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Computation of the geometric measure of entanglement for pure multiqubit states
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We provide methods for computing the geometric measure of entanglement for two families of pure states
with both experimental and theoretical interests: symmetric multiqubit states with non-negative amplitudes in the
Dicke basis and symmetric three-qubit states. In addition, we study the geometric measure of pure three-qubit
states systematically in virtue of a canonical form of their two-qubit reduced states and derive analytical formulas
for a three-parameter family of three-qubit states. Based on this result, we further show that the W state is the
maximally entangled three-qubit state with respect to the geometric measure.
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I. INTRODUCTION

Quantum entanglement, which was first noted by
Einstein and Schrödinger [1,2], has been extensively studied
in the past 20 years [3]. In particular, multipartite entangle-
ment has attracted increasing attention due to its intriguing
properties and potential applications in quantum-information
processing.

The importance of multipartite entanglement can be illus-
trated in two aspects. In respect of application, graph states,
prominent examples of entangled multiqubit states, are a useful
resource for one-way quantum computation [4] and fault-
tolerant topological quantum computation [5]. Multipartite
entangled states, such as GHZ states, are essential resources
for quantum secret sharing [6,7]. In addition, multipartite
entangled states can serve as multiparty quantum channels
in virtue of teleportation [8]. In respect of theoretical interests,
multipartite states display stronger nonlocality, one of the key
features of quantum physics [9–11]. Quantum cryptography
beyond pure entanglement distillation has been generalized to
multipartite bound entangled states [12]. What’s more, recent
progress in experiments has made accessible more multipartite
entangled states, such as the GHZ states [13], W states [14],
six-photon Dicke states [15–17], and so on. Methods for
detecting such states have also been developed [18].

Given an entangled state, a natural question to ask is how
much entanglement is contained in this state. In quantum-
information theory, entanglement is usually quantified by
entanglement measures [19]. An entanglement measure is an
entanglement monotone, which cannot increase under local
operations and classical communications (LOCC), and equal
to zero for only classically correlated (separable) states [20].
Hitherto, the most well-known entanglement measures are
defined for bipartite states, such as entanglement cost and
distillable entanglement [20,21]. For pure bipartite states,
there is essentially a unique entanglement measure, the von
Neumann entropy of each reduced density matrix, which is
easily computable [22].
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For multipartite states, while a lot of entanglement mea-
sures have been proposed [3,23,24], the characterization of
multipartite entanglement is far from being complete. It is
generally difficult to calculate such measures even numeri-
cally. Moreover, the existence of many types of inequivalent
entanglement defies a unique definition. Different entangle-
ment measures often induce different orders and even lead to
different maximally entangled states. For example, the Bell
state |�〉 = 1√

2
(|00〉 + |11〉) is the maximally entangled state

of a two-qubit system for all measures, since it violates the
Bell inequality most strongly. However, its multipartite analog,
the GHZ state |GHZ〉 = 1√

2
(|000〉 + |111〉), is maximally

entangled only under some specific entanglement measures,
such as three-tangle [25,26]. It is not a maximally entangled
state under the definition in Ref. [27], and the geometric
measure of entanglement, which is one focus of the present
article.

On the other hand, some geometrically motivated mul-
tipartite entanglement measures have been providing us
insights on quantum entanglement. One prominent example
is the geometric measure of entanglement (GM), [24] which
quantifies the minimum distance between a given state and
the set of product states. In addition to providing a simple
geometric picture, GM has significant operational meanings.
It is closely related to optimal entanglement witnesses [24,28]
and has been shown to quantify the difficulty of multipartite
state discrimination under LOCC [29]. Recently, GM has
also been applied to show that most entangled states are
too entangled to be useful as computational resources [30].
In condensed matter physics, GM has been utilized to study
the ground-state properties and to characterize quantum phase
transitions [31–34].

There have been extensive literatures on the quantitative cal-
culation of GM for both pure and mixed states [24,28,35–39].
The qualitative analysis on GM has also received much
attention [40,41]. In addition, a few numerical methods have
been developed for computing the GM of multipartite states,
such as the algorithms presented in Refs. [42,43], which allow
repeated analytical maximization according to a subset of the
parameters with a high efficiency. However, our knowledge
about GM is still quite limited. Even for pure three-qubit states,
there is no complete analytical solution. In addition, it is still
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uncertain which state is the maximally entangled with respect
to GM, although the authors of Ref. [26] conjectured that the
W state is such a candidate. Thus it is desirable to compute
GM analytically for more entangled states, which is another
focus of the present article.

