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Security of quantum key distribution with arbitrary individual imperfections
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We consider the security of the Bennett-Brassard 1984 protocol for quantum key distribution, with arbitrary
individual imperfections simultaneously in the source and detectors. We provide the secure key generation
rate and show that three parameters must be bounded to ensure security; the basis dependence of the source,
a detector-blinding parameter, and a detector leakage parameter. The system may otherwise be completely
uncharacterized and contain large losses.
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I. INTRODUCTION

Quantum key distribution (QKD) is a method for distribut-
ing a secure key to two communicating parties, Alice and Bob.
The most common QKD protocol, Bennett-Brassard 1984
(BB84) [1], has been proved secure by a number of approaches,
some of which include different kinds of imperfections in the
equipment [2–7]. The ultimate goal of QKD security analysis
is to take all kinds of imperfections into account, at least those
that cannot be eliminated completely by a suitable design
of the setup. So far, most of the available security proofs
for BB84 consider imperfections at the source or detector
separately. An exception is the work by Gottesman et al. [5],
which treats the security in the presence of source flaws and a
squashing detector with certain limited imperfections. Also
of interest is the article by Hayashi [8], which combines
finite-length key analysis with photon number imperfections
at the source. Proving security for a realistic system with
arbitrary imperfections simultaneously in the source, channel,
and detectors has so far been an open problem.

A particularly suitable approach for practical QKD is to
limit the assumptions about the equipment. By considering
entanglement-based protocols with detectors in both ends of
the system [9], one can prove security in a rather general setting
[10], assuming collective attacks and individual imperfections
[11]. While these protocols and security proofs are promising,
they do not necessarily provide security for realistic devices.
All realistic systems have large losses due to the channel and
limited detector efficiencies. An eavesdropper Eve may use
imperfect detection efficiencies to effectively control Bob’s
basis choice [12,13]. Using this detection loophole, she may
perform the identical measurement as Bob to obtain a perfect
copy of the key.1

In this work we prove security for BB84 with any combi-
nation of individual imperfections, as well as channel losses.
By individual imperfections we mean that the operation of the
devices for a particular signal is independent of earlier signals.
To obtain such generality, we describe the actual physics
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1For any protocol, Bob’s basis choice (or more generally, mea-

surement setting) must be random and come from a trusted
random-number generator; otherwise, Eve could perform the same
measurement as Bob to obtain a perfect copy of his result.

in the protocol rather than using, for example, squashing
models with “tagging.” Thus, the detectors are described
as a basis-dependent quantum operation on the actual state
space in front of a three-outcome measurement (“0”, “1”, and
“vacuum”). Describing the detector in this way also enables
an elegant solution to the problem of combining errors in the
detectors and errors in the source.

To get around the detection loophole, we anticipate that
at least two parameters must be known or bounded about
the system; one for the source and one for the detectors.
Our proof is formulated with two such parameters; the
basis dependence of the source and a detector-blinding
parameter. In addition to these parameters, we include a
third parameter quantifying leakage from Bob’s detectors.
Once these parameters are bounded, the system may con-
tain bit and basis leakage from Alice, multimode behavior,
basis-dependent misalignments, losses, nonlinearities, basis-
dependent threshold detectors with detector efficiency mis-
match and information leakage, dark counts, etc. In that sense,
our proof offers the generality of the entanglement-based
scenarios [11], applies to realistic scenarios with loss, and pro-
vides universal composable security against the most general
attacks.

