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Dynamics of a quantum reference frame undergoing selective measurements
and coherent interactions

Mehdi Ahmadi, David Jennings, and Terry Rudolph
Institute for Mathematical Sciences, Imperial College London, London SW7 2PG, United Kingdom and

Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
(Received 13 May 2010; published 22 September 2010)

We consider the dynamics of a quantum directional reference frame undergoing repeated interactions. We first
describe how a precise sequence of measurement outcomes affects the reference frame, looking at both the case
that the measurement record is averaged over and the case wherein it is retained. We find, in particular, that there
is interesting dynamics in the latter situation, which cannot be revealed by considering the average case. We
then consider in detail how a sequence of rotationally invariant unitary interactions affects the reference frame,
a situation, which leads to quite different dynamics than the case of repeated measurements. We then consider
strategies for correcting reference frame drift if we are given a set of particles with polarization opposite to the
direction of drift. In particular, we find that, by implementing a suitably chosen unitary interaction after every
two measurements, we can eliminate the rotational drift of the reference frame.
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I. INTRODUCTION

It is common to assume the control fields used to manipulate
quantum systems are of infinite strength and, therefore,
classical. It is possible, however, to relax this assumption, and
to treat them within the quantum formalism [1]—that is, as
systems of bounded size and strength, and to then investigate
the limitations that this finiteness does or does not impose.
From the perspective of quantum computing, this could be
desirable because the inevitable miniaturization of quantum
information processing devices—such as ion trap chips—may
make using small strength control fields a necessity (current
proposals would require hundreds of watts of laser power for
a full-scale quantum computation). From the perspective of
quantum communication, the issue of finite-sized reference
frames raises interesting questions regarding the fact that the
shared references commonly used by the separated parties
can drift, and realigning them requires further resource
expenditure. Finally, there are interesting foundational reasons
for considering finite-sized references [2–5]. An example is the
work on finite-precision measurements, black-hole entropy,
and symmetry deformations [6,7]. Another example, more
pertinent to the work to be presented here, is the work on
quantum clocks—for instance, the Page-Wootters model of a
clock, which has developed into the conditional probability
interpretation of time in quantum gravity [8].

In this paper, we continue a line of investigation [9,10] into
a simple model of degradation of a quantum reference frame
consisting of a large spin system as it repeatedly interacts
with a series of incoming source particles. In Ref. [11],
this program of investigation was initiated by considering
a source of unpolarized spin-1/2 particles, each of which
has its component of spin measured against a reference spin
directional frame, by implementing the optimal measurement
[10] for determining the relative direction between the frame
and the system. An example of such a procedure might be the
measurement of qubits in a BB84 key-distribution protocol
by a finite-strength magnetic field. The conclusion there was
that, in such circumstances, the reference would be useful for
a time (number of uses) that scales quadratically in the size

(i.e., spin) of the reference. This conclusion was shown to be
quite generally true for rotationally invariant source particles
in Ref. [12]. In Ref. [13], the investigation was simplified and
was extended to the case where the source of particles has
some net polarization—such as in a B92-type key distribution,
for example. An interesting result of Ref. [13] was that, in this
instance, the drift of the reference frame was more important to
its degradation than the diffusion caused by the entanglement
with the particles, and now the reference would only be useful
for a time linear in its size.

Both Refs. [13] and [11] considered the case of measuring
the source particles against the reference frame. The results
of Ref. [12] also apply, however, to the case where we use
the reference as a mechanism for doing coherent (unitary)
interactions between the reference and an unpolarized stream
of source particles. In this paper, we consider the case of
degradation when we do coherent interactions between the
reference system and a polarized source of particles. We also
consider how well one might correct for the reference frame
drift in a simple model wherein we are given, in addition to the
polarized set of source particles, a smaller number of particles,
which are known to have a polarization in a direction opposite
to those of the source. We begin, however, by revisiting the
case of using the reference to implement measurements on
a polarized source of particles, exploring in more detail the
dynamics in the case that the measurement results are not
averaged over.

II. EVOLUTION OF THE REFERENCE FRAME UNDER
MEASUREMENT INTERACTIONS

We briefly introduce the formalism for our investigations
by recapping the case of a directional quantum reference
frame (QRF) used for measurement; for the most part, we
are following the formulation of Ref. [13].