In this article, we would like to compute the GM for
several families of multipartite pure states and determine the
maximally entangled three-qubit states with respect to GM.
Throughout the article, by symmetric states, we mean those
states which are supported on the symmetric subspace of the
whole Hilbert space.

First, we present an analytical method for computing
the GM of symmetric multiqubit states composed of Dicke
states with non-negative amplitudes by virtue of a recent
simplification on GM of symmetric states [41]. Next, we
analytically compute the GM for symmetric three-qubit states.
Combining with the results in Ref. [35], we provide a
complete analytical solution for GM of any symmetric pure
three-qubit states. Recall that many important multiqubit states
accessible to experiments so far are symmetric, e.g., GHZ
states [13], W states [14], and Dicke states [16,17], and so
on. Our results may hopefully help analyze these states in
experiments.

Second, we introduce a canonical form of pure three-qubit
states based on the canonical form of two-qubit rank-two
states developed in Ref. [44]. In virtue of this canonical form,
we study the GM of pure three-qubit states systematically
and derive explicit analytical formulas of GM for a three-
parameter family of three-qubit states. Starting from these
results, we prove that, up to local unitary transformations, the
W state is the unique maximally entangled pure three-qubit
state with respect to GM, confirming the conjecture made in
Ref. [26].

The rest of the article is organized as follows. In Sec. II,
we propose an analytical method for computing the GM of
symmetric multiqubit states with non-negative amplitudes, as
well as symmetric three-qubit states. In Sec. III, we derive
analytical formulas of GM for a three-parameter family of pure
three-qubit states and prove that the W state is the maximally
entangled state under GM. We conclude in Sec. IV.

II. ANALYTICAL METHOD FOR COMPUTING
GEOMETRIC MEASURE (I): SYMMETRIC STATES

The definition of GM of bipartite or multipartite pure
states is motivated by the following simple geometric idea
of entanglement quantification: the farther away from the set
of separable states, the more entangled a state is [24]. Given
a pure state |ψ〉 of a joint system composed of subsystems
A,B,C, . . . , define G(|ψ〉) as the maximum overlap between
|ψ〉 and the set of product states, that is,

G(|ψ〉) := max
|ϕ〉=|a〉|b〉|c〉...

|〈ϕ|ψ〉|, (1)

where the normalized one-particle states |a〉,|b〉,|c〉, . . . belong
to subsystems A,B,C, . . . , respectively. G(|ψ〉) is manifestly
invariant under local unitary transformations. It obtains the
maximum value 1 only for product states and is thus an inverted

entanglement measure. The GM of a pure state is defined as
follows:

EG(|ψ〉) := 1 − G(|ψ〉)2, (2)

or in another version −2log2 G(|ψ〉) sometimes. In this article
we will follow the definition in Eq. (2). It can be extended
to the GM of mixed states by convex roof construction [24]
according to the same idea as in the definition of entanglement
of formation [20]:

EG(ρ) := min
ρ=∑

i pi |ψi 〉〈ψi |

∑
i

piEG(|ψi〉). (3)

EG(ρ) has been shown to be an entanglement monotone by
T.-C. Wei and P. M. Goldbart [24]. An alternative definition of
GM for mixed states will be introduced in Sec. III in a different
context.

Clearly, EG(|ψ〉) in Eq. (2) is determined by G(|ψ〉)
in Eq. (1). From now on we focus on G(|ψ〉) of pure
states |ψ〉 and call it GM too, if there is no confusion.
For a pure bipartite state, the GM is equal to its largest
Schmidt coefficient. The problem becomes difficult for pure
multipartite states, since there is no Schmidt decomposition in
general. The difficulty lies in the linearly increasing number
of optimization variables parametrizing the product states
|a〉|b〉|c〉 · · · in Eq. (1), as the number of parties increases.
In fact, only a few partial results are available on this
problem [24,26,35,36].

