depends on the energy of the
incident particle.

Recently, our group has started theoretical investigation
on low-energy positron-molecule collisions [3,4]. Within the
SPC framework, the continued fractions method (MCF) [10]
was applied to solve the fixed-nuclei scattering equations. The
comparison of our results with the existing experimental and
other calculated data is encouraging. Moreover, MCF was also
successfully applied in cross-section calculations for electron-
impact vibrational excitation of Hp [11,12].

In the present work, we extend the application of the MCF
to study the vibrational excitation of N, induced by low-energy
positron impact. The SCP approximation is used to represent
the dynamics of the interaction. State-to-state cross sections
for vibrational v = 0 — v’ = 0 — 4 transitions are reported in
the 0 — 10 eV range.
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To date, there are relatively few theoretical investigations
on vibrational excitation of molecules induced by positron
impact. Among them, positron-impact vibrational excitation
of H, is the most studied [2,13—15]. Particularly for N,
the only theoretical study reported in the literature is that of
Gianturco and Mukherjee [13]. In their work, cross sections
for vibrational excitations from the v = 0 — V' = 1,2,3,4 are
calculated using the BFVCC approximation in the incident-
energy range varying from the threshold to 8 eV. In addition,
some theoretical studies of elastic positron collisions with this
target were performed in past years using the Kohn variational
method [16] and the multichannel Schwinger variational
method (SMC) [1].

Experimentally, there is no cross-section data for positron-
impact vibrational excitation of Nj;. As far as we know,
there are some data of total cross sections (TCS) in absolute
scale [17-20] and also vibrationally unresolved relative elastic
differential cross sections (DCS) [21] available in the literature.
Therefore, the comparison of our calculated results and the
existing experimental and theoretical data may provide deeper
information on positron-N, scattering.

This article is organized as follows. In Sec. 2, we briefly
outline the theoretical method used; in Sec. 3, the calculated
results are presented and compared with those available in the
literature, and finally in Sec. 4, a short conclusion is presented.

II. THEORY

In our study, the dynamics of the interaction between the
incident positron and N, molecule is described using the
BFVCC approximation [22]. Within this formalism, the wave
function of the inelastically scattered positron is the solution
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of a set of vibrationally coupled scattering equations,

(V2 +K3)F, = Z Uy Fy (1)
V/

where F), is the positron scattered wave function, associated
with the vibrational state v of the target, ks is the magnitude
of linear momentum of the scattered positron, and U, is a
matrix element of the potential operator and is given by

Uy () = f / V(RY Yoo, R) Vi
X (?e,;,R)v(R)l/fo(7e,R) dR dﬂ. )

In the above equation, 7, represents collectively the position
vector of target electrons, 7 is the position vector of the
positron, R is the internuclear distance, v(R) and (7., R)
are the vibrational part and electronic part of the molecular
wave function, respectively, and
! + Z II—éZ—]_,l + ch(77R)’

J

|F; — 7] - —7
j

Vint(;:e»?vR) = - Z

3)

where 7 and R ; are position vectors of ith electron and jth
nucleon of the target, respectively. The R-dependent V., has
an asymptotic form,
1 [ap(R) =~ a(R)
Vool = =3 { 7+ Paleos(©)] 4)
at large r. In Eq. (4), g and «, are the R-dependent spherical
and nonspherical components of the dipole polarizability.

At small , the V¢, is predominantly the positron-electron
correlation. Its functional form is given as [23]

r

—% +(0.0511nr; — 0.08)Inr, + 1.14, 1, < 0.302,

—0.92305 — %0459

r

2 Vcor =

_ 1311, 28655 —0.6298,

(ry+2.5)? (rs+2.5)

where r, = [3mp(.,R)/4]'/? and p(7.,R) is the electronic
density.

The calculation starts with computation of ground-state
molecular wave functions at the Hartree-Fock (HF) level, for
15 internuclear distances (R) ranging from 1.8 to 3.0 a.u.
The basis functions used in the HF calculations are those
of Huzinaga [24]. For each R, an interaction potential
parametrically dependent on R,

U(F;R)=/1//0(7e,R)*Vim(7e,7,R)Iﬂo(fe,R)dFe, (6)

is calculated via integration over the coordinates of target elec-
trons. In the above integration, the R-dependent polarizabilities
used are those of Morrison and Saha [25]. In order to perform
the integration over R in Eq. (3), for each 7, the obtained
results from Eq. (6) are interpolated in a 1000-point R grid.