II. PROTOCOL

Consider the following BB84-like protocol as the actual
protocol. Alice chooses basis a = Z or a = X randomly
according to some probability distribution and prepares the
state |χa〉, where

|χZ〉 = √
pZ|0〉|β0〉 +

√
1 − pZ|1〉|β1〉, (1a)

|χX〉 = √
pX|+〉|β+〉 +

√
1 − pX|−〉|β−〉. (1b)

Here pZ and pX are probabilities, |0〉,|1〉 are some orthonormal
qubit basis states, and |±〉 = (|0〉 ± |1〉)/√2. Alice measures
the qubit in the a basis (this measurement can be delayed
to the end of the protocol). She repeats the procedure to
obtain a large number of “β states,” which are sent via
Eve to Bob. These β states include any system that is
correlated to Alice’s system and to which Eve has access.
Note that Eve is free to send anything to Bob, including
parts of β and/or any state of her own choice. Depending
on Alice’s source, the four different β states will differ in
photon number statistics, polarization, wavelength, etc. Any
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leakage in nonphotonic side channels will also be included
in these states. With no loss of generality, the β states
are assumed to be pure; if they were mixed, we could
simply purify them, sending the auxiliary, purifying system to
Eve.

For each state received by Bob, he chooses a “basis”
variable b according to some probability distribution and
conducts measurements Mb. The measurements Mb have three
outcomes: “0”, “1”, and “vacuum.” When he obtains “0” or
“1”, he publicly acknowledges receipt. After transmission,
Alice and Bob broadcast a and b. When b = X, they openly
compare their measurement results to estimate the fraction qX

of nonvacuum events at Bob when a = X, the corresponding
error rate δX, and the fraction qph of nonvacuum events when
a = Z. After this estimation only the n states for which
a = b = Z are kept. Discarding all events where Bob detected
“vacuum,” Alice and Bob each end up with nqZ bits. Alice’s
bits are the raw key.

We now summarize Koashi’s generic framework for secu-
rity proofs [14,15]. Imagine a virtual experiment where Alice
measures her final nqZ qubits (corresponding to the raw key)
in the X basis instead of Z basis. In this virtual experiment,
instead of measuring MZ , Bob now tries to predict the outcome
of Alice’s measurement. To do this, he may do whatever is
permitted by quantum mechanics, as long as he does not alter
the information given to Eve. Let HvirtX(A|B = µ) denote the
entropy of Alice’s result, given measurement result µ in Bob’s
prediction. Let HvirtX(A|B = µ) � H for some constant H .
Since the uncertainty after Bob’s prediction is less than H ,
the entropic uncertainty relation [16] suggests that anyone
(including Eve) cannot predict the outcome of a Z-basis
measurement by Alice with less entropy than nqZ − H . This
indicates that Alice can extract nqZ − H bits of secret key.
The quantity H is to be found from the estimated parameters
qX, δX, and qph.2 The detailed proof [14] of the fact that
Alice can extract nqZ − H bits of secret key is based upon
the universal, composable security definition and consid-
ers the actual privacy amplification protocol by universal
hashing.

To ensure that Bob has the identical key, we note that
it does not matter to Eve what Bob does (as long as he
gives the same receipt acknowledgment information); he
can as well measure MZ . Then Bob obtains the identical
raw key from his measurement result and nqZh(δZ) extra
bits of error correction information from Alice, consuming
nqZh(δZ) of previous established secure key. Here h(·) is the
binary Shannon entropy function, and the error rate δZ can
be estimated by sacrificing a subset of the raw key (whose
size we can neglect in the asymptotic limit n → ∞). We
therefore obtain the asymptotic net secure key generation
rate

RZ � 1 − H/nqZ − h(δZ). (2)

2The Z-basis error rate δZ is not needed to ensure that Alice’s
key is secret; thus, there is no need to invoke the classicalization
argument [17] regarding statistics of measurements involved in the
simultaneous estimation of δX and δZ .

III. INDIVIDUAL IMPERFECTIONS IN THE DETECTORS

We first consider the situation where Alice’s source is
perfect (|χX〉 = |χZ〉) and Bob’s detectors can be subject to
any kind of individual imperfections. With the understanding
that Bob chooses his bit randomly for coincidence counts [3,5],
his detectors can be modeled by a basis-dependent quantum
operation (EZ andEX) in front of a measurement with three pos-
sible outcomes: “0”, “1”, and “vacuum.” Note that there is no
need to require a squash model [5,18,19] in our proof as Bob’s
basis selector is included into the basis-dependent quantum
operation.