Recently, the authors of Ref. [41] proved that, for a
symmetric pure state |ψ sy〉, it suffices to consider symmetric
product states in the maximization in Eq. (1), that is,

G(|ψ sy〉) = max
|ϕ〉=|a〉|a〉|a〉...

|〈ϕ|ψ sy〉|. (4)

This result can greatly simplify the calculation of GM for
symmetric states. In the rest of this section, we derive analytical
solutions for two families of states, respectively, in virtue
of this result. In Sec. II A, we analytically derive GM for
symmetric multiqubit states with non-negative amplitudes
in the Dicke basis. In Sec. II B, we derive the analyti-
cal solution of GM for symmetric pure three-qubit states
based on the previous work [35], thus solving this problem
completely.

A. Symmetric multiqubit states with non-negative amplitudes

In this subsection, we compute the GM for pure sym-
metric multiqubit states with non-negative amplitudes in the
Dicke basis. More explicitly, we investigate the N -qubit
state

|ψ symq〉 :=
N∑

m=0

am|m,N〉, (5)

where am � 0, and |m,N〉 is the Dicke state [15] defined
as

|m,N〉 :=
(

N

m

)−1/2 ∑
k

Pk|
m︷ ︸︸ ︷

1, . . . ,1 ,

N−m︷ ︸︸ ︷
0, . . . ,0〉, (6)

where Pks denote the set of all permutations of the spins.
By definition, Dicke states are symmetric; so the state
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|ψ symq〉 is also symmetric, and we can apply Eq. (4) to
computing its GM. Let |a〉 = cos α|0〉 + eiθ sin α|1〉 with α ∈
[0, π

2 ] and θ ∈ [0,2π ]; then the GM of the state in Eq. (5)
reads

G(|ψ symq〉)

= max
|ϕ〉=|a〉|a〉|a〉...

∣∣∣∣∣
N∑

m=0

(
N

m

)1/2

am cosN−m α sinm αe−imθ

∣∣∣∣∣,
� max

|ϕ〉=|a〉|a〉|a〉...

N∑
m=0

∣∣∣∣∣
(

N

m

)1/2

am cosN−m α sinm α

∣∣∣∣∣,
= max

α∈[0, π
2 ]

N∑
m=0

(
N

m

)1/2

am cosN−m α sinm α, (7)

where the equality holds when θ = 0. Equation (7) contains
only one variable α, so one can easily find out the maximum.
For example, let x = tan α, then one can convert G2(|ψ symq〉)
into a rational fraction A(x)/B(x), where A(x) and B(x) are
both polynomials on x. By calculating its derivative we can
find out the maximum in Eq. (7) explicitly.

A similar idea can be applied to calculating the GM of any
symmetric multiqudit state with non-negative amplitudes in
the generalized Dicke basis; again, the number of free variables
can be reduced by half. Recently, the additivity of GM of
states with non-negative amplitudes was proved, i.e., G(|α〉 ⊗
|β〉) = G(|α〉)G(|β〉) [45]. So we can compute the GM of
|ψ symq〉 ⊗ |β〉 if we know the GM of |β〉 too.

Unfortunately, the present method does not apply to
arbitrary symmetric multiqubit states, e.g., those states in
Eq. (5) having negative or complex amplitudes. For more
complicated states, numerical methods are indispensable for
computing their entanglement measures, see, for example,
Refs. [42,43].

B. Symmetric three-qubit states

In this subsection, we compute the GM of symmetric
pure three-qubit states. Such states can always be con-
verted into the following form with suitable local unitary
operations [35]:

|	〉 = g|000〉 + t(|011〉 + |101〉 + |110〉) + eiγ h|111〉, (8)

where g,t,h � 0, and γ ∈ [−π
2 , π

2 ]. So it suffices to calculate
the GM for the state |	〉.

Analytical formula of the GM is already known if at least
one of the three parameters g,t,h is vanishing or γ = 0,

± π
2 [24,28,35,36,46]. Hence, we can focus on the family of

states with

g,t,h > 0, g2 + 3t2 + h2 = 1, γ ∈
(

−π

2
,0

)
∪

(
0,

π

2

)
.