In standard quantum measurement schemes, for which we
presume the reference frame to be classical, in order to measure
the spin component S of a particle along a direction n̂, we use
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the projections

Pn = I2

2
± n̂ · S. (1)

Now, the question arises: What do we mean by a classical
reference frame and in which aspects it is different from a
quantum mechanical reference frame? A QRF is different from
its classical counterpart in two ways. First, due to the inherent
uncertainty in its direction, the measurement results are only an
approximation of what would be obtained using the classical
reference frame. Second, each time the quantum reference
frame is used, it suffers a backaction, which causes the future
measurements to be less accurate.

We model the QRF as a spin-l particle, the spin components
described in the normal manner by an operator L, and consider
it being used to make measurements of the direction of a
series of spin-1/2 particles, each described by an operator S.
A measurement of the relative orientation between the QRF
and one particle is given by a measurement of J 2 = (L + S)2

(the optimal measurement [11] for determining the relative
orientation), that is, projection onto the j = l ± 1

2 irreducible
representations (irreps) as described by projectors,

�± = 1

2

(
I2d ± 4L · S + I2d

d

)
, (2)

with

�+ + �− = I2d , (3)

where d = 2l + 1. To verify this works as an approximate
measurement of the particle’s spin, we then calculate the
partial trace over the reference, initially in a state ρ, which
yields positive operator-valued measure (POVM) operations
corresponding to the two outcomes given by

�±
ρ = TrR [�±(ρ ⊗ I2)] = 1

2

(
I2 ± 4〈L〉 · S + I2

d

)
. (4)

Note that the induced measurement on the source only depends
on the expectation values of angular momentum of the
reference frame, and we can write

�+
ρ = l + 1

d
I2 + n̂ρ · S,

(5)

�−
ρ = l

d
I2 − n̂ρ · S,

where

n̂ρ = 〈L〉
l + 1

2

. (6)

As is clear, this induced measurement is an approximation of
what we have in Eq. (1) such that as l approaches infinity this
approximation becomes more and more accurate.

After the reference frame has been used to measure a source
particle, it experiences a backaction that can be described as
a quantum channel, or a completely positive trace-preserving
map [14], which depends on the polarization direction of the
source particles S. Note that, for the moment, we presume the
specific measurement result obtained is ignored. To derive this
map, we consider

E[ρ] = Trs [�+(ρ ⊗ ξ )�+ + �−(ρ ⊗ ξ )�−], (7)

in which ρ is the state of the reference frame and ξ is the state
of the source particle. Using the expressions for �±, we may
express this channel as

E[ρ] =
(

1

2
+ 1

2d2

)
ρ + 8

d2
Trs [L · S(ρ ⊗ ξ )L · S]

+ 2

d2
[ρ(L · 〈S〉) + ρ(L · 〈S〉)]. (8)

This expression is coordinate independent and as such we can
choose to introduce a background frame in which the source
particles have their spin aligned along the Z axis. In this case,
the state of the sources is given by ξ = 1

2 (I + zσz) so that
〈Sz〉 = z/2 and 〈Sx〉 = 〈Sy〉 = 0, and

E[ρ] =
(

1

2
+ 1

2d2

)
ρ + 2

d2

∑
i=x,y,z

LiρLi

+ z

d2
(Lzρ + ρLz + L+ρL− − L−ρL+). (9)

This can be written in the more illuminating form:

E[ρ] =
(

1

2
+ 1 − z2

2d2

)
ρ + 2

d2
(Lz + z/2)ρ(Lz + z/2)

+ 1 + z

d2
L+ρL− + 1 − z

d2
L−ρL+. (10)

As shown in Ref. [13], the reference frame to leading order
suffers a drift in its orientation due to nonzero polarization in
the measured particles. This drift tends to align the reference
frame with that of the stream of polarized source particles
and constitutes an equilibrium condition in the absence of
depolarization effects.

