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Theoretical oscillator strengths for spin-allowed electric-dipole transitions in Zn-like ions
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We have performed a relativistic many-body perturbation theory calculation up to second order to study
the transition amplitudes, Einstein A coefficients, and oscillator strengths for the spin-allowed electric-dipole
transitions in the Zn-like ions Zn, Ge2+, As3+, Kr6+, Nb11+, and Mo12+. All possible transitions among the first
13 levels of these ions have been studied. The total transition amplitudes obtained in different gauges are in
excellent agreement. The gauge dependences of the first and second order, and the total transition amplitudes are
derived. A theoretical justification for the small gauge dependence of the total transition amplitude is given. The
present calculations agree well with experiment for all ions except for the neutral Zn atom.
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I. INTRODUCTION

The calculation of oscillator strengths for transitions in
highly charged ions is one of the most fascinating problems
in atomic physics. Both correlation and relativistic effects
are important in highly charged ions. Reliable relativistic
atomic many-body calculations are required to determine the
oscillator strengths in highly charged ions. In this paper, we
present a systematic study of oscillator strengths for the spin-
allowed electric-dipole (E1) transitions in the Zn-like ions.
Many calculations have been carried out for oscillator strengths
in the Zn-like ions. Among others, several approaches are
relativistic random-phase approximation (RRPA) calculations
[1,2], first-order theory of oscillator strength (FOTOS) [3],
multiconfiguration Hartree-Fock (MCHF) calculations [4–7],
relativistic Hartree-Fock (HFR) calculations [8,9], semiem-
pirical model-potential (MP) methods [10], multiconfigura-
tion Dirac-Fock (MCDF) calculations [11–15], configuration
interaction (CI) calculations [13,16–20], multiconfiguration
relativistic random-phase approximation (MCRRPA) calcu-
lations [21–23], relativistic quantum defect orbital (RQDO)
calculations [24,25], and empirical prediction methods [26].
Many experiments have been performed to measure the
lifetimes of the Zn-like ions [27–35].

We have derived the second-order relativistic many-body
perturbation theory (RMBPT) formulas [36] for transition
amplitudes in atoms with two valence electrons. The RMBPT
provides an ab initio and systematic method for treating the
correlation effects in atoms. The contribution from higher-
order correlation corrections decrease rapidly as nuclear
charges increase; therefore, the RMBPT treatment of correl-
ation effects becomes essentially exact for highly charged ions.
The second-order RMBPT formulas have been applied to study
the spin-allowed E1 transitions in the Be-like ions [36–38]. The
transition amplitudes obtained in different gauges are in excel-
lent agreement. In addition, the RMBPT transition amplitudes
agree well with experiment for all ions except for the neutral
Be atom. In this paper, we perform RMBPT calculations up
to second order to calculate the transition amplitudes, Einstein
A coefficients and oscillator strengths for the spin-allowed E1
transitions in the Zn-like ions Zn, Ge2+, As3+, Kr6+, Nb11+,
and Mo12+. There are 16 spin-allowed E1 transitions among
the first 13 levels of the Zn-like ions. They are (4s2) 1S0 →

(4s4p) 1P o
1 , (4s4p) 3P o

1 → (4p2) 3P0, (4s4p) 1P o
1 →

(4p2) 1S0, (4s4p) 3P o
0 → (4p2) 3P1, (4s4p) 3P o

1 →
(4p2) 3P1, (4s4p) 3P o

2 → (4p2) 3P1, (4s4p) 1P o
1 →

(4p2) 1D2, (4s4p) 3P o
1 → (4p2) 3P2, (4s4p) 3P o

2 →
(4p2) 3P2, (4s4p) 3P o

0 → (4s4d) 3D1, (4s4p) 3P o
1 →

(4s4d) 3D1, (4s4p) 3P o
2 → (4s4d) 3D1, (4s4p) 3P o

1 →
(4s4d) 3D2, (4s4p) 3P o

2 → (4s4d) 3D2, (4s4p) 3P o
2 →

(4s4d) 3D3, and (4s4p) 1P o
1 → (4s4d) 1D2. In Sec. II, a short

description of the second-order RMBPT formulas is presented.
Results and discussion are given in Sec. III.

II. SECOND-ORDER RMBPT FORMULAS

The atomic systems satisfy the Schrödinger equation

H |�〉 = E|�〉, (2.1)

where H is the “no-pair” Hamiltonian given by

H = H0 + VI . (2.2)

In second-quantized form,

H0 =
∑

i

εia
†
i ai (2.3)

and

VI = 1

2

∑
ijkl

gijkla
†
i a

†
j alak −

∑
ij

Uij a
†
i aj . (2.4)

In Eq. (2.3), εi is the eigenvalue of the one-electron Dirac
equation

h(�r)ui(�r) = εiui(�r), (2.5)

where the Dirac Hamiltonian h(�r) is given by

h(�r) = c�α · �p + βc2 + Vnuc(r) + U (r). (2.6)

In Eq. (2.4), the sum is over positive-energy states only.
Atomic units (a.u.) are employed in this paper. The nuclear
Coulomb potential Vnuc(r) in general includes the effect of
the finite size of the nucleus. The model potential U (r)
accounts approximately for the effect of the electron-electron
interactions. In the present calculations, we choose U (r) to be
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the frozen-core Dirac-Fock potential. In Eq. (2.4), Uij is the
one-electron matrix element of U (r),

Uij =
∫

d3r u
†
i (�r)U (r)uj (�r), (2.7)

and gijkl is the Coulomb integral

gijkl =
∫

d3r d3r ′ 1

|�r − �r ′|u
†
i (�r)uk(�r)u†

j (�r ′)ul(�r ′). (2.8)

The Breit interaction is omitted in the present calculations
because it is not important for the spin-allowed E1 transitions.