(9)

The authors of Ref. [36] have reduced the task of computing
the GM of the state |	〉 to solving the following system of

equations of the three variables ϕ,θ,λ (see also Appendix A):

2ht cos γ + 2t(g + t) sin θ cos ϕ − 2ht cos γ cos θ

= λ sin θ cos ϕ, (10)

2ht sin γ − 2t(g − t) sin θ sin ϕ − 2ht sin γ cos θ

= λ sin θ sin ϕ, (11)

(g2 − t2) (1 + cos θ ) − h2(1 − cos θ ) − 2ht cos γ sin θ cos ϕ

− 2ht sin γ sin θ sin ϕ = λ cos θ. (12)

For each root (ϕj ,θj ) of Eqs. (10)–(12), we can obtain a GM
candidate of the state |	〉 via the following formula, according
to Eq. (A1) in Appendix A,

G2
j (|	〉) = 1

8

[
3 − 2t2 + 4(1 − 2h2 − 4t2) cos θj

+ (1 − 6t2) cos 2θj + 4gt cos 2ϕj sin2 θj

+ 32ht cos(γ − ϕj ) cos
θj

2
sin3 θj

2

]
; (13)

the GM is the maximum over all the GM candidates:

G2(|	〉) = max
j

G2
j (|	〉). (14)

We shall solve Eqs. (10)–(12) in two cases separately; the
second case consists of three subcases. In each case we obtain
one or a few GM candidates by computing Eq. (13) with the
solutions to the system of equations.

Case 1: Suppose θ = 0; then the phase ϕ does not play any
role, and Eqs. (10) and (11) become identities, while Eq. (12)
determines λ. In this case we get a GM candidate via Eq. (13)
as follows:

G2
1(|	〉) = g2. (15)

Case 2: To satisfy Eqs. (10)–(12), the roots ϕ = k π
2 for k =

0,1,2,3 lead to θ = 0, which is already discussed. Moreover,
θ = π cannot be a legal solution of Eqs. (10) or (11), so this
choice is excluded. Hence, it remains to solve Eqs. (10)–(12)
under the assumption that

ϕ ∈
(

0,
π

2

)
∪

(
π

2
,π

)
∪

(
π,3

π

2

)
∪

(
3
π

2
,2π

)
, θ ∈ (0,π ).

(16)

From Eqs. (10)–(12), we can determine λ as a function of
θ and ϕ. Inserting this solution into Eq. (10) and Eq. (11),
we can obtain two equations about θ and ϕ: E1(ϕ,θ ) = 0 and
E2(ϕ,θ ) = 0, respectively. This further implies that either

tan
θ

2
= g

h csc 2ϕ sin(γ − ϕ)
, (17)

or

tan
θ

2
= −t

h csc 2ϕ sin(γ + ϕ)
. (18)

Combining either of them and E1(ϕ,θ ) = 0 can lead to a set
of solutions.

Case 2.1: There is a simple solution tan ϕ = t+g

t−g
tan γ . The

variable θ can be determined via either Eq. (17) or (18), which
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lead to an identical result in this case. Inserting this solution
into Eq. (13), we get another GM candidate:

G2
2(|	〉) = g2 − (g2 − t2)3

t2 − 2t4 + g2 − 6g2t2 − 2gth2 cos 2γ
.

(19)

Case 2.2: By combining Eq. (17) and E1(ϕ,θ ) = 0, we can
get two polynomial equations:

4∑
i=0

c1i(g,t,h,γ ) cosi 2ϕ = 0,

(20)
4∑

i=0

c2i(g,t,h,γ ) cosi 2ϕ = 0,

as well as Case 2.1, which has already been handled. Since
Eqs. (20) are quartic equations on cos 2ϕ, we can analytically
derive their roots. We may obtain up to 16 different phases
ϕ ∈ [0,2π ]. The variable θ can then be determined via Eq. (17).
Hence, we can derive up to 16 GM candidates Gj (|	〉) for
j = 3, . . . ,18 via Eq. (13). This differs a bit from Case
1 and Case 2.1, where only one GM candidate is given
respectively.

Case 2.3: Similar to Case 2.2, by combining Eq. (18) and
E1(ϕ,θ ) = 0, we can get two quartic polynomial equations on
cos 2ϕ, which are analytically solvable. Again we may get up
to 16 GM candidates Gj (|	〉) for j = 19, . . . ,34. This finishes
the discussion of Case 2.

Now we have all the GM candidates Gj (|	〉) for j =
1, . . . ,34. The maximum of them is exactly the GM of the
state |	〉 in Eq. (8). For convenience of the readers, here we
repeat the main steps for deriving the GM of the symmetric
three-qubit state |	〉.

Step 1: Compute G1(|	〉) and G2(|	〉) via Eqs. (15)
and (19), respectively; two GM candidates can be obtained.