To analyze the relative orientation between the QRF and the
source particles, we consider an orthonormal frame (x̂ ′,ŷ ′,ẑ′),
obtained from the Cartesian frame (x̂,ŷ,ẑ) via a rotation,
which transforms (Lx,Ly,Lz) → (L′

x(θ ),L′
y(θ ),L′

z(θ )) such
that 〈L′

x(θ )〉 = 〈L′
y(θ )〉 = 0 and 〈L′

z(θ )〉 = rl for some frac-
tional r . Here, r quantifies the polarization of the quantum
reference frame, which is aligned along the direction ẑ′. Since,
by symmetry, the QRF will remain in the X-Z plane, the
transformation is a rotation about the Y axis and takes the
form L′

x(θ ) = Lx cos θ − Lz sin θ,L′
y(θ ) = Ly and L′

z(θ ) =
Lz cos θ + Lx sin θ . In Ref. [13], it was shown that, in the
limit of large l, the map (10) can be approximated to O(1/l)
as

E[ρ] ≈ ρ + i
rz

2l
sin θ [Ly,ρ], (11)

where θ is the angle between the polarization of the sources
(Z axis) and the polarization of the reference frame. Conse-
quently, the measurement process produces an average rotation
of the reference frame through an angle �(θ ) = − rz

2l
sin θ

toward the polarization direction of the sources.

A. Beyond the average map

Equation (10) provides the evolution of the reference frame
due to a measurement process in which we discard the actual
measurement outcome and represents the average evolution
of the reference frame. However, we obtain a more accurate
evolution if we take into account the specific sequence of
measurement outcomes.
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The average map E[ρ] can be written as

E[ρ] = p+E+[ρ] + p−E−[ρ], (12)

where a ± outcome occurs with probability p± and the QRF
evolves according to

E±[ρ] = Trs [�±(ρ ⊗ ξ )�±]/p±, (13)

or more explicitly,

p±E±[ρ] =
(

1

4
± 1

2d
+ 1 − z2

4d2

)
ρ ± z

2d
(ρLz + Lzρ)

+ 1

d2

(
Lz + z

2

)
ρ

(
Lz + z

2

)
+ 1 + z

2d2
L+ρL− + 1 − z

2d2
L−ρL+.

As in the first part of Sec. II, these maps may be approximated
to O(1/l) as

E±[ρ] ≈ ρ

2p±
± z

4lp±
(ρLz + Lzρ) + i

zr

4lp±
sin θ [Ly,ρ],

where the probability of a plus or minus outcome is p±(θ ) =
1
2 ± 1

2zr cos θ for l � 1.
Recall that we have defined the angle of inclination of the

QRF in terms of vanishing expectation values, in particular,
the relation Tr [L′

x(θ±)E±[ρ]] = 0 defined the angle θ± that the
transformed state E±[ρ] made with the Z axis, while on the
other hand, Tr [L′

x(θ )ρ] = 0 defined the initial angle θ . Since
�± = θ±−θ , we find that �± is determined from the relation

sin �±
sin(�± + θ )

+ zr

2l
cos �±

± z

2rl2

[
2
〈
L2

z

〉 − cot (�± + θ )〈{Lz,Lx}〉
] = 0. (14)

The unusual terms are the quadratic expectation values
in the square brackets, which indicate that the dynamics
depends on reference frame observables beyond simply the
polarization. After many measurements, the dependence on
these observables will tend to cancel on average, however,
for a small number of measurements, their influence is of
importance.

The polarizations of the source particle and the QRF
together define a distinguished frame, which is described by
the triple (L′

x(θ ),L′
y(θ ),L′

z(θ )). In this natural frame, we find
that

tan �±

= − zr
2l

sin θ ± z
rl2 [cos θ〈L′

x(θ )L′
z(θ )〉 − sin θ〈L′

x(θ )2〉]
1 + zr

2l
cos θ ± z

rl2 [cos θ〈L′
z(θ )2〉 − sin θ〈L′

x(θ )L′
z(θ )〉] ,

where we have used that the transformed angular momen-
tum operators obey the usual su(2) commutation relations
[L′

i(θ ),L′
j (θ )] = iεijkL

′
k(θ ) [15,16]. We now consider two

interesting classes of states, for which more explicit analytic
solutions for �± exist.

