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Fermionic Casimir energy in a three-dimensional box
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In this paper we calculate the Casimir energy for a massless fermionic field confined inside a three-dimensional
rectangular box. We use the MIT bag model boundary condition for the confinement. We use the direct mode
summation method along with the Abel-Plana summation formula to compute the Casimir energy, without any
use of regularization or analytic continuation techniques. We obtain a negative Casimir energy, as opposed to the
previously reported result for the interior of a three-dimensional sphere.
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I. INTRODUCTION

Casimir effects, first discovered in 1948 [1], are mani-
festations of the zero-point energies of the quantum fields
and have played an important role in a variety of fields of
physics. Casimir energy is defined as the difference between
the vacuum energies in the presence and the absence of any
external boundary conditions or background fields. Both of
these energies are in general infinite. However, the difference
between the two has almost invariably been calculated to be
finite. The external boundary conditions could be produced for
example by the presence of material plates. To calculate the
Casimir energy one usually needs to utilize various regular-
ization or analytic continuation schemes. Casimir effects have
been calculated for a variety of fields, geometries, number of
spatial dimensions, and boundary conditions [2–4].

The first experimental attempt to verify the existence
of the Casimir effect for two parallel metallic plates was
made by Sparnaay [5] ten years after Casimir’s theoretical
prediction. Four decades passed until new experiments were
made with high-conductivity metallic plates. In 1997, using
a torsion pendulum, Lamoreaux [6] initiated a new era of
experiments concerning Casimir effects. He measured the
Casimir force between a plate and a spherical lens [7]. One
year later, using an atomic force microscope, Mohideen and
Roy [8] measured the Casimir force between a plate and a
sphere with a better accuracy and established an agreement
between experimental data and theoretical predictions. These
two precision experiments have been followed by many others.
Most of the theoretical investigations in relation with Casimir
effects are for various fields, geometries, boundary conditions,
and different dimensions. The Casimir energy for scalar
fields confined by different boundaries has been calculated
in many studies. We have sorted some of them according
to their geometries: between two large perfectly conducting
parallel plates [9], inside cylindrical boundaries [10,11], in a
spherical geometry [12–14], for a rectangular cavity [15,16],
and in higher-dimensional spaces between two parallel plates
[17,18]. Some of the studies containing the calculations of
the Casimir energy for the electromagnetic field in different
geometries are between two parallel plates [19], between two
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eccentric cylinders [20], in a rectangular waveguide [21],
for an infinite cylinder [22], on a dielectric cylinder [23],
in rectangular cavities [24,25], for a solid ball [22,26], for
a sphere [3,4,27–34], and for a D-dimensional sphere [35].
Nowadays it is well known that the zero-point energies
of configurations depend on the nature of the particular
quantum field (i.e., scalar, spinor, etc.), the type of space-time
geometry and its dimensionality, and the specific boundary
condition imposed on the quantum field on the surfaces.
These factors cause a rather complex pattern and could
even lead to a switching between attractive and repulsive
forces [36,37].

Now we concentrate on the Casimir energy for the Dirac
fields to lowest order in perturbation theory. In 1975 Johnson
evaluated the Casimir energy per unit area for a massless
fermionic field, subject to the MIT bag model boundary
condition, between two parallel plates [38] and Mamayev and
Trunov were the first ones who computed the Casimir energy
for a massive fermionic field [39]. In this regard more studies
have been done, of which we mention just some of them:
calculating the Casimir energy for fermions in one dimension
[40,41], between two parallel plates using various methods
in three-dimensional space [3,4,38,41–45] and in (d + 1)-
dimensional space-time [46], and for a spherical geometry
for a massive fermionic field [47] and a massless fermionic
field [3,4]. The perturbation of the vacuum energy of a
massless fermionic field in the presence of a three-dimensional
box with antiperiodic boundary condition has been evaluated
in [43].