In addition to the optical modes, there may also be other
relevant degrees of freedom in the detector. For example,
dark counts are caused by physical processes internally in the
detector. Thus, we consider an extended state space consisting
of the Fock space of all optical modes in addition to the state
space associated with “electronic” degrees of freedom inside
the detectors. Pessimistically, we let Eve control all degrees of
freedom.

The quantum operations EZ and EX are decomposed as
follows: First there is a basis-dependent quantum operation
(FZ and FX) acting on the Fock space associated with all
optical modes. This operation contains Bob’s basis selector.
The operations FZ and FX are assumed to be passive in the
sense that if vacuum is incident to all modes, there will also be
vacuum at the output. Then there is another quantum operation
F describing interaction between the photonic state and the
internal degrees of freedom in the detectors (see Fig. 1). The
quantum operation F may be active in the sense that even
though vacuum is incident to all optical modes, there may
be nonvacuum detections. When the optical modes contain the
vacuum state, we can (pessimistically) assume that Eve has full
control over Bob’s detectors through F ; in other words, she
controls the dark counts directly with the “electronic” modes.
The quantum operation F is assumed to be independent of

“0”

“vacuum”
“1”

F
σ2

σ

To Eve

basis b

Eb

Fb

σ1 ⊗ σ2

Alice’s bit

From Eve

ρ

FIG. 1. Bob’s detectors consist of a basis-dependent quantum
operation (EZ = F ◦ FZ and EX = F ◦ FX) in front of a three-
outcome measurement. The fact that Eve gets arrival information from
Bob is included through a dedicated vacuum measurement preceding
Bob’s three-outcome measurement. On the input side of F , the lower
line contains the electronic modes of the detector, while on the output
side of F , the lower line indicates the part of the Hilbert space leaked
to Eve. Alice’s classical bit, indicated in the upper part of the figure,
is included in the state σ .
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Bob’s basis choice. This assumption is natural as Bob’s basis
choice does not influence internal degrees of freedom in the
detector. In other words, when Eve emits the vacuum in all
optical modes, Bob’s basis choice will not affect the detection
statistics.

To achieve a completely general detector model, we
should not only let Eve control the detectors; in addition,
we must let information return to Eve. Consider the case
where Bob has chosen the Z basis. In the most general
case, the information leakage is quantum; that is, a part of
the total Hilbert space is given directly to Eve. Replacing
this part of the Hilbert space with some standard state σ2,
we can quantify the leakage εZ by the trace distance D(·,·)
as follows:

εZ = min
σ2

max
ρ

D(σ,σ1 ⊗ σ2). (3)

Here ρ is any state at Bob’s input (including Alice’s part of
the system; see Fig. 1), σ is the state of Alice and Bob before
leakage, and σ1 = Tr2(σ ) is the state of the remaining Hilbert
space after leakage. Note that these density operators refer to a
single signal, not the entire block of n signals. The parameter
εZ measures the correlation between the leaked quantum
state and the state of Alice and Bob, maximized over states
sent by Eve. More precisely, εZ is the maximum probability
that the actual state before leakage can be distinguished
from the state where the leaked part is replaced by the
standard state σ2 [20]. Equation (3) has another very useful
physical interpretation: Choose a fixed σ2, dependent on EZ ,
but independent of the state coming from Eve. For any σ ,
the probability of a measurement result of σ1 ⊗ σ2 deviates
no more than εZ from the corresponding probability when
measuring σ [20].