Step 2: Compute Gj (|	〉) for j = 3, . . . ,18 via Eq. (13)
with roots (ϕj ,θj ) of Eqs. (17) and (20); up to 16 GM
candidates can be obtained.

Step 3: Similar to Step 2, with the roots (ϕj ,θj ) for j =
19, . . . ,34 of Eq. (18) and quartic equations similar to Eq. (20),
up to 16 GM candidates can be obtained via Eq. (13).

Step 4: The maximum of all 34 GM candidates is exactly
the GM of the state |	〉.

In conclusion, we have provided a method for analytically
deriving the GM of symmetric three-qubit states in Eq. (8)
with γ ∈ (−π

2 ,0) ∪ (0, π
2 ). The special cases γ = 0,±π

2 have
been addressed in Ref. [35]. Calculation shows that our result
approaches their result when γ approaches these special
values. Hence, we can now compute the GM of any symmetric
pure three-qubit states.

III. ANALYTICAL METHOD FOR COMPUTING
GEOMETRIC MEASURE (II): MAXIMAL ENTANGLED

STATES AMONG PURE THREE-QUBIT STATES

In this section, we introduce a canonical form of pure
three-qubit states based on the canonical form of two-qubit
rank-two states developed in Ref. [44]. By virtue of this
canonical form, the GM of pure three-qubit states is studied

systematically. In particular, we derive analytical formulas of
GM for the family of pure three-qubit states one of whose
rank-two two-qubit reduced states is the convex combination
of the maximally entangled state and its orthogonal pure
state within the rank-two subspace. Based on these results,
we prove that the W state is the maximally entangled three-
qubit state with respect to GM, confirming the conjecture in
Ref. [26].

Our approach builds on Theorem 1 in Ref. [47], which
states that the GM of an n-partite pure state |ψ〉 is determined
by any of its (n − 1)-partite reduced states ρ, that is,

G2(|ψ〉) = g(ρ).

Here g(ρ) is an alternative definition of geometric measure
and has nothing to do with the parameter g introduced in
Eq. (8):

g(ρ) = max
ρ1,...,ρn−1

tr[ρ(ρ1 ⊗ · · · ⊗ ρn−1)], (21)

where ρ1, . . . ,ρn−1 are pure single-particle states, namely ρi =
|ai〉〈ai |. In addition, to any closest product state ρ1 ⊗ · · · ⊗
ρn−1 of ρ, there corresponds a unique closest product state of
|ψ〉 with ρ1 ⊗ · · · ⊗ ρn−1 as a reduced state. A closest product
state of ρ is any pure product state ρ1 ⊗ · · · ⊗ ρn−1 which
maximizes Eq. (21). From the definition, g(ρ) is a convex
function of ρ; this property will be frequently resorted to
later.

Note that for a mixed state ρ, g(ρ) is not the standard
definition of the GM of ρ (see the first paragraph of
Sec. II). Nevertheless, this alternative definition is useful for
computing the GM of any purification of ρ [47]. It has also
many applications of its own, such as constructing optimal
entanglement witnesses [24,28] and quantifying the difficulty
of state discrimination under LOCC [28,29].

A. Canonical form of two-qubit rank-two states

In this section we introduce a canonical form of pure three-
qubit states based on the canonical form of two-qubit rank-two
states developed in Ref. [44] and set the notations useful in later
discussions.

For a pure three-qubit state, each two-qubit reduced state
lies on a rank-two subspace of the two-qubit Hilbert space. Up
to local unitary transformations, the projector �0 onto a general
rank-two subspace can be specified by just two parameters
γ1,γ2 [44]:

�0 = 1
2 (1 + uσ3 + vτ3 + z1σ1τ1 + z2σ2τ2),

u = cos γ1 cos γ2, v = sin γ1 sin γ2,
(22)

z1 = sin γ1 cos γ2, z2 = cos γ1 sin γ2,

with 1
2π � γ1 � γ2 � 0,

where σ1,σ2,σ3 are the Pauli operators for the first qubit and
τ1,τ2,τ3 are that for the second qubit. Interchange of the two
qubits leads to γ1 → π

2 − γ2, γ2 → π
2 − γ1. So without loss

of generality, we can assume γ1 + γ2 � π
2 , γ2 � π

4 .
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Any rank-two state supported on �0 can be written as
follows:

ρrk2 = 1
2 (�0 + x1�1 + x2�2 + x3�3), (23)

where �1,�2,�3 are the Pauli operators for the rank-two
subspace [44]:

�1 = 1
2 (sin γ1σ1 + cos γ2τ1 + sin γ2σ1τ3 + cos γ1σ3τ1),

�2 = 1
2 (sin γ2σ2 + cos γ1τ2 + sin γ1σ2τ3 + cos γ2σ3τ2),

�3 = 1
2 (vσ3 + uτ3 − z2σ1τ1 − z1σ2τ2 + σ3τ3), (24)

and (x1,x2,x3) (satisfying x2
1 + x2

2 + x2
3 � 1) is the Bloch

vector of ρrk2.
Local unitary symmetry and complex conjugation sym-

metry play an important role in determining the behavior
of g(ρrk2) and in simplifying its calculation. According to
Eqs. (22) and (24), simultaneous local unitary transformation
σ3 ⊗ τ3 flips the sign of �1,�2, while leaving �0,�3 invariant,
that is,

σ3 ⊗ τ3�0,3σ3 ⊗ τ3 = �0,3,
(25)

σ3 ⊗ τ3�1,2σ3 ⊗ τ3 = −�1,2;

under this transformation, the Bloch vector of ρrk2 changes
as follows: (x1,x2,x3) → (−x1,−x2,x3). Complex conjugation
flips the sign of �2, that is

�∗
j = (−1)δj,2�j, (26)

where δj,2 is the Kronecker δ function; under this transforma-
tion, the Bloch vector of ρrk2 changes as follows: (x1,x2,x3) →
(x1,−x2,x3). As a consequence of these symmetries, any
reasonable entanglement measure is equal for the four states
ρrk2 with Bloch vectors (±x1,±x2,x3), respectively. Without
loss of generality, we can assume x1,x2 � 0.

If γ1 = γ2, the simultaneous local unitary transformation
e−iθσ3⊗τ3 rotates the Bloch vector of ρrk2 around the x3 axis,
so g(ρrk2) is rotationally invariant about the x3 axis. If γ2 = 0,
the local unitary transformation e−iθτ1 rotates the Bloch vector
around the x1 axis, so g(ρrk2) is rotationally invariant about the
x1 axis.

Up to local unitary transformations, there is a one-to-one
correspondence between pure three-qubit states and rank-two
two-qubit states. Hence, the canonical form of rank-two
two-qubit states provides a canonical form of pure three-qubit
states. Moreover, due to Theorem 1 in Ref. [47] and the
arguments given above, computing the GM of pure three-qubit
states can be reduced to computing g(ρrk2) of the family of
canonical rank-two two-qubit states in Eq. (23) with 0 � γ2 �
γ1 � π

2 , γ2 + γ1 � π
2 , 0 � x1,x2 � 1, and −1 � x3 � 1. With

this background, we can now study the GM of pure three-qubit
states systematically.

B. g(ρrk2) of general two-qubit rank-two states

In this subsection we reduce the task of computing g(ρrk2)
for general two-qubit rank-two states to a maximization
problem which involves only two free variables. The number
of free variables is further reduced to one for states ρrk2 with
x2 = 0.

Let ρ1 = 1
2 (1 + s1 · σ ) and ρ2 = 1

2 (1 + s2 · τ ) be two
pure qubit states with Bloch vectors s1 = (a,b,c) and s2 =
(a2,b2,c2), respectively. Straightforward calculation shows
that

tr(ρrk2ρ1 ⊗ ρ2) = 1
4 (1 + ax1 sin γ1 + bx2 sin γ2 + c cos γ1

× cos γ2 + cx3 sin γ1 sin γ2 + w · s2), (27)

where

w =
⎛
⎝ a(cos γ2 sin γ1 − x3 cos γ1 sin γ2)

b(−x3 cos γ2 sin γ1 + cos γ1 sin γ2)
bx2 sin γ1 + ax1 sin γ2

⎞
⎠T

+
⎛
⎝ cx1 cos γ1 + x1 cos γ2

x2 cos γ1 + cx2 cos γ2

cx3 + x3 cos γ1 cos γ2 + sin γ1 sin γ2

⎞
⎠T

. (28)