It is worth mentioning that in the phenomenological studies
of hadrons, bag models have played an important role. The
simplest such model is the MIT bag model. In such models
“the bag constant” is an input parameter to the theory. As is
well known, “the bag constant,” B, is added to the Lagrangian
density in order to balance the outward pressure of the quarks
by the inward vacuum pressure B on the surface of the bag.
There have been several studies relating this constant to the
Casimir energy (e.g., in [4,48]). Hence the study of the Casimir
energy for fermions in closed geometries could have direct
phenomenological implications. However, the bag constant—
in hadron physics—is even more so influenced by the presence
of the gauge fields (the gluons); see, for example, [49]. The bag
model is only compatible with the large-Nc expansion of QCD
under this premise. In this paper we present the calculation
of Casimir energy for a massless fermionic field in a three-
dimensional cube with the MIT bag model boundary condition
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imposed on each side, which guaranties complete confinement
of the fermionic field inside the box. In Sec. II we present the
solution to the Dirac equation subject to the MIT bag model
boundary condition on all of the surfaces. Then we compute
the Casimir energy by performing a direct sum over all modes
of the field using the Abel-Plana summation formula. As we
shall show, there will be no need for any analytic continuation
techniques in this case.

II. THE DIRAC FIELD CONFINED IN A
THREE-DIMENSIONAL CUBE

In this section we construct the eigenfunctions of the Hamil-
tonian for this system, satisfying the appropriate confinement
boundary conditions, that is, the MIT bag model boundary
condition. The wave vectors and the resulting energy spectrum
will be discrete. We can then calculate the Casimir energy by
summing over the eigenenergies.

The most general eigenfunction can be written as follows:

�(x1,x2,x3,t) = ψ(x1,x2,x3) exp(−iEt), (1)

where

ψ(x1,x2,x3)

= f

(
α

�σ · �p
E+m

α

)
ei(p1x1+p2x2+p3x3) + g

(
β

�σ · �p
E+m

β

)

× ei(−p1x1+p2x2+p3x3) + h

(
η

�σ · �p
E+m

η

)
ei(p1x1−p2x2+p3x3)

+ j

(
µ

�σ · �p
E+m

µ

)
ei(p1x1+p2x2−p3x3) + k

(
ν

�σ · �p
E+m

ν

)

× e−i(p1x1+p2x2+p3x3) + l

(
τ

�σ · �p
E+m

τ

)
e−i(−p1x1+p2x2+p3x3)

+ q

(
χ

�σ · �p
E+m

χ

)
e−i(p1x1−p2x2+p3x3) + r

(
ρ

�σ · �p
E+m

ρ

)

× e−i(p1x1+p2x2−p3x3). (2)

Here �p denotes momentum operator and α, β, η, µ, ν, τ ,
χ, and ρ are general two-component spinors. Coefficients f

through r can be determined using the boundary conditions.
Here we use the usual Dirac-Pauli representation:

γ 0 = β =
(

I 0

0 −I

)
, γ k = βαk =

(
0 σk

−σk 0

)
,

k = 1,2,3.

The MIT bag model boundary condition is usually said to
imply that there is no flux of fermions through the boundary;
that is, if j denotes the current of the Dirac field and n

is the normal unit vector to the boundary, then nµjµ = 0.
However, it implies an even stronger condition, which is the
absolute confinement of the fermionic field. This model was
first considered by Bogolioubov [50] and later developed as
the MIT bag model by Chodos et al. [51] for hadrons. The

prevalent form of the MIT bag model boundary condition is
as follows:

[1 + i(n̂ · �γ )]ψ(x)

∣∣∣∣
Boundary

= 0. (3)

This boundary condition for our special case becomes

(1 ∓ iγ k)ψ(x1,x2,x3)

∣∣∣∣
xk=∓ ak/2

= 0, k = 1,2,3, (4)

where a1, a2, and a3 denote the lengths of the sides of the box.
Substituting Eq. (2) into Eq. (4) we obtain, for example, the
following two equations for x1 = ±a1/2 surfaces:

((E + m) + i(p1 + σ1σ2p2 + σ1σ3p3))︸ ︷︷ ︸
A

f αeip1
a1
2

+ ((E + m) + i(−p1 + σ1σ2p2 + σ1σ3p3))︸ ︷︷ ︸
B

gβe−ip1
a1
2 = 0,

(5)
((E + m) − i(p1 + σ1σ2p2 + σ1σ3p3))︸ ︷︷ ︸

C

f αe−ip1
a1
2

+ ((E + m) − i(−p1 + σ1σ2p2 + σ1σ3p3))︸ ︷︷ ︸
D

gβeip1
a1
2 = 0.

