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In this paper, we investigate the generation of polychromatic quadripartite entanglement of continuous variables
from a three-level �-type atomic system inside an optical quadruply resonant cavity. The atoms are driven by
external lasers and simultaneously coupled to four cavity modes by means of multiply concurrent four-wave
mixing interactions. The general master equation of the cavity field is derived explicitly. By solving the Gaussian-
type master equation and using the negative-partial-transpose criterion for bipartite entanglement, we show that
the genuine quadripartite entanglement of the field can be generated over a wide range of parameters. The
entanglement properties of the four-mode field are discussed in detail. We find that the optimal quadripartite
entanglement can be obtained when the cavity modes are tuned to be resonant with the Rabi sidebands of the
driven atoms.
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I. INTRODUCTION

Entanglement, one of the most striking features of quantum
mechanics, has become an essential resource for quantum
information processing. Multipartite optical entanglement for
continuous variables (CVs), which embodies quantum corre-
lations in phase and amplitude quadratures of light fields, has
been proven to be a key ingredient for constructing multiparty
quantum communication networks [1–4]. For instance, CV
multipartite entanglement has recently been produced and used
for realizing CV quantum error correction [5], one-way quan-
tum computations [6], and universal phase gating [7]. Also, it
has recently been shown that CV quadripartite entanglement of
the optical field is critical for building quantum teamwork [8]
and quantum dense coding communication networks [9]. By
injecting individual squeezed optical beams into combined
beam splitters, experiments have realized multiple entangled
beams with the same frequency [2,10]. Besides, a lot of
work has also been concentrated on the preparation of
multifrequency entangled beams, by utilizing nondegenerate
parametrical downconversion (NPDC) or cascaded second-
order optical nonlinearities inside an optical cavity [11–16].
This kind of multicolor entanglement is useful in the area
of quantum communication where physical systems, such as
trapped ions or atomic ensembles, with different resonances
at the nodes of a quantum network need to be connected by
entangled photons of different frequencies [17,18]. Experi-
mentally, the three-color pump-signal-idler entanglement from
a single intracavity NPDC has been realized recently [19]. In
addition, the generation of CV quadripartite entanglement of
optical fields with different frequencies via concurrent NPDC
processes has been investigated very recently [20].

In contrast, the preparation of CV entangled light via
coherent atomic systems has also been attracted a lot of
attention. Entangled photons from atomic systems have poten-
tial applications in quantum memory [21] and long-distance
quantum communication [22], since the low frequency and
narrow linewidth of the light can ensure efficient couplings
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between photons and atomic memories in a quantum network
[23,24]. Experimentally, low-frequency two-color entangled
light from nondegenerate four-wave mixing (NFWM) in a
three-level � atomic system has been generated [24–29].
Theoretically, a number of proposals for producing CV
bichromatic entanglement via NFWM in atomic systems have
also been put forward in Refs. [30–36]. For example, it shows
that two-color highly entangled light beams can be generated
via NFWM from N intracavity three-level � atomic system
close to electromagnetically induced transparency [37].

In this paper, in view of the usefulness of polychromatic
multipartite entanglement and based on the experimental
achievements in producing entangled light from coherently
driven atomic systems [24–29], we investigate the generation
of CV quadripartite entanglement of optical fields with
different frequencies in a three-level � atomic system inside
a cavity. Atoms are driven by external coherent lasers and
simultaneously coupled to the four cavity modes. The general
master equation of the cavity field is obtained explicitly. With
the help of the negative-partial-transpose criterion for bipartite
entanglement, we show that, through multiply concurrent
NFWM interactions between the cavity modes, genuine
quadripartite entanglement can be achieved inside and outside
the cavity over a wide range of parameters. It is found that
the genuine quadripartite entanglement becomes maximum
when the cavity fields are tuned to be resonant with the
Rabi sidebands of the laser-driven atoms. We also find that
quadripartite entanglement is absent for laser-atom detuning
in the vicinity of the Rabi frequencies of the lasers. This paper
is arranged as follows: In Sec. II, the model is introduced
and the general master equation of the cavity field is derived
explicitly. In the following section, III, correlation matrices
for states of the intracavity and output fields are obtained. In
Sec. V, the properties of the quadripartite entanglement are
discussed in detail. Finally, in Sec. VI we give our summary.

II. MODEL AND MASTER EQUATION

We consider an ensemble of independent three-level
� atoms inside a four-mode resonant optical cavity. As shown
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FIG. 1. (a) Schematic diagram of the quadruply resonant cavity
in which the atomic ensemble is trapped. PBS, polarization beam
splitter; DBS, dichroic beam splitter. (b) Level configuration of the
three-level � atoms and the atom-field couplings. (c) Frequencies of
the pumps and cavity fields.

in Fig. 1, the two lower levels, |1〉 and |2〉, of the atoms
are coupled to the excited level |3〉 by two driving lasers
of frequencies ωj (j = 1,2), respectively, and at the same
time the laser-driven transitions |j 〉 ↔ |3〉 are coupled to the
cavity modes ajx with frequencies ωjx (x = +,−) by means
of NFWM interactions. In the rotating frame with respect to
the laser frequencies ωj , the Hamiltonian of the cavity-atom
system can be written as