Although we now have a general detector model, we add
one little feature. In the actual protocol, Eve gets to know
whether a particular signal was detected. This can be included
as an extra projective measurement with projectors P and
I − P , where I − P is a projector onto the subspace corre-
sponding to detection result “vacuum” in Bob’s measurement.
Clearly, this addition does not disturb Bob’s measurement
statistics. The composed measurement consisting of EZ fol-
lowed by this projective measurement will be referred to as
Eve’s vacuum measurement. It can be described by some
positive operator-valued measure (POVM) elements E and
I − E, where I − E corresponds to detection result “vacuum”
at Bob. Including Eve’s vacuum measurement separately,
rather than absorbing it into the quantum leakage (3), leads
to a better rate. The reason is that the information from the
vacuum measurement is classical and available to Bob, as
opposed to general, leaked quantum information.

Having described the model, we now turn to the security
analysis. As before, Alice extracts the key in the Z basis. In
Koashi’s security proof, Bob wants to predict the outcome
of a virtual X-basis measurement by Alice. In this virtual
prediction there is only one important restriction: Bob is not
allowed to alter the information going to Eve. Thus, Eve’s
vacuum measurement must be retained.

The setup used by Bob to perform the virtual X-basis
prediction is depicted in Fig. 2. The state from Eve is incident
to a first vacuum measurement, Bob’s vacuum measurement,

“0”
“1”
“vacuum”EXEZ

From Eve

To Eve

Q, I −Q

ersal
Rev-

P, I − P

FIG. 2. Bob’s setup for virtual X-basis prediction. The optical
and electronic modes are denoted by a single line in this figure.

a projective measurement with certain projectors Q and
I − Q, corresponding to results “nonvacuum” and “vacuum,”
respectively. Then it goes through the quantum operation
EZ and leaks partially back to Eve. The remaining part is
measured by Eve’s vacuum measurement and sent through
a reversal operation. The goal of the reversal operation is
to reverse the effect of the vacuum measurement so that the
combined operation consisting of Eve’s vacuum measurement
and the reversal operation is identity, with a certain probability.
Finally, the quantum operation EX and Bob’s three-outcome
measurement are applied.

To analyze Bob’s virtual prediction, we note the following
observations. The quantum operation EZ can be viewed as
a unitary operation on an extended state space. Moreover,
since Bob’s reversal operation does not have to be realizable
in practice (only in principle), we may assume that Bob has
access to any extra degrees of freedom used to “unitarize”
EZ . He does not have access to the quantum state leaked to
Eve; however, the leakage disturbs the probabilities of Bob’s
prediction by no more than εZ . Therefore, for the moment
we can ignore the leakage, taking it into account in the final
expression for the key rate.

To proceed, we need the following results.
Lemma 1 (Koashi and Ueda [21]). Let E, acting on a

Hilbert space H, be a POVM element associated with some
measurement M . If any state in some subspace Q ⊆ H
is measured with M , the measured state can be reversed
to the original state, with maximum joint probability of
outcome E and successful reversal inf|�〉∈Q,〈�|�〉=1〈�|E|�〉.
It is possible to know when the reversal is successful or
not.

Lemma 2. The output of a quantum operation Eb is measured
with projectors P0, P1, and I − P0 − P1, corresponding to
detection results “0”, “1”, and “vacuum,” respectively, or
alternatively, with P ≡ P0 + P1 and I − P . Let I − Q be a
projector onto an input subspace of Eb that leads to detection
result “vacuum” with certainty. The measurement statistics
are not changed by the presence of a projective measurement
{Q,I − Q} before Eb.

Proof. Lemma 2 is not as trivial as it may appear at first sight
since states in the support of Q may also lead to detection result
“vacuum.” Thus, the measurement before Eb gives extra infor-
mation. Nevertheless, the quantum operation Eb can be viewed
as a unitary transformation on an extended Hilbert space, with
a standard state as auxiliary input. Clearly, it does not matter
if we measure the extra degrees of freedom at the output.
This measurement can be constructed so that the total output
measurement distinguishes between input states in the support
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of Q or I − Q. Then, an input measurement {Q,I − Q}
is redundant.