We expand the exact wave function |�〉 and the exact energy
E in powers of VI :

E = E(0) + E(1) + · · · , (2.9)

|�〉 = |�(0)〉 + |�(1)〉 + · · · . (2.10)

Substitution of Eqs. (2.9) and (2.10) into (2.1) gives

(H0 − E(0))|�(0)〉 = 0 (2.11)

and

(H0 − E(0))|�(1)〉 = (E(1) − VI )|�(0)〉. (2.12)

We now specialize the discussion to atoms with two valence
electrons outside a closed core. The zeroth-order wave function
describing an atomic state with angular momentum JM may
be written as ∣∣�(0)

JM

〉 =
∑

(vw)∈P

Cvw

∣∣�(0)
vw

〉
, (2.13)

where Cvw and |�(0)
vw〉 are the configuration weight coefficients

and the configuration wave functions, respectively. The config-
uration weight coefficients are the eigenvectors of the effective
Hamiltonian Heff as defined by Eq. (2.17) in [36]. In the present
calculations, we are interested in the first-order and the second-
order transition amplitudes. It suffices to diagonalize the first-
order effective Hamiltonian as given by Eq. (2.24) in [36]. The
configurations included in the zeroth-order wave function span
the model space P . In the present calculations, we include all
possible configurations within the n = 4 complex in the model
space. Multiconfiguration wave functions are employed to
account for the valence-valence correlations within the n = 4
valence shell. The remaining valence-valence correlations, the
core-valence, and the core-core correlations are treated by
perturbation. It is possible in this way to take into account
strongly interacting configurations to all orders and treat the
weakly interacting ones by means of low-order perturbation.

The transition amplitude is the reduced matrix element of
the transition operator

T (ω) =
∑
ij

〈i| t(ω) |j 〉 a
†
i aj , (2.14)

where t(ω) is the transition operator for one electron and ω is
the photon energy. The photon energy can also be expanded in
powers of VI :

ω = ω(0) + δω(1) + · · · , (2.15)

where ω(0) is the zeroth-order photon energy, while δω(1) is the
first-order correction to the photon energy. Consequently, the

transition operator can be expanded in powers of VI :

T (ω) = T (0)(ω) + T (1)(ω) + · · · , (2.16)

where

T (0)(ω) = T (ω(0)) (2.17)

and

T (1)(ω) = δω(1) dT (ω(0))

dω
. (2.18)

The first-order transition amplitude is given by

〈F ||T (ω)||I 〉(1) = 〈
�

(0)
F

∣∣∣∣T (ω(0))
∣∣∣∣�(0)

I

〉
. (2.19)

The second-order transition amplitude is

〈F ||T (ω)||I 〉(2)

= 〈
�

(1)
F

∣∣∣∣T (ω(0))
∣∣∣∣�(0)

I

〉 + 〈
�

(0)
F

∣∣∣∣T (ω(0))
∣∣∣∣�(1)

I

〉
+ δω(1)

〈
�

(0)
F

∣∣∣∣dT (ω(0))

dω

∣∣∣∣�(0)
I

〉
, (2.20)

where the third term is the derivative term. The first-order
and the second-order transition amplitudes are then expressed
in terms of the radial orbital wave functions suitable for
numerical evaluations (see Appendix A). The second-order
transition amplitude contains four parts: the second-order
valence-valence correlation corrections, the second-order RPA
corrections, the derivative terms, and the Dirac-Fock terms.
The Dirac-Fock terms vanish if we choose the model potential
to be the frozen-core Dirac-Fock potential. The absorption
oscillator strength is given by

fFI = 6c2

ω [JI ]
|〈F ||T (ω)||I 〉|2, (2.21)

where [JI ] = 2JI + 1. In Eq. (2.21), I and F are the lower
and the upper levels, respectively. The Einstein A coefficient
for the emission process from F to I is given by

A = 2ω2

c3

[JI ]

[JF ]
fFI . (2.22)

III. RESULTS AND DISCUSSION

We have calculated the transition amplitudes, Einstein A
coefficients and oscillator strengths for all spin-allowed E1
transitions among the first 13 levels of the Zn-like ions
Zn, Ge2+, As3+, Kr6+, Nb11+, and Mo12+. Contributions to
the transition amplitudes of the transitions (4s4d) 3D1 →
(4s4p) 3P o

1 , (4s4d) 3D2 → (4s4p) 3P o
2 , and (4s4p) 1P o

1 →
(4s2) 1S0 are given in Table I. The first four rows give the
first-order transition amplitudes, the second-order valence-
valence corrections, the second-order RPA corrections, and the
second-order derivative terms corrections. The last row gives
the total transition amplitudes, which are the sums of all rows.
The transition amplitudes from the present calculations are
accurate to better than 0.1%. In the first-order calculation, we
performed a V (N−2) frozen-core Dirac-Fock calculation. Thus
the Dirac-Fock terms in the second-order transition amplitude
vanish. The derivative terms are seen to contribute substantially
to the length results, but have no contributions to the velocity
results. The first-order and the total transition amplitudes
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TABLE I. Contributions to the transition amplitudes (in a.u.) for the spin-allowed E1 transitions in Zn-like ions. Numbers in brackets denote
powers of 10. Here T1, Val2, RPA2, and δω(1) represent the first-order transition amplitudes, the second-order valence-valence corrections, the
second-order RPA corrections, and the second-order derivative terms corrections, respectively. L and V indicate the length and the velocity
results.