Vint = Vac + Val, (1)

Vac =
2∑

j=1

∑
x∈{+,−}

gjxajxSj3e
−ixδt + H.c., (2)

Val =
2∑

j=1

(−�jSjj /2 + �jSj3) + H.c. (3)

where �j = ωj3 − ωj , with ωj3 being the transition frequen-
cies between level |3〉 and level |j 〉 and δ = ±(ωj± − ωj ) > 0.
In the preceding Hamiltonian, Sj3 and Sjj are, respectively,
the atomic transition operators and population operators, gjx

denote the atom-cavity couplings, and �j are real Rabi
frequencies of the driving lasers.

By taking into account the damping of the atoms and the
cavity modes in vacuum, the density operator ρs of the atom-
field system is governed by the following master equation:

d

dt
ρs = −i[Vint,ρs] + Lf ρs + Laρs, (4)

Lf ρs =
∑
j,x

κjx[ajx,ρsa
†
jx] + H.c., (5)

Laρs =
∑

j

γj [Sj3,ρsS3j ] + H.c., (6)

where κjx and γj are the damping rates of the cavity modes
and the atoms, respectively. Using the master equation (4), the
reduced density operator ρ of the cavity field can be obtained
by tracing out the atomic variables. For a high-quality cavity
(κjx � γj ), the atoms approach their steady states on a time
scale much faster than the cavity field. In the times after which
the atomic transients have died away, the atomic ensemble can
be described by a stationary process and treated as an external
reservoir for the cavity field [32,36]. By taking the Markovian
approximation for the atomic reservoir, the reduced master
equation of the cavity field can be readily derived as [38]

d

dt
ρ =

∑
j,x

{
Axx

jj [a†
jx,ρajx] + (

Bxx
jj + κjx

)
[ajxρ,a

†
jx]

}

+
∑

j

∑
x ′ �=x

{
Cxx ′

jj [a†
jx,a

†
jx ′ρ] + Dxx ′

jj [ρa
†
jx,a

†
jx ′ ]

}

+
∑
j ′ �=j

∑
x ′ �=x

{
C̃xx ′

jj ′ [a†
jx,a

†
j ′x ′ρ] + D̃xx ′

jj ′ [ρa
†
jx,a

†
j ′x ′ ]

}

+
∑
j ′ �=j

∑
x

{
C̄xx

jj ′[a
†
jx,ρaj ′x] + D̄xx

jj ′ [ajxρ,a
†
j ′x]

}+ H.c.,

(7)

where

Axx
jj = ḡ2

jx

∫ ∞

0
dτe−ixδτ 〈�S3j (0)�Sj3(τ )〉,

Bxx
jj = ḡ2

jx

∫ ∞

0
dτe−ixδτ 〈�Sj3(τ )�S3j (0)〉,

Cxx ′
jj = −ḡjx ḡjx ′

∫ ∞

0
dτe−ixδτ 〈�Sj3(τ )�Sj3(0)〉,

Dxx ′
jj = −ḡjx ḡjx ′

∫ ∞

0
dτeixδτ 〈�Sj3(0)�Sj3(τ )〉,

(8)

C̃xx ′
jj ′ = −ḡjx ḡj ′x ′

∫ ∞

0
dτe−ixδτ 〈�Sj3(τ )�Sj ′3(0)〉,

D̃xx ′
jj ′ = −ḡjx ḡj ′x ′

∫ ∞

0
dτeixδτ 〈�Sj3(0)�Sj ′3(τ )〉,

C̄xx
jj ′ = ḡjx ḡj ′x

∫ ∞

0
dτe−ixδτ 〈�S3j ′ (0)�Sj3(τ )〉,

D̄xx
jj ′ = ḡjx ḡj ′x

∫ ∞

0
dτe−ixδτ 〈�Sj ′3(τ )�S3j (0)〉.
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Here, ḡjx = √
Ngjx , with N being the atomic number in

the ensemble. The atomic noise operators �Skk′ = Skk′ −
〈Skk′ 〉(k = 1,2,3), where �Skk′(0) characterize the noise oper-
ators �Skk′ evaluated at a time sufficient for the steady atomic
states to occur. From Eq. (8), we see that the coefficients in the
master equation (7) depend only on the stationary two-time
correlations of the atomic variables, as the consequence of
the Markovian treatment of the external atomic reservoir. The
coefficients Axx

jj and Bxx
jj in Eq. (7) determine the gain and

absorption of the cavity modes, respectively. The terms related
to the coefficients Cxx ′

jj and Dxx ′
jj in Eq. (7) originate from the

NFWM processes in which the atom absorbs two identical
pumping photons with frequencies ωj and emits two sideband
photons in the cavity modes aj+ and aj− via the two-level
transitions |j 〉 ↔ |3〉; that is,

|j 〉
apj−→ |3〉 a

†
j±−→ |j 〉

apj−→ |3〉 a
†
j∓−→ |j 〉, (9)