0.302 < ry < 0.56, (5)
0.56 < ry < 00,

The vibrational wave functions are obtained by solving the
equation,

d2
{d? +2ule, — S(R)]} V(R) =0, Q)

where u is the molecular reduced mass and e(R) is the potential
curve of the ground-state target. In our calculation, the
vibrational wave functions were calculated using the numerical
method of Cooley [26] from the Rydberg-Klein-Rees (RKR)
potential curve of the ground electronic state N, [27]. Finally,
the integration over R in Eq. (2) is carried out for each 7 using
a Gauss quadrature.

After the vibrational coupling potential operator U,/ (F) is
calculated, we can now solve the BFVCC equations, given
in Eq. (1). To do so, we first convert that equation [28]
into a matrix form of integral equations, whose elements are
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given as

\Ijvu’ = va’fsvv’ + GSV Z va” \Ijv”v’ (8)

Vv

where W, is the scattering positron wave function associated
with the v — v’ vibrational transition; §,, is the Kronecker
delta, S,, is the solution of the unperturbed Schrédinger
equation, and G° is the free-particle Green’s operator, both
associated with the vibrational state |v). The dimension of
this is the number of the vibrational states included in the
calculation. Five vibrational states are included in the present
study.

The BFVCC integral equations are solved using the
multichannel version of method of continued fractions
(MCF-MC) [11,12,29]. The application of MCF consists
in defining a weakened interaction potential, in nth order
as

ﬁ(n) — ﬁ(nfl) _ ﬁ(nfl)|§(;171)>(K(n71))71(Sv‘(nfl)lﬁ(nfl)’
)

and the nth order correction to the D matrix is defined through
the relation,

D™ = (=0 Fe-D 5Dy £ Zo[ A0 _ pe-Dy-1 o

(10
where
A — (50070 50y, (11)
and
§m = Gryn-hsenh, (12)

The scattering matrix element associated with the v — V'
vibrational transition, K,,, is related to the D,, element as
follows:

K,y =—D,,. (13)

The iterative procedure in the MCEF is interrupted when
the previously selected convergence criterium is achieved. In
the present study, the scattering matrix with their dominant
elements converged better than 0.1% are obtained within five
iterations. The converged scattering matrix represents the exact
solution of the BFVCC scattering equation.

Next, the transition 7-matrix element of the problem can
be obtained as

Ty = = (14)
(1 —iK vv’)

In this study, a j,-basis expansion [30] is used to calculate

DCS, as follows:

do kg 1
T 2 2 +1

. 12
’BIZ,M;((U - U/)ak()ak_f’r)‘ )
Jimgmy

15)

where ], =1 —1 is the momentum transfer during the col-
lision, the m, and m; are the projections of j, in the LF
and BF axes, respectively. The terms Brjr:,m’(v — V') are the
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f,-expansion coefficients of the scattering amplitude, given by

Bl (0= 5Q) =Y (= 1) @y (1Omy | jym,)

U'lm'm
X (ll/mm/|jtm;)Ylm,(Q/), (16)

and ayp,,,y are the partial-wave dynamics coefficients associ-
ated with the v — v’ vibrational transition and are related to
the partial-wave components of the matrix elements 7, via

all’mm’(v g 1),)

= —im[4m QU + D"k plm| T, lkol'm’).  (17)

Moreover, in order to compare our calculated results with
the vibrationally unresolved experimental and theoretical data
available in the literature, we define the vibrationally summed
(VS) DCS for the initial vibrational state v = 0, as

do . do(0 =)

Finally, the vibrational excitation integral cross section (ICS)
is given by

oV — V) = / d”(”d—g”/)m. (19)