(4s4d) 3D1 → (4s4p) 3P o
1 (4s4d) 3D2 → (4s4p) 3P o

2 (4s4p) 1P o
1 → (4s2) 1S0

Ions L V L V L V

Zn T1 −1.045[−3] −1.140[−3] 1.040[−3] 1.135[−3] −1.637[−3] −2.167[−3]
Val2 −3.111[−5] 3.331[−4] 3.215[−5] −3.285[−4] −2.000[−4] 1.762[−4]

RPA2 3.365[−5] 1.683[−5] −3.298[−5] −1.653[−5] 1.294[−4] 1.055[−4]
δω(1) 2.599[−4] 0 −2.576[−4] 0 −2.107[−4] 0
Total −7.827[−4] −7.900[−4] 7.812[−4] 7.897[−4] −1.917[−3] −1.885[−3]

Ge2+ T1 −1.790[−3] −1.890[−3] 1.787[−3] 1.888[−3] 2.229[−3] 2.788[−3]
Val2 −6.500[−5] 1.327[−4] 6.596[−5] −1.282[−4] 1.127[−4] −1.040[−4]

RPA2 8.464[−5] 5.005[−5] −8.396[−5] −5.010[−5] −1.713[−4] −1.414[−4]
δω(1) 7.213[−5] 0 −6.886[−5] 0 3.925[−4] 0
Total −1.698[−3] −1.707[−3] 1.700[−3] 1.710[−3] 2.563[−3] 2.543[−3]

As3+ T1 2.050[−3] 2.155[−3] 2.036[−3] 2.143[−3] −2.451[−3] −3.010[−3]
Val2 6.559[−5] −8.143[−5] 6.601[−5] −7.692[−5] −1.152[−4] 6.392[−5]

RPA2 −1.022[−4] −6.499[−5] −1.006[−4] −6.471[−5] 1.812[−4] 1.498[−4]
δω(1) −2.325[−5] 0 −1.870[−5] 0 −4.252[−4] 0
Total 1.991[−3] 2.008[−3] 1.983[−3] 2.001[−3] −2.810[−3] −2.796[−3]

Kr6+ T1 −2.593[−3] −2.713[−3] −2.551[−3] −2.677[−3] −2.969[−3] −3.522[−3]
Val2 −8.881[−5] 2.064[−5] −8.705[−5] 7.964[−6] −8.499[−5] 4.628[−5]

RPA2 1.346[−4] 1.003[−4] 1.310[−4] 9.954[−5] 1.967[−4] 1.653[−4]
δω(1) −5.780[−5] 0 −6.621[−5] 0 −4.748[−4] 0
Total −2.605[−3] −2.592[−3] −2.573[−3] −2.570[−3] −3.332[−3] −3.310[−3]

Nb11+ T1 −3.107[−3] −3.244[−3] 3.010[−3] 3.166[−3] 3.602[−3] 4.143[−3]
Val2 −5.855[−5] −1.330[−5] 5.721[−5] 1.906[−5] 6.952[−5] −2.811[−6]

RPA2 1.547[−4] 1.352[−4] −1.477[−4] −1.340[−4] −2.059[−4] −1.801[−4]
δω(1) −1.090[−4] 0 1.293[−4] 0 5.019[−4] 0
Total −3.119[−3] −3.122[−3] 3.049[−3] 3.051[−3] 3.968[−3] 3.960[−3]

Mo12+ T1 −3.181[−3] −3.319[−3] 3.073[−3] 3.234[−3] −3.713[−3] −4.250[−3]
Val2 −5.669[−5] −1.884[−5] 5.520[−5] 2.458[−5] −6.704[−5] 2.546[−6]

RPA2 1.563[−4] 1.397[−4] −1.486[−4] −1.385[−4] 2.068[−4] 1.822[−4]
δω(1) −1.133[−4] 0 1.371[−4] 0 −5.027[−4] 0
Total −3.195[−3] −3.198[−3] 3.116[−3] 3.120[−3] −4.076[−3] −4.066[−3]

increase with the nuclear charge. However, the percentages of
the second-order corrections to the total transition amplitudes
decrease with nuclear charges. It is noticed that the RPA
corrections always reduce the transition amplitudes. A simple
physical interpretation can be given. The second-order RPA
correction to the transition amplitude is the product of the
zeroth-order photon energy and the matrix element of the
electromagnetic dipole potential. The RPA corrections account
for the core-shielding (CS) effects in atoms. The external field
induces an internal field inside the atom which shields the
external field. Therefore, the CS effects lead to an effective
potential that weakens the electromagnetic dipole potential
and reduces the dipole-moment matrix elements.