where the annihilation operators apj
and creation operators

a
†
j±, respectively, characterize the atomic absorption of a

pumping photon and emission of the corresponding sideband
photons via the atomic transitions. This kind of two-level
NFWM process may lead to entanglement between the side-
band modes aj− and aj+ [12,13]. Meanwhile, the atom may
also absorb two different pumping photons (with frequencies
ω1 and ω2, respectively) and radiate two photons into modes
a2+ and a1− [or a1+ and a2−] via transitions |1〉 ↔ |3〉 and
|2〉 ↔ |3〉, such as

|1〉 ap1−→ |3〉 a
†
2+−→ |2〉 ap2−→ |3〉 a

†
1−−→ |1〉, (10)

which lead to the terms in Eq. (7) proportional to the coeffi-
cients C̃xx ′

jj ′ and D̃xx ′
jj ′ and may result in quantum correlations

between mode ajx and mode aj ′x ′ (j �= j ′,x �= x ′) [26–28,37].
In addition, the terms related to the coefficients C̄xx

jj ′ and D̄xx
jj ′

are rooted from the NFWM processes in which the atom
absorbs a pumping photon at frequencies ωj and a sideband
photon in mode aj ′+ (or aj ′−) and radiates a photon at pumping
frequencies ωj ′ and another one in mode aj+ (or aj−) (j �= j ′),
such as

|1〉 ap1−→ |3〉 a
†
p2−→ |2〉 a2−−→ |3〉 a

†
1−−→ |1〉, (11)

which gives rise to linear mixings between cavity modes
ajx and aj ′x [39]. Therefore, we see that each cavity mode
is involved in the three kinds of NFWM processes already
described, which can lead to quadripartite entanglement
among the cavity modes.

The coefficients in Eq. (8), dependent on the stationary
two-time correlation function of the atoms, can be determined
with the help of quantum regression theorem [40]. For a
high-quality cavity (κjx � γj ) and weak effective atom-field
interactions, the atoms approach their steady states on a time
scale much faster than the cavity field. So, in the times after
which the atomic transients have died away, we can neglect
the effects of the cavity field on the stationary behavior of the
atoms (as an external reservoir for the cavity field). Therefore,
in the absence of the cavity field, from Eqs. (3) and (6) the

equations of motion of the average values 〈Skk′ 〉 (k,k′ = 1,2,3)
are given by

d

dt
〈Sjj 〉 = −2γj 〈S11〉 − 2γj 〈S22〉 − i�j 〈Sj3〉

+ i�j 〈S3j 〉 + 2γj ,
d

dt
〈Sj3〉 = −γ̄j 〈Sj3〉 − 2i�j 〈Sjj 〉 − i�j 〈Sj ′j ′ 〉

(12)
− i�j ′ 〈Sjj ′ 〉 + i�j ,

d

dt
〈S12〉 = −i�2〈S13〉 + i�1S̄32 − 2i�2〈S22〉

− i(�1 − �2)〈S12〉,
where γ̄j = (γ1 + γ2 + i�j ) (j �= j ′). By introducing a
column vector S(t) = [S13,S31,S23,S32,S11,S22,S12,S21]T ,
Eqs. (12) can be rewritten in the following compact form:

d

dt
〈S(t)〉 = L〈S(t)〉 + B, (13)

where the matrixL and the vector B can be easily obtained and
are not presented here. Letting �S(t) = S(t) − 〈S(0)〉, where
〈S(0)〉 = −L−1B, denoting the steady-state average value of
S(t), we have

d

dt
〈�S(t)〉 = L〈�S(t)〉. (14)

According to the quantum regression theorem [40], the two-
time correlation functions in Eq. (8) are governed by the
equation

d

dτ
〈�S(τ )�S(0)T 〉 = L〈�S(τ )�S(0)T 〉, (15)

with the solution given by

〈�S(τ )�S(0)T 〉 = eLτ 〈�S(0)�S(0)T 〉. (16)

By performing the Fourier transformation on Eq. (16), we have∫ ∞

0
e±iδτ 〈�S(τ )�S(0)T 〉 dτ

= −(L ± iδI )−1〈�S(0)�S(0)T 〉. (17)

Therefore, the coefficients defined in Eq. (8) can be determined
completely from Eq. (17). Since the expressions of these coef-
ficients are quite cumbersome, we calculate them numerically
in Sec. IV.