1. Partially coherent states

Since a distinguished frame exists for which the QRF
is initially in a state for which 〈L′

x(θ )〉 = 〈L′
y(θ )〉 = 0 and

〈L′
z(θ )〉 = rl, we can restrict to a class of states with the

property that the initial state ρ obeys

Tr [ρL′
i(θ )L′

j (θ )] = 〈l,rl|LiLj |l,rl〉 (15)

for any choice of i and j . These states possess a high degree
of symmetry about their axis of polarization and include, as a
special case, coherent states. In this set of states, we obtain �±
in a form that only depends on its initial angle of inclination
θ ,

�± = −arctan
(

z sin θ{r2 ± [l(1 − r2) + 1]}
2rl(1 ± zr cos θ )

)
. (16)

For r = ±1, we have perfectly coherent states and find that
�± vanishes in the l → ∞ limit, as expected, and the QRF
becomes a fixed classical reference frame. Indeed, for this
perfectly coherent state, we find that �− = 0 for all θ , which
occurs since the rank of the corresponding projector is 2l + 2
and the initial state lies entirely in its support.

However, for −1 < r < 1, we see that as l → ∞ the
rotation angles �± are nonzero, in contrast to the average
map. We find that

lim
l→∞

�± = ±arctan

[
z(r2 − 1) sin θ

2r(1 ± zr cos θ )

]
, (17)

which reflects that the QRF does not have perfect polarization
along its axis.

Indeed, from Eq. (5) it can be seen that for 〈L〉 · S = rlS ′
z(θ )

in the limit l → ∞, the source particles do not undergo a
perfect projective measurement but instead are subject to a
fuzzy measurement with POVM operators �±

ρ = (1/2)(I ±
2rn̂ · S).

For the QRF, the large transverse fluctuations in 〈L′
x(θ )2〉

are affected by the projection �l±1/2 and lead to a nonvanishing
asymptotic rotation of the QRF.

In Fig. 1, we compare our analytical expression (16) with
numerical results for a set of mixed initial states of the form

ρ = p exp[−iβLy]|l,k1〉〈l,k1| exp[iβLy]

+ (1 − p) exp[−iβLy]|l,k2〉〈l,k2| exp[iβLy], (18)

and find excellent agreement. Indeed, this analytic expression
provides a reasonably robust approximation, allowing for a
few percent mixing of a random state to the pure partially
coherent states. In such cases, the analytic expressions tend to
slightly overestimate the angles of rotation.

A convenient subset of these partially coherent
states is given by ρ = exp[−β(r)L′

z(θ )]/Z, where Z =
Tr {exp[−β(r)L′

z(θ )]}. These states correspond to a QRF
partially polarized at an angle θ to the source particles and
with r = − 1

l
∂β ln Z. These states are special in that they are

the highest entropy states subject to these two conditions on θ

and r .

2. Quadratic Bloch states

In general, for an N -dimensional irrep of su(N ), the
generators {Li}, together with the identity operator, span the
space of quantum states and so any state admits a Bloch state
form ρ = aI + ∑

i biLi . These states have similar properties
[17] to the standard Bloch states of a qubit.
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FIG. 1. (Color online) A comparison between a numerical
simulation of the rotation produced by the map E± on a family of
mixed states of the form (18) with the expression �± obtained in
Eq. (16). The state that we have considered in this figure is ρ =
p exp[−iβLy]|l,90〉〈l,90| exp[iβLy] + (1 − p) exp[−iβLy] |l,60〉
〈l,60| exp[iβLy] with p = 0.2 and l = 100.

However, for a spin-l irrep of su(2), these Hermitian
operators no longer span the set of quantum states. Instead,
we must use symmetric polynomials in the generators of the
su(2) algebra to span the full set of states. Furthermore, for any
spin-l irrep there exists a minimal-order polynomial expansion
(e.g., for l = 1/2 the minimal order is 1). Consequently, any
truncated expansion to a lower order will only span a subset
of the full space of states.

A potentially interesting set of states for the spin-l irrep
of su(2), are quadratic Bloch states obtained from a quadratic
combination of su(2) generators

ρ = 1

2l + 1

(
I + R · L + 1

2

∑
a,b

T ab{La,Lb}
)

. (19)

The vector R and the tensor T ab must obey certain conditions
in order that ρ be a positive trace-1 operator, in particular,
T ab is a real symmetric traceless second-rank tensor. Only for
l = 1/2 and l = 1 does this expansion cover the whole set of
states.