Significant differences are observed between the length
results and the velocity results of the first−order transition
amplitudes. In Appendix B, we study the gauge dependence of
the transition amplitude. The gauge dependence 〈F ||�T ||I 〉(1)

of the first−order transition amplitude is given by Eq. (B8).
Note that 〈F ||�T ||I 〉(1) is zeroth order in VI . It follows from
Eq. (B8) that the first-order transition amplitude is gauge

independent, provided we start from a local potential. The
gauge dependence of the first-order transition amplitudes from
the present calculations is due to the fact that we start from a
nonlocal frozen-core Dirac-Fock potential. It can be seen from
Table I that the gauge dependence 〈F ||�T ||I 〉(1) of the reso-
nance transition (4s4p) 1P o

1 → (4s2) 1S0 is greater than those
of other transitions. This may be due to the very strong inter-
action between the (4s2) and (4p2) configurations. It deserves
further investigations to gain deeper insights into the large
gauge dependence 〈F ||�T ||I 〉(1) of the resonance transition.

Significant differences are also observed between the length
results and the velocity results of the second-order transition
amplitudes. The gauge dependence 〈F ||�T ||I 〉(2) of the
second-order transition amplitude is given by Eq. (B13). The
first term in Eq. (B13) is zeroth order in VI , while other terms
are first order. In Appendix B, we show that the second-order
transition amplitude is gauge independent, provided one
starts from a local potential and artificially includes the
contributions from the negative-energy states. In summary,
the RMBPT calculations are gauge independent order by order
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for calculations starting from a local potential and including
the contributions from the negative-energy states. The gauge
dependence 〈F ||�T ||I 〉(2) in the present calculations is
a result of the nonlocality of the model potential and the
restriction to positive-energy states in the no-pair Hamiltonian.
Despite the significant gauge dependences 〈F ||�T ||I 〉(1)

and 〈F ||�T ||I 〉(2), Table I shows that the inclusion of the
second-order transition amplitudes brings the length results
and the velocity results into excellent agreement. A theoretical
justification goes as follows. The gauge dependence
〈F ||�T ||I 〉(1)+(2) of the total transition amplitude, which
is the sum of 〈F ||�T ||I 〉(1) and 〈F ||�T ||I 〉(2), is given by
Eq. (B14). An inspection of Eqs. (B8) and (B13) shows that
the zeroth-order term of 〈F ||�T ||I 〉(2) compensates exactly
for 〈F ||�T ||I 〉(1). Consequently, the gauge dependence
〈F ||�T ||I 〉(1)+(2) of the total transition amplitude is first
order in VI . This is the reason why the inclusion of the
second-order correction substantially reduces the gauge
dependence of the transition amplitude. In Appendix B, we
show that the total transition amplitude is gauge independent,

provided we start from a local potential and artificially
include the contributions from the negative-energy states.
The remaining gauge dependence 〈F ||�T ||I 〉(1)+(2) in the
present calculations is a result of the nonlocality of the model
potential and the restriction to positive-energy states in the
no-pair Hamiltonian. It is stressed that the gauge dependence
〈F ||�T ||I 〉(1)+(2) of the total transition amplitude is only
related to the nonlocality of the model potential and the
restriction to positive-energy states. It is not related to the
correlations beyond second order. Therefore, there is no
possibility that the small gauge dependence 〈F ||�T ||I 〉(1)+(2)

comes from a fortuitous almost cancellation between the
contributions from the negative-energy states and those from
the correlations beyond second order. The contributions of
the negative-energy states to the transition amplitudes of the
Zn-like ions deserves further investigations.

The Einstein A coefficients for the resonance transition
in the Zn-like ions are presented in Table II. The length
results are tabulated. The Einstein A coefficients from the
present calculations are accurate to better than 1%. The present

TABLE II. The Einstein A coefficients (109 s−1)for the resonance transition (4s4p) 1P o
1 → (4s2) 1S0 in the Zn-like ions. The length results

are tabulated.

Method Zn Ge2+ As3+ Kr6+ Nb11+ Mo12+

Present 0.946 3.31 4.85 10.4 23.6 26.8
RRPAa 26.3
FOTOSb 29.9
MCHFc 0.758 3.27 4.76 10.4 27.3
HFRd 25.4 28.9
HFRe 12.0 30.0
Semiempirical MPf 0.765 23.5 28.5
CIg 8.462 17.36 19.36
MCDFh 0.7599 3.171 4.636 10.1 22.8 26.0
MCRRPAi 3.411 4.943 10.5 23.5 26.7
Empirical predictionj 3.30 4.69 9.80 21.9 25.0
Expt. 0.73 ± 0.02q 3.4 ± 0.4k 4.3 ± 0.6k 9.9 ± 1.0n 16 ± 1o