III. CORRELATION MATRIX AND
SEPARABILITY CRITERION

The quadripartite entanglement that we are interested in
refers to entanglement shared by photons in four different
cavity modes (four-mode entanglement). The entanglement
characterizes the correlations among the field’s momentum
and position components, which, respectively, correspond to
the phase and amplitude quadratures of the light fields. For
a four-mode Gaussian state, its quantum statistical properties
are completely determined by the correlation matrix (CM). The
entanglement properties of the four-mode Gaussian state can
be analyzed by use of the negative-partial-transpose criterion
[41,42].
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A. Correlation matrix

For initial vacua of the cavity modes, the cavity field will
evolve in a Gaussian state since the master equation (7) only
contains the quadratic terms of the operators ajx and a

†
jx . The

quantum statistical properties of the Gaussian cavity-field state
are completely determined by the CM, which is defined as [43]

σkk′ = 〈µkµk′ + µk′µk〉/2, (18)

where µ = (X1−,P1−,X1+,P1+,X2−,P2−,X2+,P2+) and the
quadrature operators

Xjx = (ajxe
iϕjx + a

†
jxe

−iϕjx ),
(19)

Pjx = −i(ajxe
iϕjx − a

†
jxe

−iϕjx ),

with local phases ϕjx . To determine the CM of
the cavity field, let us introduce the vector ψ =
(aj+,a

†
1+,a1−,a

†
1−,a2+,a

†
2+,a2−,a

†
2−)T . From the master

equation (7), the equations of motion for the field operators
ajx can be found as

d

dt
ψ = Mψ + F (t), (20)

where

M =
(M11 M12

M21 M22

)
, (21)

and

Mjj ′ =

⎛
⎜⎜⎜⎝

χ++
jj ′ 0 0 χ+−

jj ′

0 (χ++
jj ′ )∗ (χ+−

jj ′ )∗ 0

0 χ−+
jj ′ χ−−

jj ′ 0

(χ−+
jj ′ )∗ 0 0 (χ−−

jj ′ )∗

⎞
⎟⎟⎟⎠ ,

with χxx
jj = Axx

jj − Bxx
jj − κx

j , χxx
jj ′ = C̄xx

jj ′ − D̄xx
j ′j , χxx ′

jj =
Cxx ′

jj − Dxx ′
jj , and χxx ′

jj ′ = C̃xx ′
jj ′ − D̃x ′x

j ′j (j ′ �= j,x ′ �= x). The
noise operators in Eq. (20) are defined as F (t) =
[f1+,f

†
1+,f1−,f

†
1−,f2+,f

†
2+,f2−,f

†
2−]T , and according to the

generalized Einstein relation [40], the noise operators satisfy
〈
Fj (t)FT

j ′ (t ′)
〉 = Djj ′δ(t − t ′), (22)

in the normal ordering of the field operators ajx . Here, the
matrix D is given by

D =
(D11 D12

DT
12 D22

)
, (23)

where

Djj =

⎛
⎜⎜⎜⎝

0 αj βj 0

αj 0 0 β∗
j

βj 0 0 αj

0 β∗
j αj 0

⎞
⎟⎟⎟⎠ ,

D12 =

⎛
⎜⎜⎜⎝

0 η µ 0

η∗ 0 0 µ∗

µ 0 0 η

0 µ∗ η∗ 0

⎞
⎟⎟⎟⎠ ,

and αj = A+
j + (A+

j )∗, βj = C+−
jj + C−+

jj , η = C̄++
12 +

(C̄++
21 )∗, and µ = C̃+−

12 + (C̃−+
21 )∗. Defining � = 〈ψψT 〉, from

Eq. (20) we have

d

dt
� = M� + �MT + D. (24)

For the initial vacuum of the cavity field [�(t = 0)], the
solution of Eq. (24) can be obtained as

�(t) =
∫ t

0
eMτDeM

T τ . (25)

Therefore, from Eq. (25) the average values 〈a†
jxaj ′x ′ 〉 and

〈ajxaj ′x ′ 〉 can be obtained. Then, with the definition in
Eqs. (18) and (19), the elements of the intracavity CM can
be determined completely; that is,

σ11 = 2�12 + �11e
2iϕ1+ + �22e

−2iϕ1+ + 1. (26)

In addition, for the field outside the cavity, the spectrum
of the CM σo(ω) of the output field can be obtained with the
help of the intracavity spectral correlations, which are given
by [44]

S(ω) = (M + iωI )−1D(MT − iωI )−1. (27)

By defining the output quadrature operators Xo
jx and P o

jx

of output modes ao
jx (corresponding to intracavity fields

ajx) as Xo
jx = (ao

jxe
iϕjx + a

o†
jxe

−iϕjx ), P o
jx = −i(ao

jxe
iϕjx −

a
o†
jxe

−iϕjx ), with the standard input-output relations ao
jx =√

2κjxajx − ain
jx [45], where ain

jx denote the vacuum inputs
of the cavity modes ajx , the spectral correlations σo

kk′(ω) of the
output field can be simply derived from Eq. (27). For example,
we have 〈(

Xo
jx

)2〉
(ω) = 1 + 2kjx

〈
X2

jx

〉
(ω),

(28)〈
Xo

jxX
o
j ′x ′

〉
(ω) = 2

√
kjxkj ′x ′ 〈XjxXj ′x ′ 〉(ω),

and similarly for the P o
jx quadratures.