For such quadratic states, we may calculate an explicit
form for �± using certain trace identities. The quadratic
terms 〈L′

i(θ )L′
j (θ )〉 receive nonzero contributions from the

T ab components only. They are determined explicitly using
the identity,

Tr [{Li,Lj }{Lk,Lm}] = αlδij δkm + βl(δikδjm + δimδjk),

(20)

where the coefficients αl and βl are given by

αl = l(l + 1)(2l + 1)[1 + 2l(l + 1)]

15
,

(21)

βl = l(l + 1)(4l2 − 1)(2l + 3)

15
.

Repeated use of this trace identity gives us that the angles
of rotation for this family of states are given by

tan �±=−15zr2 sin θ ± z(l + 1)(d2 − 4)T1(θ )

30rl ± z(l + 1)(d2 − 4)T2(θ )
, (22)

with d = 2l + 1 and

T1(θ ) = T xx cos θ sin 2θ − T zz sin θ cos 2θ + T xz cos 3θ,

T2(θ ) = T xx sin θ sin 2θ + T zz cos θ cos 2θ + T xz sin 3θ

being the contributions from the quadratic-order terms in the
state.

As already mentioned, these quadratic Bloch states are
generally a subset of all quantum states. For l = 1/2,1, this
expansion covers the full set of states, however, the analytic
expressions for the rotation angles are a poor approximation
since we are neglecting O(1/l2) terms. As we increase l, the
set of states described by Eq. (19) becomes a smaller and
smaller fraction of all states. In addition, the net polarization
r of these states is generally small, and this means that the
analytic expressions obtained are still very approximate. It is
expected that by including higher-order terms that contribute
to the net polarization r , but do not contribute to the quadratic
expectation values, the expression (22) would have greater
accuracy. We leave this issue for a future investigation.

III. EVOLUTION OF THE REFERENCE FRAME
UNDER A UNITARY INTERACTION

Single spin-qubit rotations are typically performed using an
external classical field that can be considered as some large-
amplitude coherent state within the quantum description. In
practice, the finiteness of the external control field—equivalent
to our reference system—means that the qubit and the field
become entangled, resulting in a slightly imperfect rotation of
the qubit. This was investigated for the case of a two-level atom
interacting with a single-cavity mode initially in a coherent
state in Ref. [18]. Our model is very similar—our reference
spin is essentially starting in a large-amplitude spin-coherent
state. We are interested, however, in the case that it is reused
multiple times for applying single-qubit rotations to different
qubits. As there is no other reference system, it is clear the
interaction Hamiltonian should be rotationally invariant [4],
that is, it should depend only on the relative orientations of the
qubit and the frame. The most natural choice is to consider a
coupling Hamiltonian of the form L · S, which, in the limit of
large l, would yield a standard single-qubit unitary rotation on
the spin.

We consider therefore that the QRF and each incoming spin
are coupled for a time t such that the evolution takes the form
eiL·St . As already discussed, the sequential measurement of
total angular momentum causes the reference frame to rotate
in the X-Z plane, in other words, the expectation value of the
y component of the QRF is always zero during the whole
process, however, we will see that the unitary interaction
produces a rotation around an axis that depends on the precise
duration of the interaction.
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A. Backreaction on the quantum reference frame

First, we write the unitary eitL·S in a simpler form. For this
purpose, we use the equations,

J 2 =
(

l + 1

2

) (
l + 3

2

)
�+ +

(
l − 1

2

) (
l + 1

2

)
�−,

(23)
I2d = �+ + �−,

and obtain that L · S = 1
2 [l�+ − (l + 1)�−]. It is clear from

this expression that, in the l → ∞ classical limit, coherent
interactions with a highly polarized QRF induce rotation about
the spatial axis defined by the observable Z = �+ − �−,
while for finite l, we have that U = �+ + e−iγ �− where
γ = t(l + 1/2).

The effect that the QRF suffers due to a single unitary
interaction U (γ ) is then given by the CP map

Fγ [ρ] = Trs [U (γ )(ρ ⊗ ξ )U (γ )†]

= Trs [(�+(ρ ⊗ ξ )�+] + TrS [(�−(ρ ⊗ ξ )�−]

+ e−iγ Trs [�−(ρ ⊗ ξ )�+]

+ eiγ Trs [�+(ρ ⊗ ξ )�−].