0.71 ± 0.02r 2.7 ± 0.1m 3.8 ± 0.7l 25 ± 3p

0.69 ± 0.07s

0.70 ± 0.07t

aReference [1].
bReference [3].
cReference [4].
dReference [8].
eReference [9].
fReference [10].
gReference [18].
hReference [15].
iReference [23].
jReference [26] (semiempirical parametrizations).
kReference [27].
lReference [28].
mReference [29].
nReference [30].
oReference [31] (ANDC analysis).
pReference [31] (simulation analysis).
qReference [32].
rReference [33].
sReference [34].
tReference [35].
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results agree well with the MCHF [4], MCDF [15], and
MCRRPA [23] calculations for all ions except for the neutral
Zn atom. In particular, the present results are in excellent
agreement with the MCRRPA calculations for highly charged
ions Kr6+, Nb11+, and Mo12+. This is as expected because
the MCRRPA calculations include the valence-valence and
the RPA corrections as well. The A coefficients from the
present calculations are much larger than those from the CI
calculations [18], but are much smaller than those from the
HFR calculations [8,9]. For Ge2+ and As3+, all available
calculations agree with the experimental results in [27] within
the experimental error bars, but disagree with those in [28,29].
For Kr6+, all calculations except for the HFR [9] and the
CI [18] calculations agree well with experiment [30]. For
Nb11+, all calculations except for the CI [18] calculations are in
close agreement with the experimental result from simulation
analysis [31], but disagree with that from the arbitrarily
normalized decay curve (ANDC) analysis. The CI calculations
disagree with the experimental results from both analyses. A
discrepancy is observed between the present calculations and
experiment for the A coefficient of the Zn atom. This is due
to the omission of the correlations beyond second order in
the present calculations. The comparison of the present results
with experiment is shown in Fig. 1.

The oscillator strengths for other transitions in the Zn-like
ions are presented in Table III. The oscillator strengths from
the present calculations are accurate to better than 1%. The
present results agree well with the CI calculations [17], and

FIG. 1. Plot of the A coefficients from experiment and present
calculations for the resonance transition (4s4p) 1P o

1 → (4s2) 1S0 in
the Zn-like ions. The data are given in Table II.

are in reasonable agreement with the HFR calculations [8]
except for the transition (4s4p) 3P o

0 → (4p4d) 3D1 in Nb11+
and Mo12+. In addition, the present results are in excellent
agreement with the MCHF calculations [5] for the transition
(4s4p) 1P o

1 → (4s4d) 1D2 in Kr6+ and Mo12+. However,
significant differences exist between the present results and
the MCHF calculations for the transition (4s4p) 1P o

1 → (4p2)

TABLE III. The oscillator strengths for the spin-allowed E1 transitions in Zn-like ions. The length results are tabulated. Numbers in brackets
denote powers of 10. I, the present calculations; II, other theories.

Ge2+ As3+ Kr6+ Nb11+ Mo12+

Transitions I II I II I II I II I II

(4s4p) 3P o
1 → (4p2) 3P0 1.86[−1] 1.86[−1] 1.73[−1] 1.65[−1]e 1.52[−1] 1.66[−1]c 1.48[−1] 1.62[−1]c

(4s4p) 1P o
1 → (4p2) 1S0 2.15[−1] 1.98[−1] 1.81[−1]e 1.74[−1] 1.90[−1]c 1.70[−1] 1.81[−1]a

2.26[−1]d 1.85[−1]c

(4s4p) 3P o
0 → (4p2) 3P1 5.77[−1] 5.77[−1] 5.49[−1] 5.19[−1]e 5.05[−1] 5.52[−1]c 4.97[−1] 5.42[−1]c

(4s4p) 3P o
1 → (4p2) 3P1 1.42[−1] 1.42[−1] 1.34[−1] 1.27[−1]e 1.20[−1] 1.31[−1]c 1.18[−1] 1.28[−1]c

(4s4p) 3P o
2 → (4p2) 3P1 1.37[−1] 1.36[−1] 1.27[−1] 1.22[−1]e 1.12[−1] 1.24[−1]c 1.09[−1] 1.20[−1]c

(4s4p) 1P o
1 → (4p2) 1D2 1.28[−1] 2.40[−1]b 1.35[−1] 1.68[−1]c 1.35[−1] 2.15[−1]b

5.00[−3]d 1.66[−1]c

3.16[−1]d

(4s4p) 3P o
1 → (4p2) 3P2 2.41[−1] 2.31[−1] 1.69[−1] 1.14[−1] 1.08[−1]c 1.08[−1] 1.03[−1]c

(4s4p) 3P o
2 → (4p2) 3P2 4.18[−1] 4.06[−1] 3.17[−1] 2.50[−1] 2.58[−1]c 2.44[−1] 2.54[−1]c

(4s4p) 3P o
0 → (4s4d) 3D1 9.36[−1] 9.72[−1] 9.79[−1] 8.53[−1] 9.51[−1]c 8.31[−1] 9.25[−1]c

(4s4p) 3P o
1 → (4s4d) 3D1 2.37[−1] 2.44[−1] 2.43[−1] 2.07[−1] 2.28[−1]c 2.01[−1] 2.21[−1]c

(4s4p) 3P o
2 → (4s4d) 3D1 9.74[−3] 9.93[−3] 9.74[−3] 8.22[−3] 8.89[−3]c 7.96[−3] 8.59[−3]c

(4s4p) 3P o
1 → (4s4d) 3D2 7.02[−1] 7.26[−1] 7.30[−1] 6.30[−1] 6.98[−1]c 6.13[−1] 6.77[−1]c

(4s4p) 3P o
2 → (4s4d) 3D2 1.45[−1] 1.48[−1] 1.46[−1] 1.24[−1] 1.35[−1]c 1.21[−1] 1.30[−1]c

(4s4p) 3P o
2 → (4s4d) 3D3 7.95[−1] 8.20[−1] 8.20[−1] 6.95[−1] 7.53[−1]c 6.74[−1] 7.28[−1]c

(4s4p) 1P o
1 → (4s4d) 1D2 1.60 1.59b 1.33 1.41c 1.29 1.26b

1.94d 1.36c

1.38d

aReference [3] (FOTOS).
bReference [5] (MCHF).
cReference [8] (HFR).
dReference [10] (semiempirical MP).
eReference [17] (CI).
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FIG. 2. Plot of the oscillator strengths for the spin-allowed E1
transitions (4s2) 1S0 → (4s4p) 1P o

1 , (4s4p) 1P o
1 → (4s4d) 1D2,

(4s4p) 3P o
0 → (4s4d) 3D1, and (4s4p) 3P o

0 → (4p2) 3P1 in the
Zn-like ions.