B. Criterion for genuine quadripartite entanglement

For a physically allowable four-mode Gaussian cavity-field
state with the CM σ defined in Eq. (18), the positivity of
the density operator ρ of the cavity field can be equivalently
expressed, in terms of the CM σ , as the uncertainty relation
[41]

σ + i� � 0, (29)

where the symplectic matrix � is block diagonal and defined
as � = ⊕4

k=1 νk , with νk = ( 0 1
−1 0 ). The symplectic matrix

� results from the commutation rules [Xjx,Pj ′x ′ ] = δjj ′δxx ′ .
To discuss bipartite entanglement in the four-mode system,
we divide the system into subsystem A of n modes and
subsystem B of 4 − n modes. According to the negative-
partial-transpose criterion [41,42], there exists the bipartite
entanglement between subsystem A and subsystem B if the
partially transposed density operator ρ̃A (or ρ̃B) of the field
operator ρ with respect to subsystem A (or B) is negative.
Accordingly, denoting by σ̃A the partial transpose on the CM
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σ with respect to subsystem A, from Eq. (30), subsystems A

and B are entangled when

σ̃A + i� < 0. (30)

Note that the preceding negative-partial-transpose criterion for
bipartite entanglement between subsystem A and subsystem
B is sufficient and necessary for n = 1 and only sufficient
for n > 1 [42]. Here, the partially transposed CM σ̃A can
be obtained by changing the sign of the n momenta {Pjx}
belonging to subsystem A. Moreover, if Eq. (30) holds for all
possible bipartitions of the present four-mode system, which
indicates that all possible bipartite entanglements exist in the
system, the state of the cavity field is fully inseparable and
the genuine quadripartite entanglement among the four cavity
modes can be achievable. Therefore, here we can use the
negative eigenvalue EA of matrices σ̃A + i� to analyze the
properties of the quadripartite entanglement of the system [46].
In addition, it is shown that a smaller negative eigenvalue EA

means a stronger bipartite entanglement between subsystem
A and subsystem B [42,46].

IV. RESULTS AND DISCUSSION

With the help of the negative-partial-transpose criterion
[Eq. (30)], we can discuss the properties of quadripartite
entanglement in the system via numerical calculation. For
the sake of simplicity, in the following discussion we assume
that the collective cavity-atom couplings ḡjx = ḡ = √

Ng,
Rabi frequencies of lasers �j = �, damping rates of cavity
fields κjx = κ , and atomic decay rates γj = γ . In addition, the
parameters are scaled by the atomic decay γ .

A. Dispersive dressed-atom/cavity interactions

For symmetric laser-atom detunings �1 = −�2 = �, the
time evolution of the intracavity bipartite entanglements for
different bipartitions and the output entanglement spectra are
plotted in Figs. 2(a) and 2(b), respectively. Here the negativities
Ejx characterize the bipartite entanglements between the
cavity field ajx and the subsystem of the remaining cavity
fields (1 × 3 bipartition), and the negativities Ejxj ′x ′ describe
the bipartite entanglements between the subsystem consisting
of cavity fields ajx and aj ′x ′ and the subsystem consisting of
the remaining cavity fields (2 × 2 bipartition). From Fig. 2,
we see that the negativities Ejx < 0 and Ejxj ′x ′ < 0 for
all possible bipartitions, which means that fully inseparable
(genuine) quadripartite entanglement can be achieved inside
and outside the cavity. As depicted in Fig. 2(a), bipartite
entanglements inside the cavity exhibit short-time oscillations,
and entanglements reach their steady values in the long-time
limit. So stationary genuine quadripartite entanglement can
be obtained in this scheme. Figure 2(a) also shows that
the negativities Ej+ = Ej ′−(j �= j ′) and thus the bipartite
entanglements between cavity field aj+ and the subsystem
of the remaining fields are equal to those between the cavity
field aj ′− and the other fields. From Fig. 2(b), we can see
that the output bipartite entanglements become maximum at
cavity resonant frequencies (ω = 0) and are stronger than
the corresponding intracavity entanglements in the steady-
state regime. Additionally, our numerical calculation reveals

FIG. 2. Time evolution (a) and output spectra (b) of the negative
eigenvalues Ejx and Ejxj ′x′ , which characterize the bipartite entan-
glements between field ajx and the remaining fields and the bipartite
entanglements between the subsystem of fields ajx and aj ′x′ and the
remaining fields, respectively. The parameters are chosen as ḡ = 1,
� = 45, � = 20, δ = 40, and κ = 0.002.

that the negativities Ejx and Ejxj ′x ′ (thus the quadripartite
entanglement) are independent of the local phases ϕjx of cavity
fields ajx .

Generation of the genuine quadripartite entanglement
shown in Fig. 2 can be understood in the dressed-state
representation of the laser-driven atoms. The dressed states
are the eigenstates of the laser-atom interaction Hamiltonian
in Eq. (3), and in the Appendix approximate expressions of
the coefficients in Eq. (8) are obtained in the dressed-state
representation. Here, for the symmetric coupling case �1 =
−�2, the dressed states can be obtained as

⎛
⎜⎝

|1d〉
|2d〉
|3d〉

⎞
⎟⎠ =

⎛
⎜⎜⎝

1−sin θ
2

1+sin θ
2 − cos θ√

2

− cos θ√
2

cos θ√
2

sin θ

1+sin θ
2

1−sin θ
2

cos θ√
2

⎞
⎟⎟⎠

⎛
⎜⎝

|1〉
|2〉
|3〉

⎞
⎟⎠ , (31)
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with the corresponding eigenvalues λ1 = −�d , λ2 = 0, and
λ3 = �d , where sin θ = �/�d , and the generalized Rabi
frequency is given by