(6)

Multiplying Eq. (5) from left by A−1 and from right by (gβ)−1,
and likewise multiplying Eq. (6) from left by C−1 and from
right by (gβ)−1, yields

(f α)(gβ)−1 = −e−ip1a1A−1B,

(f α)(gβ)−1 = −eip1a1C−1D,

}
⇒ e−ip1a1A−1B = eip1a1C−1D. (7)

Expanding Eq. (7), one can easily show that the equation holds
if and only if

Im{(cos p1a − i sin p1a)(m − ip1)} = 0
(8)

=⇒ p1 cot p1a = −m.

Analogous conditions can be obtained for the components of
momenta in the other two directions. By setting m = 0 for a
massless Dirac field, the quantization condition Eq. (8) yields

pk =
(

nk + 1

2

)
π

ak

, k = 1,2,3. (9)

From this point on we concentrate on the massless case
with a1 = a2 = a3 = a, for simplicity. By using the second
quantized form of the Dirac field, the vacuum expectation
value of the free Hamiltonian [44,52] can be expressed in the
form

EFV = −a3
∑

s

∫ +∞

−∞

d3p

(2π )3
Ep, (10)

where the summation index s runs over the spin states and
the subscript FV stands for free vacuum. Obviously, in the
massless case Ep =

√
p2

1 + p2
2 + p2

3, where the components
of the momenta can take on any real value.
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In the presence of the boundaries, all of the components of
the momentum are subject to quantization condition Eq. (9).
Therefore the integrals turn into summations:

EBV = −
∑

s

+∞∑
n1,n2,n3=0

(π

a

)

×
√(

n1 + 1

2

)2

+
(

n2 + 1

2

)2

+
(

n3 + 1

2

)2

, (11)

where EBV denotes the vacuum energy in the presence of
the boundaries. Obviously, in both situations the vacuum
energy is divergent. However, the Casimir energy, which is the
difference between these two quantities, is usually expected
to be finite. One usually needs to utilize a regularization
prescription to give a physical meaning to such a difference.

In this paper we choose a modified form of the Abel-Plana
formula, which is useful for the summation over half-integer
numbers (see, e.g., [53,54]),

∞∑
n=0

F

(
n + 1

2

)

=
∫ ∞

0
dt F (t) − i

∫ ∞

0

dt

e2πt + 1
[F (it) − F (−it)], (12)

where F (z) is assumed to be an analytic function in the right
half-plane. The first term is the main term for turning a sum
into an integral. The second term is called the branch-cut term.
Since we have a triple sum over the wave numbers ni for EBV

as given in Eq. (11), we need to apply the Abel-Plana formula
[Eq. (12)] three times. The details are given in the Appendix.
The final result is

EBV = − 2
(π

a

){∫ ∞

0

∫ ∞

0

∫ ∞

0
du dk dt

√
u2 + k2 + t2 + 2

∞∑
n2,n3=0

∫ ∞
√

(n2+ 1
2 )2+(n3+ 1

2 )2
dt

√
t2 − (

n2 + 1
2

)2 − (
n3 + 1

2

)2

e2πt + 1

+ 2
∞∑

n3=0

∫ ∞

0
dt

∫ ∞
√

t2+(n3+ 1
2 )2

dk

√
k2 − t2 − (

n3 + 1
2

)2

e2πk + 1
+ 2

∫ ∞

0
dk

∫ ∞

0
dt

∫ ∞
√

t2+k2
du

√
u2 − k2 − t2

e2πu + 1

}
. (13)

It is extremely important to note that the only divergent
quantity in Eq. (13) is the first term, which is precisely the
free vacuum energy EFV and is supposed to be subtracted from
EBV in order to obtain the Casimir energy. In order to compute
the three branch-cut terms, we evaluated all the integrals
analytically. However, in the final step of the calculations we
have evaluated the sums numerically. It is worth mentioning
that the numerical method used for the final sums yields
extremely accurate values (see the Appendix) The final
result is