Once again we assume a source particle polarized along the
Z axis and in the state ξ = 1

2 (I + zσz) and obtain that [19]

Fγ [ρ] = 1

2d2
[d2 + 1 + (d2 − 1) cos γ ]ρ

+ 4

d2
sin2 γ

2

∑
α

LαρLα

+ iz
4

d2
sin2 γ

2
(LyρLx − LxρLy)

+ 2z

d2
sin2 γ

2
(Lzρ + ρLz) + i

z

d
sin γ [Lz,ρ],

(24)

from which we only keep up to O(1/l) terms to obtain the
following expression for the effect of the unitary interaction
on the reference frame:

Fγ [ρ] ≈ ρ + izr

l
sin θ sin2 γ

2
[Ly,ρ] + iz

2l
sin γ [Lz,ρ].

(25)

This induces a linear transformation of the initial polarization
vector (〈Lx〉,〈Ly〉,〈Lz〉) sending it to (〈Lx〉F ,〈Ly〉F ,〈Lz〉F )
where 〈Li〉F ≡ Tr [Fγ [ρ]Li], and the new components are
given by

〈Lx〉F = 〈Lx〉 + z

2l
sin γ 〈Ly〉 − rz

l
sin θ sin2 γ

2
〈Lz〉,

〈Ly〉F = 〈Ly〉 − z

2l
sin γ 〈Lx〉, (26)

〈Lz〉F = 〈Lz〉 − rz

l
sin θ sin2 γ

2
〈Lx〉.

To order O(1/l), this is a rotational map around the
axis (0, 1

r
csc θ cot γ

2 ,1) through an angle �F (γ,θ ) =
z
l

sin γ

2

√
r2 sin2 θ sin2 γ

2 + cos2 γ

2 , and in particular, it is

clear that liml→∞ �F (γ,θ ) = 0. This rotational dynamics is
illustrated in Fig. 2, where we perform repeated coherent inter-
actions between the QRF and a stream of source particles.
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FIG. 2. (Color online) 〈Lx〉/l, 〈Ly〉/l, and 〈Lz〉/l. The rotation
induced on the reference frame due to the unitary interaction with the
source particle for l = 16. The source particles are polarized along
the z axis with z = 1 and the QRF initially points along the x axis
θ = π/2. In this figure, N = 500 source particles have been used.

IV. CORRECTING THE DRIFT OF A QUANTUM
REFERENCE FRAME

In this section, we consider certain approaches that allow us
to correct the drift of the reference frame due to the projective
measurement {�±}.

If, in addition to the source of particles S, which are
aligned in the Z direction, we also have access to another
set of particles S̄, which are aligned in the −Z direction, then
our intuition is that we may recover the quadratic scaling of
Ref. [11] by alternating the measurements on systems from
S with measurements on systems from S̄. Since the sequence
of measured particles has zero net polarization, no directional
drift of the QRF occurs.

However, this approach requires the use of an equal number
of corrective S̄ particles as measured particles—but is this the
optimal strategy to eliminate drift? Two different strategies
present themselves, but before discussing them, we first
establish an operational criterion for the usefulness of the QRF.

A. Operational criterion

We wish to define an operational criterion by which to judge
how well the finite-sized QRF does in the task of mimicking a
projective measurement on the source particles.

To judge the quality of the measurement, we follow
Ref. [11] and consider the probability of successfully finding
the correct result l + 1

2 when the test particle is pointing along
+n̂ (the initial direction of the reference frame) or finding the
correct result l − 1

2 when the test particle is pointing along −n̂:

Psucc = 1
2 Tr [�+(ρ ⊗ |n̂〉〈n̂|) + �−(ρ ⊗ | − n̂〉〈−n̂|)]

= 1
2 (1 + n̂ · n̂ρ). (27)

In Ref. [11], it was shown that the number of measurements
a QRF could be used for before Psucc falls below some
threshold scaled quadratically with l if the source of particles
was unpolarized. In Ref. [13], it was shown that the scaling
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FIG. 3. (Color online) Psucc as a function of the number of
interactions for the case in which source particles are polarized along
the z axis (z = 1) and the QRF is initially in the coherent state l = 16
pointing along the x axis (i.e., θ = π/2).

becomes only linear with l if the source of particles being
measured has some net polarization. In Fig. 3, we show the
degradation of the reference frame under a sequence of either
measurement interactions (solid line) or unitary interactions
for various values for γ .