More precisely, the unitary operator can be chosen such
that the projective measurement at the output is implemented
as a measurement of a single qutrit in the computational basis.
Thus, it transforms

|01〉|0〉aux → |v〉|ψ1〉, (4a)

|02〉|0〉aux → |v〉|ψ2〉, (4b)

and

|11〉|0〉aux → |v〉∣∣φv
1

〉 + |0〉∣∣φ0
1

〉 + |1〉∣∣φ1
1

〉
, (5a)

|12〉|0〉aux → |v〉∣∣φv
2

〉 + |0〉∣∣φ0
2

〉 + |1〉∣∣φ1
2

〉
, (5b)

etc. Here |0i〉 and |1i〉 are bases for the support of I − Q

and Q, respectively; |0〉aux is the auxiliary standard state; and
|0〉〈0| = P0, |1〉〈1| = P1, and |v〉〈v| = I − P0 − P1. The ψ

and φ vectors are (not necessarily normalized) states of the
remaining part of the output state space. Since 〈1i |0j 〉 = 0, we
have 〈φv

i |ψj 〉 = 0 for any i,j . Thus, by a measurement of the
ψ or φ part of the output state space in addition to the qutrit,
we can distinguish between the |0i〉 states and |1i〉 states. �

We define the projector I − Q so as to project onto vacuum
in all photonic modes and onto the biggest subspace of the
“electronic” modes that gives detection result “vacuum” in
Eve’s vacuum measurement. The orthogonal subspace, which
is the support of Q, is denoted Q. Lemma 2 ensures that
Bob’s vacuum measurement does not change the statistics of
Eve’s vacuum measurement. When Eve’s vacuum measure-
ment gives result “vacuum,” or the reversal operation is not
successful, the reversal operation is assumed to output a state
in the support of I − Q. Thus, in these cases the output of
Bob’s virtual prediction is “vacuum” with certainty.

If the outcome of Bob’s vacuum measurement is “vacuum,”
the outcome of Eve’s vacuum measurement is “vacuum,”
and the reversal operation is successful with certainty. Suppose
the outcome of Bob’s vacuum measurement is “nonvacuum.”
According to Lemma 1, the maximum joint probability of
result E in Eve’s vacuum measurement and successful reversal
is ηZ = inf|�〉∈Q,〈�|�〉=1〈�|E|�〉. When result E and the
reversal is successful (and Bob knows when it is), the statistics
of Bob’s measurement compared to Alice’s virtual X-basis
measurement will be identical to that of Alice’s and Bob’s
ordinary parameter estimation in the X basis, except for
any disturbance by Bob’s vacuum measurement. According
to Lemma 2 such disturbance does not exist. The number
of detection events E in Eve’s vacuum measurement is
nqZ; of these nqXηZ is successfully reversed and detected
as “0” or “1” in Bob’s virtual prediction. Thus, we obtain
H � (nqZ − nqXηZ) + nqXηZh(δX), which gives us the rate

RZ � ηZqX/qZ[1 − h(δX)] − h(δZ). (6)

The parameter ηZ = inf|�〉∈Q,〈�|�〉=1〈�|E|�〉 is the mini-
mum probability that a state in Q gives result E by Eve. This
parameter has a clear physical interpretation. When vacuum
is incident to the optical modes, recall that with no loss of
generality we may assume that Eve has full control of the
detectors through the “electronic” modes. Then there are no
losses of her excitation in the “electronic” modes through the

quantum operation F . Thus, we identify ηZ as the minimum
probability that a nonvacuum photonic state is detected by
Bob. In other words, 1 − ηZ is the maximum probability that
a nonvacuum photonic state is absorbed in the detectors and
detected as vacuum in the actual setup (Fig. 1).