III. RESULTS AND DISCUSSION

In Fig. 1, we present our results of VS DCS at positron inci-
dent energies of 5.25, 6.75, 10.0, and 20.0 eV, in comparison
with the vibrationally unresolved (VU) DCS calculated by de
Carvalho et al. [1] using the SMC and the experimental VU
DCS, in relative scale, of Przybyla et al. [21], normalized to
our data at the scattering angle of 60°. In general, our VS DCS
are in good qualitative agreement with the experimental data,
particularly for energies of 10.0 and 20.0 eV. Atlower energies,
although the main features in the experimental data such as the
minimum and maximum are reproduced by our calculation,
the position of these features in calculated data are shifted to
small scattering angles. This discrepancy may be attributed to
the accuracy of the model V., used in our calculation since the
disagreement is more pronounced at lower incident energies
where the influence of the correlation-polarization effects is
expected to be more relevant. Furthermore, the Vi component
in our calculation was calculated exactly. Comparison with
the calculated data of de Carvalho et al. [1] also show better
agreement at 10 eV. At lower incident energies, although
the first minimum appears at about the same position, their
data exhibit a second minimum located at about 90° which
is neither seen in our data nor in the experimental results.
The disagreement observed between the results obtained using
the two theoretical methods may reflect the different way of
treating the correlation-polarization effects. Nevertheless, both
methodologies were unable to reproduce the correct position of
the minimum and maximum features seen in the experimental
data. The fact that these two very different methodologies lead
to similar position of the first minimum is both interesting and
intriguing. More experimental investigations are certainly wel-
come to help clarify the discrepancies between the theoretical
and experimental data.
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FIG. 1. Elastic DCS for the e™-N, at (a) 5.25 €V, (b) 6.75 eV, (c) 10 eV, and (d) 20 eV. Solid line, present VS data using the MCF; dashed
line, VU data of [1] calculated using the SMC; solid circles, experimental VU DCS of [21] in relative scale, normalized to our data at the

scattering angle of 60°.

Moreover, the fact that our results do not show a second
minimum structure at about 90° as seen in de Carvalho et al. [1]
combined with the fact that our DCS are systematically larger
than theirs at low angles may indicate the lack of higher partial-
wave components in their calculations. In our methodology,
the convergence in partial-wave expansion is easily verified
by the inclusion of more terms, whereas in the SMC calcula-
tions, the inclusion of higher partial waves depends strongly
on the basis set used.

In Fig. 2, we show our VS ICS in comparison with the
VU theoretical results of de Carvalho et al. [1] and with the
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FIG. 2. Elastic ICS for e*-N, scattering. Solid line, present VS
data; dashed line, VU data of [1]; dotted line, vibrationally elastic
data of [13]; solid circles, experimental TCS of [17]; solid triangles,
experimental TCS of [19].

total cross sections (TCS) measured by Hoffmann [17] and
Sueoka [19]. The vibrational elastic (v =0 — v’ = 0) ICS
calculated by Gianturco and Mukherjee [13] were also shown
for comparison. Strictly speaking, the comparison with the
experimental data should be made only for incident energies
up to approximately 7.0 eV, in which only rovibrationally
elastic and inelastic scattering channels are open. Moreover,
the comparison of our VS results with the vibrationally elastic
data of Gianturco and Mukherjee [13] is meaningful due to
the fact that the contribution of this channel is dominant (more
than 95%). In general, our results agree qualitatively with
the experimental data. Particularly in the 3-8 eV range, a
quantitative agreement is also observed. In the same way, there
is an excellent agreement between our VS results and the
vibrational elastic ICS data of Gianturco and Mukherjee [13]
in the entire energy region which reinforces the fact that the
contributions due to the vibrational excitations to TCS are
negligible. Again, the difference seen between our results and
those calculated by de Carvalho et al. [1] using the SMC
is attributed to the distinct way of handling the correlation-
polarization effects. Apparently, the results of de Carvalho
et al. [1] agree better with the experimental data, particularly
at energies near the position of the minimum. Above 7.0 eV,
there is a rapid increase of the experimental TCS probably due
to the fact that the positronium formation channel becomes
energetically accessible.

In Fig. 3, we show the vibrationally elastic (VE ICS)
calculated for initial vibrational states v = 0,1,2,3, and 4. In
general, the VE ICS increases with increasing v. In fact, this
increase of the ICS can be roughly related to the size of the
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FIG. 3. Present vibrationally elastic ICS for the e*-N, scattering.
Solid line, for the v = 0 — v = 0 transition; dashed line, for the
v = 1 — v = 1 transition; short dashed line, forthev =2 — v =2
transition; dotted line, for the v = 3 — v = 3 transition; dash-dotted
line, for the v = 4 — v = 4 transition.