�d =
√

�2 + 2�2. (32)

For the parameters given in Fig. 2, the laser-cavity detuning δ

satisfies

|�d ± δ| 
 γ. (33)

Equation (33) means that far-off-resonant couplings between
dressed atoms and cavity fields and dispersive interactions
are formed between dressed atoms and cavity fields. Under
this condition, we can neglect the effects of the spontaneous
emission of atoms on the cavity fields, and then it is not difficult
to find from Eqs. (A5) and (A6) that the master equation (7)
becomes

d

dt
ρ ≈ −i[Veff,ρ] + Lf ρ, (34)

with the effective Hamiltonian

Veff = χs(a
†
1+a1+ + a

†
1−a1− − a

†
2+a2+ − a

†
2−a2−)

+χp(a1+a1− − a2+a2−) + χm(a†
1+a2+ − a

†
1−a2−)

+ H.c., (35)

where

χs = − ḡ2 sin3 θ�d

2
(
�2

d − δ2
)(

P d
22 − P d

11

)
,

χp = ḡ2 sin(2θ )�d

2
(
�2

d − δ2
) (

P d
22 − P d

11

)
, (36)

χm = ḡ2 cos2 θδ

2
(
�2

d − δ2
)(

P d
22 − P d

11

)
,

and the steady-state atomic populations P d
kk in dressed states

|kd〉 are given by

P d
22 = cos4 θ

1 + 3 sin4 θ
,

(37)

P d
11 = P d

33 = 1 − P d
22

2
.

So, for the case �1 + �2 = 0, the present system with dis-
persive dressed-atom-cavity interactions reduces effectively
to two independent detuned NPDC oscillators, with beam-
splitter-like (BSL) interactions between cavity field a1x and
cavity field a2x . Entanglement between cavity field aj+ and
cavity field aj− can be established directly via the relevant
NPDC interactions. Furthermore, by virtue of the BSL interac-
tions, quantum correlations between the indirection-coupling
cavity fields a1+ and a2− (and a2+ and a1−) can also be estab-
lished [48]. Consequently, genuine quadripartite entanglement
can be achieved among the four cavity fields. Evidently, the
short-time oscillations of bipartite entanglements, shown in
Fig. 2, result from BSL interactions between the cavity fields.
Meanwhile, due to the asymmetry of the Hamiltonian in
Eq. (35) with respect to aj+ ↔ aj ′−(j �= j ′), we thus have
the negativities Ej+ = Ej ′− in Fig. 2. In addition, we see
that the strengths of the effective NPDC and BSL interactions
are proportional to the dressed-state population differences

FIG. 3. (a) Possible two-photon cascaded transition channel
which realizes the effective NPDC interaction between cavity field
a1+ and cavity field a1−. (b) Two-photon Raman transition of the
dressed atoms which leads to the BSL interaction between cavity
field a1+ and cavity field a2+ in Eq. (35).

P d
22 − P d

11, indicating that the achieved quadripartite entangle-
ment is dependent on the atomic coherence induced by the
pumping lasers.

Physically, the effective NPDC and BSL interactions in
Eq. (35) for dispersive dressed-atom-cavity interactions result
from the two-photon cascaded transitions of the dressed atoms.
In Fig. 3(a), the possible two-photon cascaded transition
channel realizing the NPDC interactions between cavity
fields a1+ and a1− in Eq. (35) is plotted. It shows that,
by absorbing two pumping photons of frequency ω1, the
dressed atom at first jumps from the dressed state |2d〉 to
level |1d〉 by emitting a photon in the field a1+; then, since
this one-photon transition is far off resonance [by Eq. (33)],
the dressed atom immediately emits another photon in field
a1− to level |2d〉. In this two-photon cascaded transition,
the conditions of the one-photon far-off resonance and the
two-photon resonance are obeyed, which therefore leads to
an effective NPDC interaction between field a1+ and field
a1−. Due to the destructive interference effect in the NFWM
process [32,47], we see that the strength of the effective NPDC
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FIG. 4. Dependence of steady-state intracavity bipartite entan-
glements [characterized by the negative eigenvalues Ejx(∞) and
Ejxj ′x′ (∞)] on laser-atom detuning �. Other parameters are chosen
as in Fig. 2.

interactions is proportional to the dressed-state population
difference P d

22 − P d
11. In addition, BSL interactions between

cavity fields result from two-photon Raman transitions, which
are shown in Fig. 3(b). It shows that in this transition with
one-photon far-off resonance and two-photon resonance, the
photon in field a1+ is emitted and the other photon, in field a2+,
is absorbed, which leads to BSL interactions between cavity
fields a1+ and a2+.