Ecube
Casimir := EBV − EFV = −0.048 927 541

a
. (14)

As a check on our procedure we have computed the
Casimir energy for a fermionic field between two parallel
plates in three-dimensional space (per unit area of the
plates), separated by a distance a, and obtained a result
that agrees extremely well with the analytic result obtained
in [38,41,43–45]:

E = − 7π2

2880a3
� −0.023 988 621 8

a3
. (15)

III. CONCLUSION

In this paper we have computed the Casimir energy for
a massless Dirac field with the MIT bag model boundary
condition in a three-dimensional cube. We have used the direct
mode summation method in order to compute the Casimir
energy for this field. In this regard, we have made repeated
use of the Abel-Plana summation formula. It is important to
note that the divergent part is automatically canceled once

we subtract the free vacuum energy. Therefore, we do not
need to resort to any regularization or analytic continuation
techniques. We have also used the same method to compute the
Casimir energy for the two parallel plates geometry in order to
check our procedure, and our result matches the analytic result
obtained earlier. We like to mention that the Casimir energy for
a massless fermionic field confined inside a three-dimensional
sphere with the MIT bag model boundary condition has been
computed analytically and the results for a sphere with the
same volume as our cube, along with our result for the cube,
are

Ecube
Casimir = −0.048 927 541

a
, E

sphere
Casimir = +0.032 900 755

a
.

(16)

Note that the Casimir energy for the sphere is of the same order
of magnitude as the one for the cubical geometry. However,
they have opposite signs [3,4,54]. For a discussion of the sign
of the Casimir energy as a function of the type of fields under
consideration, the dimensionality of space-time, the boundary
conditions imposed, and the geometry see [36].
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APPENDIX: USE OF THE ABEL-PLANA FORMULA IN
CALCULATING THE CASIMIR ENERGY FOR A

THREE-DIMENSIONAL CUBE AND CALCULATION
OF THE BRANCH-CUT TERMS

In this Appendix we present the details of the calculations
leading to our main expression for the Casimir energy of a

massless fermionic field confined inside a cube via the MIT
bag model boundary condition [Eq. (13), Eq. (14)]. In order
to apply the Abel-Plana formula [Eq. (12)] to the triple sum in
Eq. (11), we first define

F

(
n1 + 1

2

)
= −2π

a

∞∑
n2,n3=0

√(
n1 + 1

2

)2

+
(

n2 + 1

2

)2

+
(

n3 + 1

2

)2

, (A1)

The factor 2 is associated with the spin multiplicity. The branch-cut term can be calculated using the following:

F (±it) = −2π

a

∞∑
n2,n3=0

√
(±it)2 + β2 = −2π

a

∞∑
n2,n3=0

{
(±i)

√
t2 − β2 for |t | > β,√

−t2 + β2 for |t | < β,
(A2)

where here β =
√

(n2 + 1
2 )2 + (n3 + 1

2 )2. By using Eq. (12) and Eq. (A2), Eq. (11) turns into

EBV = −2

(
π

a

)⎧⎨
⎩

∞∑
n2,n3=0

∫ ∞

0
dt

√
t2 +

(
n2 + 1

2

)2

+
(
n3 + 1

2

)2

+ 2
∞∑

n2,n3=0

∫ ∞
√

(n2+ 1
2 )2+(n3+ 1

2 )2
dt

√
t2 − (n2 + 1

2 )2 − (n3 + 1
2 )2

e2πt + 1

⎫⎬
⎭.

(A3)

The first term is infinite and we have to use the Abel-Plana formula one more time only for the first term. We obtain

EBV = − 2
(π

a

)⎧⎨
⎩

∞∑
n3=0

∫ ∞

0

∫ ∞

0
dt dk

√
t2 + k2 +

(
n3 + 1

2

)2

+ 2
∞∑

n3=0

∫ ∞

0
dt

∫ ∞
√

t2+(n3+ 1
2 )2

dk

√
k2 − t2 − (

n3 + 1
2

)2

e2πk + 1

+ 2
∞∑

n2,n3=0

∫ ∞√
(n2+ 1

2 )2+
(
n3+ 1

2

)2 dt

√
t2 − (

n2 + 1
2

)2 − (
n3 + 1

2

)2

e2πt + 1

⎫⎬
⎭ . (A4)