So far we have ignored the effect of any quantum leak-
age from the detectors. Parametrizing the leakage by (3),
εZ quantifies the maximum deviation of any measurement
probabilities. In the absence of leakage, the probabilities
of correct and incorrect predictions are qXηZ(1 − δX) and
qXηZδX, respectively, while the probability of vacuum result
is 1 − qXηZ . When there is leakage, in the worst case these
probabilities are changed to qXηZ(1 − δX) − εZ , qXηZδX +
εZ − ξ , and 1 − qXηZ + ξ , respectively. Here ξ is an unknown
parameter satisfying 0 � ξ � εZ . Of the nqZ nonvacuum
results in Eve’s vacuum measurement, there are n(qXηZ − ξ )
nonvacuum results in Bob’s virtual prediction. This leads to

H � nqZ − n(qXηZ − ξ )

+ n(qXηZ − ξ )h

(
qXηZδX + εZ − ξ

qXηZ − ξ

)

� nqZ − nqXηZ + nqXηZh

(
δX + εZ

qXηZ

)
. (7)

The last inequality in (7) can be found after some algebra
using the facts that h(u) − h(u − �) � h′(u)� for � � 0 and
u � 1/2, and h′(u)(1 − u) � 1 for u � 0.277. Here we have
set u = δX + εZ

qXηZ
.

This gives the rate

RZ � ηZ

qX

qZ

[
1 − h

(
δX + εZ

qXηZ

)]
− h(δZ) (8)

for δX + εZ

qXηZ
� 0.277. An expression for the rate, also

valid for 0.277 � δX + εZ

qXηZ
� 0.5, can be derived straight-

forwardly; however, this regime is only relevant for very small
δZ and large δX and/or εZ

qXηZ
.

IV. INDIVIDUAL IMPERFECTIONS IN
THE ENTIRE SYSTEM

From the previous section we note that when the reversal
operation is successful (and Bob knows when it is), the
measurement statistics in the prediction becomes identical to
the statistics if Bob measured in the X basis. This makes it
possible to consider simultaneous imperfections at the source
and detector. We may then consider the case where Alice
creates a general state ρa depending on the basis choice a. The
basis dependence of the source is characterized by the fidelity
F (ρZ,ρX) ≡ Tr(

√
ρZρX

√
ρZ)

1
2 . We let this dependence be

bounded by a parameter � defined by F � 1 − 2�. By
Uhlmann’s theorem there exist purifications, |χa〉 of ρa , such
that 〈χZ | χX〉 = 1 − 2�. We note that |χa〉 can be expressed
as in Eq. (1).

Again, we first ignore the detector leakage, taking it into
account in the final expression for the rate. Since Bob wants
to predict Alice’s virtual X-basis measurement on |χZ〉, the
error rate δX and the transmission rate qX in (6) must be
replaced with δph and qph, respectively. Here δph is the error
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rate when Alice measures her part of |χZ〉 in the X basis and
Bob measures his part using MX.

In BB84 such a measurement is not actually performed, but
δph can be bounded from the measured error and transmission
rates. We expand the statistical argument from [14] to include
“vacuum” as a possible measurement result. Assume that for
the systems used in the random sampling Alice chooses her
basis by measuring a quantum coin in the Z basis. Then
these systems can be described by state |〉 = (|χZ〉|0〉 +
|χX〉|1〉)/√2, with the last system being that of the quantum
coin.

We then consider the situations where Alice and Bob
both conduct X-basis measurements. For each measurement
a variable t is assigned the value t = 0 if their results are
the same, t = 1 if there is an error, and t = 2 if Bob gets
no result. Alice then measures her quantum coin in the Z

basis, getting the result c. We obtain the following conditional
probabilities.

p(t = 0|c = 1) = qX(1 − δX), (9a)

p(t = 0|c = 0) = qph(1 − δph), (9b)

p(t = 1|c = 1) = qXδX, (9c)

p(t = 1|c = 0) = qphδph, (9d)

p(t = 2|c = 1) = 1 − qX, (9e)

p(t = 2|c = 0) = 1 − qph. (9f)

Assuming that the systems used to estimate error and transmis-
sion rates are randomly chosen, the probabilities given c = 0
are also valid for the systems used to extract the raw key.