B. Correction via unitary interactions

The first corrective mechanism we consider is to make two
measurements of particles from S and then to implement a
unitary U = e−i2πL·S between the QRF and a particle from S̄.

In Fig. 4, we plot the Z component of angular momentum
of the QRF vs its x component. The blue line is the degradation
with no correction, as considered in Ref. [13]. The red line is
for the case in which we have applied the unitary mentioned
earlier after every two measurements—we observe that this
method helps us to essentially completely correct the rotation
of QRF (the drift toward the polarization of S).

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

<L
x
>/l

<
L z>

/l

FIG. 4. (Color online) 〈Lz〉/l vs 〈Lx〉/l for l = 16. The source
particles are polarized along the z axis, and the QRF is initially in the
coherent state pointing along the x axis. The blue dotted line corre-
sponds to the case of sequential measurements, and the red solid line
is for the case of unitary interaction ei2πL·S after two measurements.
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FIG. 5. (Color online) A comparison of probability of success
for obtaining a correct measurement result in three different cases
for l = 16. The dashed line corresponds to the case of sequential
measurements, the dashed-dotted line is for the case in which we
correct the measurement result via applying unitary interactions after
two measurements, and the solid line belongs to the case of correction
via applying unitary interactions after each plus outcome.

To understand why this works, we see from Eq. (25) that the
unitary interaction can generate a rotation about the Y axis of
rz
l

sin θ sin2 γ /2. For the particular choice of γ = π , we have
that the unitary interaction produces a rotation exactly twice
as large as the measurement interaction, while maintaining
the reference frame in the X-Z plane. By using a source particle
from S̄, we can ensure that this rotation acts in the opposite
direction to the drift to equilibrium, and it is easily checked
that

Fπ [E2[ρ]] = ρ + O(1/l2). (28)

An important point to emphasize is that the application of the
unitary interaction not only can correct the polarization drift
to O(1/l2), but also does so without requiring knowledge
of the relative angle θ between the QRF and the source
particles.

For very large l, we have greater freedom regarding when
in the course of a sequence of N measurements the corrective
unitaries are performed. If 1 
 N 
 l, then we have that
p±(θ ) is roughly constant over the course of N measurements.
The actual measurement sequence is highly probable to be a
typical measurement sequence with p+N plus outcomes and
p−N minus outcomes. However, since N 
 l, the QRF has ro-
tated through a total angle p+N�+ + p−N�− = N�, which
may be corrected with N/2 unitary interactions distributed
arbitrarily between the N measurements.

In Fig. 5, Psucc is plotted against the number of measure-
ments for the two cases mentioned previously. We can clearly
see that the longevity of the QRF is now improved. In this
figure, the horizontal axis is for the number of measurements,
and the particles used to improve the probability of success
are not included, so with the use of particles from S̄, we may
extend the lifetime of the QRF to O(1/l2).
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C. Keeping track of measurement results

None of the work on QRF degradation has considered the
option of keeping track of the measurement results. This has
been primarily for the sake of maintaining a simple pedagogy.
We can now consider the possibility of actively feeding
back individual measurement results to correct the frame’s
drift.

With probability p+, the QRF is transformed as ρ → E+[ρ]
and similarly with probability p− the QRF is transformed as
ρ → E−[ρ]. A measurement history for the reference frame
may be described via �s = (s1,s2, . . . ,sN ), with si = ±. This
sequence of outcomes in term corresponds to an evolution of
the QRF given by E�s[ρ] := EsN

[· · · Es2 [Es1 [ρ]]].
The probabilities for large l are given by p±(θ ) = 1

2 (1 ±
zr cos θ ) where z is the polarization of the source particles
and l is the polarization of the of the reference frame, as
described earlier. Since we are considering O(1/l) effects, we
will assume that r is approximately constant for N 
 l.

Note that in the context of the preceding measurement his-
tory, the probabilities for each outcome si are not independent,
since p± has angular dependence and so depends on previous
rotations induced by si−1,si−2, . . . .

We may again use the unitary interaction, however, unlike
the case of the average map E , no simple correction exists
for an individual plus or minus outcome for two reasons.
First, the angle of rotation generated by the unitary interaction
decreases monotonically with l and so fluctuations, such
as the ones discussed earlier, may be much too large to
correct.