In Fig. 4, we plot the dependence of stationary intracavity
bipartite entanglements [characterized by negativities Ejx(∞)
and Ejxj ′x ′ (∞), respectively] on the laser-atom detuning �.
It shows that bipartite entanglements do not occur for � = 0,
since the atom is trapped in the dark state (|1〉 − |2〉)/√2, and
we thus have sin θ = 0 and χs,p = 0 in Eq. (35). Neverthe-
less, BSL interactions still exist (χm �= 0) for � = 0, which
essentially leads to opacity of the electromagnetically induced
transparency for quantum fluctuations studied in Ref. [49].
Further, as shown in Fig. 4, the bipartite entanglements also
disappear in the vicinity of the detuning � = � = 20. This
is because, for � = �, the dressed-state populations P d

kk =
1/3(k = 1,2,3) [see Eq. (37)] and the coupling strengths
χs,p,m = 0 in Eq. (35). Therefore, with the condition that
detuning � = �, we see that quadripartite entanglement
cannot be generated in a system with dispersive dressed-
atom/cavity interactions, due to the completely destructive
quantum interference in NFWM processes [47]. Also, we see
that bipartite entanglements are maximal in the vicinity of the
laser-atom detuning � = 30. In Fig. 5, variations in steady
intracavity bipartite entanglements with laser-cavity detuning
δ are shown for the given detuing � = 30. From Fig. 5, we
can see that bipartite entanglements obtain their optimal values
around the detuning δ = 40. In addition, Figs. 4 and 5 show
that genuine quadripartite entanglement can be achieved in a
system with a wide range of control parameters.

B. Dissipative dressed-atom-cavity interactions

As shown in Figs. 4 and 5, bipartite entanglements in the
system become maximum in the vicinity of detunings � = 30

FIG. 5. Dependence of steady-state intracavity bipartite entangle-
ments [characterized by negative eigenvalues Ejx(∞) and Ejxj ′x′ (∞)]
on laser-cavity detuning δ for laser-atom detuning � = 30; other
parameters chosen as in Fig. 2.

and δ = 40 for the given Rabi frequency � = 20 of the driving
lasers. Evidently, in this case the condition in Eq. (33) for
generating dispersive interactions between the dressed atoms
and the cavity is not yet satisfied, and the laser-cavity detuning
δ meets approximately

δ = �d, (38)

which indicates that the cavity fields are resonantly coupled to
the dressed atoms and leads to the dissipative dressed-atom-
cavity interactions. Obviously, in this situation, the quadripar-
tite entanglement in the system is no longer determined by the
effective Hamiltonian in Eq. (35) and it is fully governed by
the master equation (7) with the coefficients in Eq. (8) being
real [see Eq. (A6)].

In Figs. 6(a) and 6(b), intracavity and output bipartite
entanglements for dissipative dressed-atom-cavity interactions
(δ = �d ) are plotted, respectively. From these figures, we
see that steady-state bipartite entanglements inside the cavity
and output entanglements with frequency shift ω = 0 are
much stronger than the corresponding entanglements for
the dispersive case shown in Fig. 2. Therefore, combined
with Fig. 4, Fig. 6 shows that the genuine quadripartite
entanglement becomes maximum when the cavity fields are
tuned to be resonant to the dressed atoms (δ = �d ). Also,
Fig. 6(a) shows that short-time oscillations of the bipartite
entanglements are not present and the entanglements achieve
steady-state values much faster than those shown in Fig. 2.
This is due to the dissipative effect of the external atomic
reservoir, resulting from spontaneous emission of atoms, on
the cavity fields. Furthermore, Fig. 6(b) shows that output
bipartite entanglements with ω = 0 are much stronger than
the corresponding steady entanglements in the cavity. Hence,
a strong genuine quadripartite entanglement can be generated
in the output field at cavity resonant frequencies with the
condition δ = �d . Under this condition, it is not difficult
to find, in the Appendix, that when the laser-atom detuning
� = 0, at which atoms are pumped into dark states, the master
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FIG. 6. Time evolution (a) and output spectra (b) of bipartite
entanglement characterized by negative eigenvalues Eajx

and Eajxaj ′x′
for � = 30, δ = �d , and other parameters as in Fig. 2.

equation (7) becomes

d

dt
ρ ≈

(
ḡ2

4γ
+ κ

)∑
j,x

(2ajxρa
†
jx − a

†
jxajxρ − ρa

†
jxajx)

− ḡ2

4γ

∑
x

(2a1xρa
†
2x − a1xa

†
2xρ − ρa1xa

†
2x + H.c.).

(39)

Here, we use the fact that dressed-state population P d
22 = 1

for � = 0. One can find that Eq. (39) is exactly the same as
the evolution equation of the density matrix of a two-mode
cavity field interacting with a three-level atomic system in
Ref. [50]. Evidently, entanglement does not occur in this
situation. Nevertheless, the linear mixings between the cavity
fields described by Eq. (39) are still present, which was
proposed for noise-free amplification of the quantum states of
the cavity field in Ref. [50]. Again, we find that for dissipative
interactions, the quadripartite entanglement also disappears

when the detuning � = �, since under this condition the
elements Mjj ′ of the drift matrix M in Eq. (20),

Mjj ′ ∼ (
P d

22 − P d
11

)
, (40)

for κ = 0. Therefore, from the preceding discussion, we
find that the genuine quadripartite entanglement becomes
maximum for dissipative dressed-atom-cavity interactions,
and entanglement cannot be achieved when the laser-atom
detuning � = �.