Again the first term is infinite and we must apply the Abel-Plana formula one more time to obtain

EBV = − 2
(π

a

){∫ ∞

0

∫ ∞

0

∫ ∞

0
dt dk du

√
t2 + k2 + u2 + 2

∫ ∞

0
dk

∫ ∞

0
dt

∫ ∞
√

t2+k2
du

√
u2 − k2 − t2

e2πu + 1

+ 2
∞∑

n3=0

∫ ∞

0
dt

∫ ∞
√

t2+(n3+ 1
2 )2

dk

√
k2 − t2 − (

n3 + 1
2

)2

e2πk + 1
+ 2

∞∑
n2,n3=0

∫ ∞√
(n2+ 1

2 )2+
(
n3+ 1

2

)2 dt

√
t2 − (

n2 + 1
2

)2 − (
n3 + 1

2

)2

e2πt + 1

⎫⎬
⎭.

(A5)

Note that all of the branch-cut terms are finite and only
the first term is infinite. On the other hand the free vacuum
energy is

EFV = −2a3
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

dp1dp2dp3

(2π )3

√
p2

1 + p2
2 + p2

3.

(A6)

Making appropriate changes of variables one obtains

EFV = −2π

a

∫ ∞

0

∫ ∞

0

∫ ∞

0
dt dk du

√
t2 + k2 + u2, (A7)

It is extremely important to note that this term is infinite
and precisely equals the infinite term which appears in EBV.
Therefore when we compute the Casimir energy these two
terms precisely cancel each other. That is,

ECasimir := EBV − EFV = −4
(π

a

)⎧⎨
⎩
∫ ∞

0
dk

∫ ∞

0
dt

∫ ∞
√

t2+k2
du

√
u2 − k2 − t2

e2πu + 1
+

∞∑
n3=0

∫ ∞

0
dt

∫ ∞
√

t2+(n3+ 1
2 )2

dk

×
√

k2 − t2 − (
n3 + 1

2

)2

e2πk + 1
+

∞∑
n2,n3=0

∫ ∞
√

(n2+ 1
2 )2+(n3+ 1

2 )2
dt

√
t2 − (

n2 + 1
2

)2 − (
n3 + 1

2

)2

e2πt + 1

⎫⎬
⎭ . (A8)
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Here we explain the details of the calculation of the last term
and then outline the calculations for the remaining terms. We
expand the denominator as follows:

1

e2πt + 1
=

∞∑
j=0

(−1)j e−2πt(j+1). (A9)

The last term turns into

−4π

a

∞∑
n2,n3,j=0

(−1)j
∫ ∞
√

(n2+ 1
2 )2+(n3+ 1

2 )2
dt

× e−2πt(j+1)

√
t2 −

(
n2 + 1

2

)2

−
(

n3 + 1

2

)2

. (A10)

By using the identity∫ ∞

a

du (u2 − a2)ν−1e−µu

= 1√
π

(
2a

µ

)ν− 1
2

(ν)KBessel

(
ν − 1

2
,aµ

)
, (A11)

which holds when

a > 0, Re(ν) > 0 and µ > 0,

the last term becomes

∞∑
j=0

[
− 4π

a

∞∑
n2,n3=0

(−1)j

√(
n2 + 1

2

)2

+
(

n3 + 1

2

)2 KBessel(1,2π

√(
n2 + 1

2

)2 + (
n3 + 1

2

)2
(j + 1))

2π (j + 1)

]
= −0.010 762 308 1.

(A12)

The numerical value reported is obtained by the following
procedure. For a given j , due to the symmetry between n2 and
n3, we choose a common cutoff denoted by N for the sums
over n2 and n3. Then we increase the cutoff N until the value
of the double sum converges to a finite final value (e.g., see
Fig. 1 for j = 1).

Then we repeat the procedure for the next value of j , and
so on. What we observe is that the values of the cutoffs depend
on j . However, the cutoff N (j ) is a monotonically decreasing
function of j (see Fig. 2).