1D2 in Kr6+ and Mo12+. The oscillator strengths as functions of
nuclear charges Z are shown in Figs. 2–5. The Z dependences
of the oscillator strengths are smooth.

In summary, we perform the RMBPT calculations up to
second order to calculate the transition amplitudes, Einstein
A coefficients and oscillator strengths for the spin-allowed
E1 transitions in the Zn-like ions Zn, Ge2+, As3+, Kr6+,
Nb11+, and Mo12+. All possible transitions among the first
13 levels of these ions have been studied. The results
obtained in different gauges are in excellent agreement. The
remaining gauge dependence is due to the nonlocal potential
and the exclusion of the negative-energy states. The present
calculations agree well with experiment for all ions except for
the neutral Zn atom. The accuracy of the present calculations
is expected to increase at higher nuclear charges because of

FIG. 3. Plot of the oscillator strengths for the spin-allowed
E1 transitions (4s4p) 3P o

1 → (4s4d) 3D2, (4s4p) 3P o
1 →

(4s4d) 3D1, (4s4p) 3P o
1 → (4p2) 3P2, (4s4p) 3P o

1 → (4p2) 3P0, and
(4s4p) 3P o

1 → (4p2) 3P1 in the Zn-like ions.

FIG. 4. Plot of the oscillator strengths for the spin-allowed E1
transitions (4s4p) 1P o

1 → (4p2) 1S0 and (4s4p) 1P o
1 → (4p2) 1D2 in

the Zn-like ions.

the rapid rate of convergence of RMBPT. The discrepancies
between experiment and the present calculations are a matter
of concern. Further investigations are certainly required to
understand fully, and remove, the remaining discrepancies.

APPENDIX A: ANGULAR REDUCTION OF THE
RMBPT FORMULAS

The Dirac orbital takes the form

uα(�r) = 1

r

(
ignακα


καmα

fnακα

−καmα

)
. (A1)

We introduce the two-component radial function

uα ≡ uα(r) ≡
(

gnακα

fnακα

)
. (A2)

FIG. 5. Plot of the oscillator strengths for the spin-allowed E1
transitions (4s4p) 3P o

2 → (4s4d) 3D3, (4s4p) 3P o
2 → (4p2) 3P2,

(4s4p) 3P o
2 → (4s4d) 3D2, and (4s4p) 3P o

2 → (4p2) 3P1 in the
Zn-like ions.
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The first-order transition amplitude is given by

〈F ||T (ω)||I 〉(1)

= −[JI ]1/2[JF ]1/2
∑

(vw)∈PI
(v′w′ )∈PF

ηv′w′ηvwCv′w′Cvw

×
(

(−1)JF +jv+jw

{
JF JI 1
jw jw′ jv

}
〈w′||t ||w〉δvv′

+ (−1)JI +JF +1

{
JF JI 1
jv jw′ jw

}
〈w′||t ||v〉δwv′

+ (−1)jv′ +jw

{
JF JI 1
jw jv′ jv

}
〈v′||t ||w〉δvw′

+ (−1)JI +jv′+jw′
{
JF JI 1
jv jv′ jw

}
〈v′||t ||v〉δww′

)
, (A3)

where

ηvw =
{

1 for v �= w,

1/
√

2 for v = w.
(A4)

The second-order transition amplitude is given by

〈F ||T (ω)||I 〉(2) = [JI ]1/2[JF ]1/2
∑

(vw)∈PI
(v′w′)∈PF

ηv′w′ηvwCv′w′Cvw

[
(−1)JI +JF +1

∑
(iv′)/∈PI

{
JF JI 1
ji jw′ jv′

} 〈w′||t ||i〉
εiv′ − εvw

YJI
(i v′vw)

+ (−1)JI +JF +1
∑

(iw)/∈PF

{
JF JI 1
jv ji jw

} 〈i||t ||v〉
εiw − εv′w′

YJF
(v′w′wi)

+ δvv′ (−1)jv′+jw′+JF
1

3

{
JF JI 1
jw jw′ jv

}
×

(∑
mb

〈m||t ||b〉Z1(wmw′b)

εbw′ − εmw

+
∑
mb

Z1(wbw′m)〈b||t ||m〉
εbw − εmw′

)

+ δwv′ (−1)jv+jw′+JI +JF
1

3

{
JF JI 1
jv jw′ jw

}(∑
mb

〈m||t ||b〉Z1(vmw′b)

εbw′ − εmv

+
∑
mb

Z1(vbw′m)〈b||t ||m〉
εbv − εmw′

)

+ δvv′ (−1)jv+jw+JF +1

{
JF JI 1
jw jw′ jv

} ⎛
⎝∑

i �=w′
δκiκw′

�w′i〈i||t ||w〉
εw′ − εi

+
∑
i �=w

δκiκw

〈w′||t ||i〉�iw

εw − εi

⎞
⎠

+ δwv′ (−1)JI +JF +2

{
JF JI 1
jv jw′ jw

}⎛
⎝∑

i �=w′
δκiκw′

�w′i〈i||t ||v〉
εw′ − εi

+
∑
i �=v

δκiκv

〈w′||t ||i〉�iv

εv − εi

⎞
⎠

+ δω(1)