target of a different vibrational level. Here, we consider that
the molecular area of each vibrational level is proportional
to the square of its mean internuclear distance (R,), which is
taken as an average of the classical vibrational turning points
(Rmin and Ry.x). The dependence of the ICS on v can be
seen in Fig. 4 where a plot of the ratio between the ICS from
vibrational state v and that from v = 0, calculated at 0.1 eV
for Av = 0 and near the peak for Av = 1, versus (R,/Ry)?
is shown. A very good fitting of a linear function is seen.
Nevertheless, it is verified that the size dependence of the
ICS for N, is not sensitive in the sense that even for v =4
the increase of ICS is only 13%. This verification strongly
disagrees with that observed in similar studies for electron-H,
scattering [31,32]. In those investigations, it was verified
that the VE ICS are significantly dependent on the initial
vibrational state of the molecule. The low R, dependence
of the ICS observed here is probably due to the absence of
shape resonances in positron-N, scattering. It is well known
that the occurrence of shape resonances strongly enhances
the vibrational couplings [22,31,33]. This difference may
also be attributed partly to the lack of exchange effects in
positron-molecule interaction. As shown by Mazon et al. [12],

4.5
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FIG. 4. Ratio of the ICS from vibrational state v to that from
v = 0 versus [R,/Ry]?. Solid line with solid square shows results for
the Av = 0 vibrational transitions; dotted line with solid circle shows
results for the Av = 1 vibrational transitions.
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FIG. 5. ICS for vibrational excitation of N, induced by positron
impact. (a) Transitions with Av = 1: solid line, for the v =0 —
v = | excitation; dashed line, forthe v = 1 — v = 2 excitation; short
dashed line, for the v =2 — v = 3 excitation; dotted line, for the
v =3 — v = 4 excitation; dash-dotted line with solid circles, ICS
for the v =0 — v = 1 excitation from [13]. (b) Transitions with
Av = 2: solid line, for the v = 0 — v = 2 excitation; dashed line,
for the v = 1 — v = 3 excitation; short dashed line, for the v =
2 — v = 4 excitation; dash-dotted line with solid circles, ICS for the
v =0 — v = 2 excitation from [13].

exchange effects play a very important role in low-energy
electron-molecule interaction.

Finally, we present in Fig. 5 our calculated ICS for
Av =1 and Av = 2 vibrational transitions. The theoretical
data of Gianturco and Mukherjee [13] forv =0 — v = 1 and
v =0 — v = 2 excitations are also shown for comparison.
For the v =0 — v = 1 transition, there is a generally good
agreement between their ICS and our data. Nevertheless,
significant discrepancies are seen in the ICS for the v =0 —
v = 2 transition. The origin of this disagreement is not clear.
However, since the difference between the two calculations
increases with an increase in the quantum number of the
excited vibrational state, we suspect that the potential curves
used in the computation of vibrational wave functions might
be different.

Unlike what happens on the VE scattering, the vibrational
excitation ICS are highly dependent on the initial vibrational
state. Such dependence is also shown in Fig. 4, where a
plot of the ratio of the ICS from vibrational state v to that
from v = 0 versus (R, /Ry)* for vibrational excitations with
Av =1 is shown. Again, a very good fitting of a linear
function is obtained, but with the slope much larger than that
of VE scattering. The reasons behind this behavior change
are also not clear. A possible interpretation is as follows.
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For a vibrational transition to occur, a significant momentum
transfer from projectile to the target is required. Intuitively,
such a transfer would be more effective during a collinear
collision. Thus, backward scattering would contribute more
significantly to such processes. DCS at a large scattering
angle are strongly dependent on the contribution of low
partial-wave (small impact parameter) components. Therefore,
the low-order multipolar interactions between the projectile
and target are essential for such processes to happen. The fact
that the magnitude of the quadrupole moment of N, depends
strongly on the internuclear separation may partly explain the
R, dependence of the vibrational excitation cross sections.

In summary, this work presents a theoretical study on
positron-impact vibrational excitation in N, using the BFVCC
approach. Our calculated VS DCS agree qualitatively with the
existing experimental data for VU elastic et—N, collisions,
particularly at incident energy of 10 eV and above. The
shift of the minimum and maximum features is attributed
to the treatment of correlation-polarization effects. The ICS
for vibrational elastic scattering are weakly dependent on
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the initial vibrational state, in contrast to what is observed
for e”—H, collisions. The absence of shape resonances in
positron-molecule scattering may be the physical origin for this
behavior. On the other hand, the vibrational excitation cross
sections are highly R, dependent. The physical origin of this
dependence is not yet clear. A tentative explanation is given:
The sensitive variation of the magnitude of the quadrupole of
N, with bond length may be responsible for this dependence.

Moreover, the lack of experimental results of the vibrational
excitation of molecules by positron impact seriously limited
the discussion of the present study. Further experimental
investigation on this area is certainly welcome in order to better
understand the underlying physics involved in such processes.
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