Second, the unitary rotation goes sinusoidally with the
relative angle θ between the source particles and the QRF,
while the rotations due to the individual outcomes are, in
general, complicated functions of θ . Knowledge of θ would
be needed to tune the unitary interaction correctly. However,
it should be that any auxiliary background reference frame
that we may introduce should not feature in the experimental
considerations and should serve only as a useful intermediate
construct. Information is physical, and so any meaningful
coordinate system must be associated with an actual physical
system.

Of course, one could take the view that a large background
system already exists, and relative to this, we have already
determined the angles of inclinations of both the source
particles and the quantum reference frame and, hence, know
the value for θ . However, in this case, the goal of considering
unitary corrections would then be to preserve the known
state of the QRF in between measurements, as distinct
from providing a reliable reference frame with which one
determines the unknown relative angle with an ensemble of
source particles through repeated measurements.

With knowledge of the relative angle θ , we may tune the
unitary interaction appropriately, using either a source particle
from S or S̄, and correct sufficiently small rotations of the
QRF. However, in the event of large measurement rotations,
the best we can do between individual measurements would
be to perform the largest allowable rotation in the required
direction—numerics indicate that for the two projective
outcomes �± we can always correct one outcome entirely
and the other for π/2 < θ < π .

V. DISCUSSION AND OUTLOOK

In this paper, we have analyzed in some detail the induced
dynamics of a quantum reference frame as it is used to measure
the spins of a sequence of source particles and also used to
implement unitary interactions on the source particles.

We found that the average behavior of the QRF is to
gradually rotate into alignment with the source particles at
an O(1/l) rate. If we pay attention to the induced dynamics
subsequent to a particular measurement outcome, we find that
the dynamics is not so simple and large fluctuations can exist,
which depend on observables quadratic in L. We considered
the restriction to a simple class of initial states for which
the dynamics depends purely on the inclination of the QRF
relative to the source particles. For such states, we found that
fluctuations may persist even in the infinite limit, and which
give nontrivial dynamics. Of course in this limit, there is, on
average, no net rotation of the QRF.

We found that by performing a unitary interaction between
the QRF and source particles every third step, we could
eliminate the O(1/l) directional of the reference frame under
the average map. While we have shown how the rotational
drift of the QRF is correctable via unitary interactions,
the degradation of the polarization is more problematic.
However, since this degradation arises due to the formation
of correlations between the QRF and the source particles, it
should be possible [20] to partially correct this degradation
via interactions that are sensitive to the correlation patterns
present.

Future work might include the issue of parameter estimation
on the state of the source particles. While ordinary projective
measurements possess a degeneracy between the polarization
of the source particles and the relative angle between the
QRF and the particles, the presence of dynamics breaks
this degeneracy and potentially allows a richer measurement
inference.

In the ideal projective measurement case, the measurement
probabilities are given by p± = (1/2)(1 ± z cos θ ), and so
doing a sequence of measurements only gives us the value of
z cos θ . However, in the presence of dynamics, the reference
frame responds differently to the polarization z of the source
and to the relative angle θ with the source. For example,
by allowing the QRF to gradually come into alignment with
the source particles, the measurement pattern is eventually
determined solely by z, while the early-time outcomes encode
the dependence on θ . Such a separation of parameters is a result
of the nontrivial dynamics of the finite quantum reference
frame.

It is also possible to do parameter estimation plus correction
in parallel. Initially, we know nothing of θ and so can take it to
lie uniformly between 0 and π . However, for example, getting
a string of many plus outcomes implies that the relative angle
θ is quite small. Each successive measure outcome we obtain
allows us to update our estimate for θ and in each case we can
use our best estimate to perform a unitary correction, ideally
converging in on a stable distribution and the correct value for
the relative angle.

Alternatively, in the event that we are ignorant of the relative
angle θ , it may be possible to perform a conditional corrective
unitary interaction. The idea is that the source particle that
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has been measured with the QRF encodes the relative angle
between the QRF and the unmeasured particles in its new state.
It may be possible to transfer this θ dependence in a manner
that improves the corrective procedures.

Finally, it would be of interest to extend the analysis we
have conducted here to study how measurement and unitary
interactions behave between a large QRF and higher spin
particles.
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