(
δvv′ (−1)jv+jw+JF +1

{
JF JI 1

jw jw′ jv

}
〈w′|| dt

dω
||w〉 + δwv′(−1)JI +JF +2

{
JF JI 1

jv jw′ jw

}
〈w′|| dt

dω
||v〉

)

+ (−1)jv+jw+jv′+jw′ +JI +JF (1 ↔ 2)

]
, (A5)

where εvw = εv + εw. Here

YJ (abcd) =
∑

k

(−1)jb+jc+k+J

{
ja jb J

jd jc k

}
Xk(abcd)

(A6)

+
∑

k

(−1)jb+jc+k

{
ja jb J

jc jd k

}
Xk(abdc)

(A7)

and

Zk(abcd) = Xk(abcd) +
∑
k′

[k]

{
ja jc k

jb jd k′

}
Xk′(abdc)

(A8)

with

Xk(abcd) = (−1)k〈a||Ck||c〉〈b||Ck||d〉Rk(abcd). (A9)

The quantities Ck are normalized spherical harmonics and
Rk(abcd) are Slater integrals. In Eq. (A5), the notation (1 ↔
2) denotes all preceding terms inside the same brackets with
the subscripts 1 and 2 interchanged. It is understood that the
indices v and v′ in the δ function should be interchanged with
w and w′, respectively. The first two terms in Eq. (A5) lead
to the second-order valence-valence correlation corrections,
while the next four terms represent the second-order RPA
corrections. The use of frozen-core Dirac-Fock potential leads
to a major simplification for Eq. (A5). The �ij terms vanish
for the forzen-core Dirac-Fock case.

APPENDIX B: GAUGE TRANSFORMATION AND
TRANSITION AMPLITUDE

It is convenient to introduce an operator representing the
difference between the transition operators in the length and

032518-7
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the velocity gauges,

�T = Tl − Tv. (B1)

The operator �T can be written as

�T = i

ec

√
2π

3
�H, (B2)

where

�H =
∑
ij

〈i| �hI |j 〉 a
†
i aj . (B3)

In Eq. (B3), hI is the interaction Hamiltonian for one electron,
and �hI is the change of hI under the gauge transformation.
It is straightforward to show that

�hI = − ie

h̄
([h,χ ] − [Uexc,χ ] − h̄ωχ ), (B4)

where χ is the gauge function and Uexc is the exchange
(nonlocal) part of the model potential. With the aid of Eq. (B4),
Eq. (B3) can be expressed as

�H = − ie

h̄
([H0,X] − h̄ωX − [Uexc,X]), (B5)

where

X =
∑
ij

〈i| χ |j 〉 a
†
i aj (B6)

and

Uexc =
∑
ij

〈i| Uexc |j 〉 a
†
i aj . (B7)

The gauge dependence, i.e., the change of the first-
order transition amplitude under the gauge transformation, is
given by

〈F ||�T ||I 〉(1) = 〈
�

(0)
F

∣∣∣∣�T (ω(0))
∣∣∣∣�(0)

I

〉
= i

ec

√
2π

3

〈
�

(0)
F

∣∣∣∣�H (ω(0))
∣∣∣∣�(0)

I

〉
= 1

h̄c

√
2π

3

〈
�

(0)
F

∣∣∣∣[H0,X] − h̄ω(0)X

− [Uexc,X]
∣∣∣∣�(0)

I

〉
= 1

h̄c

√
2π

3

〈
�

(0)
F

∣∣∣∣(E(0)
F − E

(0)
I − h̄ω(0)

)
X

− [Uexc,X]
∣∣∣∣�(0)

I

〉
= − 1

h̄c

√
2π

3

〈
�

(0)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(0)

I

〉
. (B8)

Note that 〈F ||�T ||I 〉(1) is zeroth order in VI . It follows from
Eq. (B8) that the first-order transition amplitude is gauge
independent, provided we start from a local potential.

The gauge dependence of the second-order transition
amplitude is given by

〈F ||�T ||I 〉(2)

= 〈
�

(0)
F

∣∣∣∣�T (ω(0))
∣∣∣∣�(1)

I

〉 + 〈
�

(1)
F

∣∣∣∣�T (ω(0))
∣∣∣∣�(0)

I

〉
+ δω(1)

〈
�

(0)
F

∣∣∣∣d�T (ω(0))

dω

∣∣∣∣�(0)
I

〉
. (B9)

With the aid of Eqs. (2.12), (B2), and (B5), the first term in
(B9) can be rewritten as〈

�
(0)
F

∣∣∣∣�T (ω(0))
∣∣∣∣�(1)

I

〉
= 1

h̄c

√
2π

3

〈
�

(0)
F

∣∣∣∣[H0,X] − h̄ω(0)X − [Uexc,X]
∣∣∣∣�(1)

I

〉
= 1

h̄c

√
2π

3

{(
E

(0)
F − E

(0)
I − h̄ω(0)

)〈
�

(0)
F

∣∣∣∣X∣∣∣∣�(1)
I

〉
− 〈

�
(0)
F

∣∣∣∣X(
E

(1)
I − VI

)∣∣∣∣�(0)
I

〉 − 〈
�

(0)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(1)