V. CONCLUSIONS

In conclusion, the generation of CV quadripartite entan-
glement of optical fields with different frequencies from a
three-level � atomic system inside a cavity is investigated.
We show that through multiply concurrent four-wave mixing
processes, genuine quadripartite entanglement can be achieved
inside and outside the cavity over a wide range of parameters.
With the help of a dressed-state analysis, we show that
for dispersive dressed-atom/cavity interactions, the generated
quadripartite entanglement results from the effective NPDC
and BSL interactions between the cavity fields. We find
that genuine quadripartite entanglement becomes maximum
when the cavity fields are tuned to be resonant with the
Rabi sidebands of the driven atoms. In addition, we show
that quadripartite entanglement cannot be achieved when the
laser-atom detuning � is in the vicinity of the Rabi frequencies
� of the driving lasers. The present system can serve as a
potential source of polychromatic quadripartite entanglement
which is useful in quantum communication networks.
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APPENDIX: EXPRESSIONS OF THE COEFFICIENTS IN
EQ. (8) DERIVED IN THE ATOMIC DRESSED-STATE

REPRESENTATION

In this Appendix, we give the approximate expressions of
the coefficients in Eq. (8) in the dressed-state representation
of laser-driven atoms. Dressed states are eigenstates of the
laser-atom Hamiltonian in Eq. (3) and given by

|kd〉 = Mk1|1〉 + Mk2|2〉 + Mk3|3〉 (k = 1,2,3), (A1)

where

Mk1 = �1�2

Dk

, Mk2 = λk�̃1 + �2
1

Dk

, Mk3 = �2�̃1

Dk

, (A2)

Dk =
√(

λk�̃1 − �2
1

)2 + �2
2�̃

2
1 + �2

1�
2
2, (A3)

with �̃j = �j + λj (j = 1,2) and λk being the roots of the
equation

(�1 + λ)
[
λ(�2 + λ) − �2

2

] − �2
1(�2 + λ) = 0. (A4)
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By defining the dressed operators Rkk′ = |kd〉〈k′
d |, and with the

same method used to derive Eq. (17), the coefficients in Eq. (8)
can be derived with the help of the secular approximation [38],
and we have

Axx
jj = Ng2

jx

3∑
k �=k′=1

P d
kk

(
ξ

j

kk′
)2

Fkk′(δ),

Bxx
jj = Ng2

jx

3∑
k �=k′=1

P d
k′k′

(
ξ

j

kk′
)2

Fkk′(δ),

Cxx ′
jj = −Ngjxgjx ′

3∑
k=1

P d
kk

∑
k′ �=k

ξ
j

kk′ξ
j

k′kF
∗
kk′(−δ), (A5)

C̃xx ′
jj ′ = −Ngjxgj ′x ′

3∑
k=1

P d
kk

∑
k′ �=k

ξ
j

k′kξ
j ′
kk′F

∗
kk′(−δ),

C̄xx
jj ′ = Ngjxgj ′x

3∑
k=1

P d
kk

∑
k′ �=k

ξ
j

kk′ξ
j ′
kk′Fkk′(δ),

Dxx ′
jj = (Cxx ′

jj )∗[δ → −δ], D̃xx ′
jj = (C̃xx ′

jj )∗, and D̄xx ′
jj =

(C̄xx ′
jj )∗. Here, P d

kk are the steady atomic populations in
dressed states |kd〉, and

Fkk′(δ) = 1

�kk′ + i�kk′ + ixδ
, (A6)

where �kk′ = λk − λk′ is the energy difference between the
dressed states |kd〉 and |k′

d〉. The parameters ξ
j

kk′ and decay

rates �kk′ are given by

{
ξ

j

kk′
} =

⎛
⎜⎝

c31cj1 c31cj2 c31cj3

c32cj1 c32cj2 c32cj3

c33cj1 c33cj2 c33cj3

⎞
⎟⎠ , (A7)

with

{ckk′ } =

⎛
⎜⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎟⎠

−1

, (A8)

and

�12 =
2∑

j=1

γj

(
ξ

j

11 + ξ
j

22 + ξ
j

12 + ξ
j

21 + ξ
j

13 + ξ
j

23

)
,

�13 =
2∑

j=1

γj

(
ξ

j

11 + ξ
j

33 + ξ
j

13 + ξ
j

31 + ξ
j

12 + ξ
j

32

)
, (A9)

�23 =
2∑

j=1

γj

(
ξ

j

22 + ξ
j

33 + ξ
j

23 + ξ
j

32 + ξ
j

21 + ξ
j

31

)
.

It should be noted that here we take into account only
the sideband transitions of the dressed atoms and neglect
the central-peak transitions since the expressions from these
processes are very complicated, and moreover, they contribute
little to the entanglement of the cavity field for the case
δ 
 γj [32,34].
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