Now assume that for some states Alice measures the coin
in the X basis, getting measurement result c̄. Note that∑

j

p(t = j )p(c̄ = 1|t = j ) = �. (10)

Using (9), (10), and the bound [22],

[1 − 2p(c̄ = 1|t = j )]2 + [1 − 2p(c = 0|t = j )]2 � 1,

we find

1 − 2� �
∑

j

√
p(t = j |a = Z)p(t = j |a = X)

= √
qX(1 − δX)qph(1 − δph) + √

qXδXqphδph

+√
(1 − qX)(1 − qph). (11)

δph can now be taken to be the maximal value for which the
inequality is obeyed.

Similarly to the analysis in the previous section, we
can include detector leakage by modifying the detection
probabilities. As in (8), the leakage is accounted for by adding
a term proportional to the leakage parameter εZ ,

δ̃ph � δph + εZ

qphηZ

. (12)

We have arrived at our main result.
Theorem 1. In BB84 the basis dependence of Alice’s

source is bounded by F (ρX,ρZ) � 1 − 2�. Bob’s detectors are
modeled by a passive, basis-dependent quantum operation (FZ

and FX) acting on the multimode photonic state, followed by a

basis-independent quantum operation (F) describing interac-
tion with internal degrees of freedom in the physical detector,
followed by a measurement with three outcomes: “0”, “1”, and
“vacuum.” Suppose Eve controls the photonic modes and the
internal degrees of freedom in the detectors and that a quantum
state leaks back to Eve from the detectors. Then the asymptotic
secure key generation rate for key extraction in the Z basis
satisfies

RZ � ηZqph/qZ[1 − h(δ̃ph)] − h(δZ), (13)

provided δ̃ph � 0.277. Here δZ is the estimated error rate in the
Z basis, δ̃ph is given by (11) and (12), 1 − ηZ is the maximum
probability that a nonvacuum photonic state is detected as
“vacuum,” and qph/qZ is the ratio between the transmission
rates for Bobs measurements MX and MZ given that Alice
sends in the Z basis.

The rate (13) is valid for any kind of individual imperfection
and loss. The parameters qX, qZ , qph, δX, and δZ are estimated
directly in the protocol, while �, ηZ , and εZ characterize the
practical setup.

V. DISCUSSION OF RESULTS

In this discussion we assume that the quantum channel is
symmetric with respect to loss; that is, qX = qph = qZ ≡ q.
This will be approximately true for most setups. We also
assume no information returned to Eve from the detectors,
εZ = 0, anticipating that such errors could be avoided by
modifying the setup.

In this case (11) reduces to

2�

q
� 1 − √

(1 − δX)(1 − δph) − √
δXδph (14)

and the estimated worst possible error rate is

δph = min

{
1

2
, δX + 8

�

q

[(
1 − �

q

)
(1 − 2δX)

+
√

�

q

(
1 − �

q

)
δX(1 − δX)

]}
. (15)

We see that errors in the source are more critical when the
transmission is low. In fact, both the basis dependence of
the source, �, and transmission rate, q, only appears in the
equation in the form �

q
. If the source is perfect, � = 0,

loss in the channel does not affect the secret key rate. This
relationship between the source error and the transmission
rates is due to Eve’s control of the channel, which let her
pass to Bob only the systems where her operation has given
her the most information for the least disturbance. The upper
limit on the source error for which key gain is possible
is �

q
�

√
2−1

2
√

2
≈ 0.146. This is independent of the blinding

parameter ηZ , as long as it is nonzero, but demands error rates
equal to zero. For larger error rates the limit depends heavily
on ηZ (Fig. 3).