I

〉}
= − 1

h̄c

√
2π

3

{〈
�

(0)
F

∣∣∣∣X(
E

(1)
I − VI

)∣∣∣∣�(0)
I

〉
+ 〈

�
(0)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(1)

I

〉}
. (B10)

The second term in Eq. (B9) can be expressed as〈
�

(1)
F

∣∣∣∣�T (ω(0))
∣∣∣∣�(0)

I

〉
= 1

h̄c

√
2π

3

〈
�

(1)
F

∣∣∣∣[H0,X] − h̄ω(0)X − [Uexc,X]
∣∣∣∣�(0)

I

〉
= 1

h̄c

√
2π

3

{(
E

(0)
F − E

(0)
I − h̄ω(0)

)〈
�

(1)
F

∣∣∣∣X∣∣∣∣�(0)
I

〉
+ 〈

�
(0)
F

∣∣∣∣(E(1)
F − VI

)
X

∣∣∣∣�(0)
I

〉 − 〈
�

(1)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(0)

I

〉}
= 1

h̄c

√
2π

3

{〈
�

(0)
F

∣∣∣∣(E(1)
F − VI

)
X

∣∣∣∣�(0)
I

〉
− 〈

�
(1)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(0)

I

〉}
. (B11)

The third term in Eq. (B9) can be expressed as

δω(1)
〈
�

(0)
F

∣∣∣∣d�T (ω(0))

dω

∣∣∣∣�(0)
I

〉
= 1

h̄c

√
2π

3
δω(1)

〈
�

(0)
F

∣∣∣∣[H0,
dX

dω

]
− h̄ω(0) dX

dω

− h̄X −
[
Uexc,

dX

dω

]∣∣∣∣�(0)
I

〉

= 1

h̄c

√
2π

3
δω(1)

{(
E

(0)
F − E

(0)
I − h̄ω(0)

)〈
�

(0)
F

∣∣∣∣dX

dω

∣∣∣∣�(0)
I

〉
− h̄

〈
�

(0)
F

∣∣∣∣X∣∣∣∣�(0)
I

〉 − 〈
�

(0)
F

∣∣∣∣[Uexc,
dX

dω

]∣∣∣∣�(0)
I

〉}

= − 1

h̄c

√
2π

3
δω(1)

{
h̄
〈
�

(0)
F

∣∣∣∣X∣∣∣∣�(0)
I

〉
+ 〈

�
(0)
F

∣∣∣∣[Uexc,
dX

dω

]∣∣∣∣�(0)
I

〉}
. (B12)

The sum of Eqs. (B10), (B11), and (B12) is

〈F ||�T ||I 〉(2)

= 1

h̄c

√
2π

3

{(
E

(1)
F − E

(1)
I − h̄δω(1)

)〈
�

(0)
F

∣∣∣∣X∣∣∣∣�(0)
I

〉
+ 〈

�
(0)
F

∣∣∣∣[X,VI ]
∣∣∣∣�(0)

I

〉 − 〈
�

(0)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(1)

I

〉
− 〈

�
(1)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(0)

I

〉 − δω(1)
〈
�

(0)
F

∣∣∣∣
×

[
Uexc,

dX

dω

]∣∣∣∣�(0)
I

〉}
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= 1

h̄c

√
2π

3

{
−〈

�
(0)
F

∣∣∣∣[X,Uexc]
∣∣∣∣�(0)

I

〉
+ 〈

�
(0)
F

∣∣∣∣[X,VI+Uexc]
∣∣∣∣�(0)

I

〉 − 〈
�

(0)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(1)

I

〉
− 〈

�
(1)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(0)

I

〉 − δω(1)
〈
�

(0)
F

∣∣∣∣
×

[
Uexc,

dX

dω

] ∣∣∣∣�(0)
I

〉}
. (B13)

In Eq. (B13), the first term is zeroth order in VI , while other
terms are first order. It has been shown [39] that the commutator
[X,VI+Uexc] vanishes, provided one artificially includes the
contributions from the negative-energy states. Therefore, the
second-order transition amplitude is gauge independent, pro-
vided one starts from a local potential and artificially includes
the contributions from the negative-energy states. In summary,
the RMBPT calculations are gauge independent order by order
for calculations starting from a local potential and including
the contributions from the negative-energy states.

The gauge dependence of the total transition amplitude is
given by the sum of Eqs. (B8) and (B13):

〈F ||�T ||I 〉(1)+(2)

= 1

h̄c

√
2π

3

{〈
�

(0)
F

∣∣∣∣[X,VI+Uexc]
∣∣∣∣�(0)

I

〉
− 〈

�
(0)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(1)

I

〉 − 〈
�

(1)
F

∣∣∣∣[Uexc,X]
∣∣∣∣�(0)

I

〉
− δω(1)

〈
�

(0)
F

∣∣∣∣ [Uexc,
dX

dω

] ∣∣∣∣�(0)
I

〉}
. (B14)

In arriving at Eq. (B14), the first term in Eq. (B13) compensates
exactly for the gauge dependence 〈F ||�T ||I 〉(1) in Eq. (B8).
Consequently, the gauge dependence 〈F ||�T ||I 〉(1)+(2) of
the total transition amplitude is first order in VI . As a
result, the inclusion of the second-order correction sub-
stantially reduces the gauge dependence of the transition
amplitude.
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