Therefore in order to compute the sum over j it suffices
to choose the largest value of N (j ), which is N (0). Once the
cutoff for the sums over n2 and n3 are determined we can
compute the sum over j by an analogous procedure.

That is, we compute the value of the sum over j for various
cutoffs J and search for an asymptote. We can find the value
of the asymptote by fitting a series in the inverse power of
J . This is how the numerical value reported in Eq. (A12) has
been obtained (see Fig. 3). It is interesting to note that the sums
converge extremely rapidly in both cases.

1 2 3 4 5
6.028 10 6

6.0282 10 6

6.0284 10 6

6.0286 10 6

6.0288 10 6

6.029 10 6

6.0292 10 6

6.0294 10 6

N j

S
N

j
10

5
4.

28
12

0

FIG. 1. For j = 1 we have computed the double sum in Eq. (A12),
S(N (j )), using a common cutoff (N ). By increasing N the double sum
converges extremely rapidly to a finite value 0.000 042 812 060 294.
The values on the vertical axes up to 14 digits after the decimal point
are the same. The only way to present the differences between the
values is to define a new origin as we did for labeling the vertical
axes. For this case it is sufficient to choose N (1) = 3.

0 1 2 3 4 5
1

2

3

4

5

6

j

N
j

FIG. 2. The plot of the cutoff N (j ). Due to the downward trend
of N (j ), N (0) is the most appropriate cutoff for summations over n2

and n3.

2 4 6 8 10

0.0107623

0.0107623

0.0107622

0.0107621

0.0107621

0.0107621

J

S
J

FIG. 3. As illustrated in Fig. 1 and Fig. 2 we obtain the appropriate
cutoff for the sums over n2 and n3. In order to complete the
computation of Eq. (A12) we evaluate the summation over j for
various cutoffs J . It can be seen that the whole summation, S(J ),
reaches its asymptotic value very quickly. We find the precise value
of the asymptote (−0.010 762 308 1) by fitting a series in the inverse
power of J .
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In order to compute the second term of Eq. (A8) we first
interchange the order of integrations to obtain

−4π

a

∞∑
n3=0

∫ ∞

n3+ 1
2

dk

e2πk + 1

∫ Y

0
dt

√
Y 2 − t2, (A13)

where Y =
√

k2 − (n3 + 1
2 )2. The innermost integral is easily

computed and yields π
4 [k2 − (n3 + 1

2 )2]. Now using Eq. (A9)
and Eq. (A11) we obtain

−π2

a

∞∑
j,n3=0

(−1)j
∫ ∞

n3+ 1
2

dk e−2πk(j+1)

[
k2 −

(
n3 + 1

2

)2
]

= −1

a

∞∑
j

(−1)j

(j + 1)
3
2

∞∑
n3=0

(
n3 + 1

2

) 3
2

KBessel

[
3

2
,2π

(
n3 + 1

2

)
(j + 1)

]
= −0.014 176 611 3. (A14)

The numerical value reported at the end of Eq. (A14) is obtained by a procedure analogous to the one explained previously.
Going through this same procedure, we can compute the first branch-cut term in Eq. (A8) as follows:

−1

a

∞∑
j=0

(−1)j

(j + 1)
3
2

∫ ∞

0
dt t

3
2 KBessel

[
3

2
,2πt(j + 1)

]
= −0.023 988 621 9. (A15)

Finally, we arrive at

ECasimir = −1

a

∞∑
j=0

(−1)j

(j + 1)

⎧⎨
⎩2

∞∑
n2,n3=0

√(
n2 + 1

2

)2

+
(

n3 + 1

2

)2

KBessel

[
1,2π

√(
n2 + 1

2

)2

+
(

n3 + 1

2

)2

(j + 1)

]

+ 1

(j + 1)
1
2

∞∑
n3=0

(
n3 + 1

2

) 3
2

KBessel

[
3

2
,2π

(
n3 + 1

2

)
(j + 1)

]
+ 1

(j + 1)
1
2

∫ ∞

0
dt t

3
2 KBessel

[
3

2
,2πt(j + 1)

]⎫⎬
⎭

= −0.048 927 541

a
. (A16)
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