Channel loss and imperfect sources only contributes to an
increase in δph. A better estimate of δph would increase the
rate. This is related to the method of decoy states [23–25],
where Alice instead of producing ρZ , sometimes produces a
decoy state with a different mean photon number. From the

032337-5



MARØY, LYDERSEN, AND SKAAR PHYSICAL REVIEW A 82, 032337 (2010)

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

δ

∆/
q

η
Z
=1η

Z
=0.5η

Z
=0.1

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

δ

η Z

∆/q=0∆/q=0.01∆/q=0.05

0 0.04 0.08 0.12 0.16
0

0.2

0.4

0.6

0.8

1

∆ /q

η Z

δ=0δ=0.001δ=0.01δ=0.07

FIG. 3. Plots showing the security bounds RZ = 0 for different
values of the blinding parameter ηZ , the basis dependence of the
source �, and the error and transmission rates δ and q. The security
bound is found by setting RZ = 0 in (13). Positive key gain is possible
for parameter values to the left of the curves. We have assumed
εZ = 0, δX = δZ = δ, and qX = qph = qZ = q.

transmission and error rates for this state, Alice and Bob are
able to derive a stricter bound on δph, effectively reducing
RZ’s dependence of channel loss. To generalize this method,

using decoy states where other properties of the signal state are
varied might prove useful when operating with an imperfect
source. However, creating such states may require the detailed
output statistics of the source and might be experimentally
difficult in general.

Considering the special case of a perfect source, our
rate is larger than the rate proved for restricted detector
flaws in previous literature [6,7]. Key gain is possible for
ηZ � h(δZ )

1−h(δX) . Unlike previous results, our rate applies to all
relevant, individual imperfections at the detectors, for ex-
ample, mode coupling including misalignments and multiple
reflections, nonlinearities, mode-dependent losses and detector
efficiency mismatch, and any basis dependence of those
effects. Moreover, it applies to threshold detectors with dark
counts.

Note that the detector-blinding parameter ηZ is not sup-
posed to contain the transmission efficiency of the channel.
Generally, one should factorize EZ = ẼZ ◦ E and EX = ẼX ◦ E
to put as much as possible of the imperfections into the
basis-independent operation E . By absorbing E into Eve and
treating ẼZ and ẼX as the new imperfections, ηZ will be
maximal. For example, for the case where reduced detector
efficiencies can be described as beam splitters in front of
ideal detectors, and if there is no coupling between modes
associated with different logical bits, ηZ is the minimum
ratio between the two detection efficiencies [7]. For detec-
tors that cannot be modeled by beam splitters in front of
ideal detectors, our security proof clearly shows the danger
associated with the possibility of detector blinding [13]: If
the detection probability of a nonvacuum state is zero, our
proof predicts zero key rate. For the case where the detectors
can only be partially blinded, our proof can predict positive
rate.

Returning to the general case, the rate (13) is dependent
on �, ηZ , and εZ , in addition to estimated parameters. For a
specific QKD setup, � and εZ must be upper bounded, and ηZ

must be lower bounded. How to deal with this in practice is an
interesting question for future research.

VI. CONCLUSION

We have proved security for arbitrary, individual imper-
fections in a BB84 system. The detector model includes
a basis-dependent quantum operation, possibly with quan-
tum leakage back to Eve, followed by a three-outcome
measurement with outcomes “0”, “1”, and “vacuum.” Such
a general detector model can describe detector efficiency
mismatch, nonlinear blindable behavior, response to multiple
modes, mode coupling and multiple reflections, misalign-
ments, back-reflection leakage, nonoptical leakage, etc. By
reversing the measurement which gives Eve information about
whether a particular signal was detected (Eve’s vacuum
measurement), we show how to treat the general case with
a lossy channel and general, individual imperfections at
the source, combined with the flawed detector. The final
rate is dependent on three parameters which describe the
equipment, in addition to error and transmission rates. These
parameters are the basis dependence of the source and a
blinding parameter and a leakage parameter characterizing the
detector.
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