Given ρrk2 and ρ1, the trace in Eq. (27) is maximized when s2

is parallel to w. According to Eq. (21), we have

g(ρrk2) = max
ρ1ρ2

tr(ρrk2ρ1 ⊗ ρ2)

= 1
4 max

a2+b2+c2=1
f (a,b,c),

(29)
f (a,b,c) = (1 + ax1 sin γ1 + bx2 sin γ2

+ c cos γ1 cos γ2 + cx3 sin γ1 sin γ2 + |w|),
where |w| denotes the Euclidian norm of w. Thus we have
reduced the task of computing g(ρrk2) to that of maximizing the
function f (a,b,c) on the unit sphere determined by a2 + b2 +
c2 = 1, which involves only two free variables. The contours
of f are in general some quadratic surfaces. At the maximum
of f over the unit sphere, the contour is generally tangent to
the sphere. This geometric picture is useful in visualizing the
closest product states.

Further simplification is possible for states ρrk2 with x2 = 0.
Assuming x2 = 0 and x1 � 0 (recall that we only need to
consider the case 0 � x1,x2 � 1 due to consideration on
symmetry, see Sec. III A); then f (a,b,c) is an even function of
b according to Eq. (29). In addition, f (|a|,b,c) � f (−a,b,c),
and f (a,

√
1 − a2,c) is nondecreasing with a for a � 0. So

the maximum of f (a,b,c) can be obtained in the parameter
subspace satisfying a � 0, b = 0. Moreover, the maximum can
only be found in this subspace if x1 > 0. Thus the calculation
of g(ρrk2) can be reduced to the optimization problem over the
single variable c.

For rank-two subspace with γ1 = γ2 or γ2 = 0, this sim-
plification is applicable to all states ρrk2, since it is enough to
calculate g(ρrk2) for states with x2 = 0 due to the symmetry
discussed in Sec. III A.

C. The W state is the maximally entangled state with respect
to the geometric measure

According to the discussion in Sec. III A, to determine the
maximally entangled states of three-qubit with respect to GM,
it is enough to determine the global minimum of g(ρrk2) over
the set of canonical two-qubit rank-two states. Due to the
convexity [cf. Eq. (21)] and the symmetry of g(ρrk2), given
γ1,γ2,x3, the minimum of g(ρrk2) (as a function of x1 and x2)
is obtained at x1 = x2 = 0. So the global minimum of g(ρrk2)
can be obtained at states with this property. Recall that the state
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ρrk2 with x1 = x2 = 0, x3 = −1 is the maximally entangled
state in the rank-two subspace [44]. Hence, these states are
convex combination of the maximally entangled state and its
orthogonal pure state within the rank-two subspace. They are
interesting for a couple of reasons. First, the two-qubit reduced
states of many important pure three-qubit states, such as the
W state, GHZ state, are among this family of states. Second,
from the result on this family of states and that on pure states,
both an upper bound and a lower bound of g(ρrk2) of any state
in each rank-two subspace can be obtained by virtue of the
convexity and symmetry properties of g(ρrk2).

Hence, in order to find the maximally entangled three-qubit
state with respect to GM, it suffices to investigate g(ρrk2)
of the states ρrk2 with x1 = x2 = 0. After some elementary
algebra (see Appendix B), we derive a simple analytical
formula of g(ρrk2) of this family of states. To emphasize its
explicit dependence on the three parameters x3,γ1,γ2, we write
g(x3,γ1,γ2) for g(ρrk2).

g(x3,γ1,γ2)

=

⎧⎪⎪⎨
⎪⎪⎩

(1−x3)[1+cos(γ1+γ2)]
4 , I(

1−x2
3

)
sin γ1 cos γ2(cos γ2 sin γ1−x3 cos γ1 sin γ2)

−2[x2
3 −(cos γ2 sin γ1−x3 cos γ1 sin γ2)2]

, II
(1+x3)[1+cos(γ1−γ2)]

4 , III

(30)

where I, II, III denote three intervals, I : −1 � x3 � x
(3)
3 ,

II : x
(3)
3 < x3 < x

(4)
3 , III : x

(4)
3 � x3 � 1. Here x

(3)
3 and x

(4)
3 are

given by

x
(3,4)
3 (γ1,γ2)

:= − sin γ1{± sin γ1 + [cos γ1 cos γ2 + (sin γ1)2] sin γ2}
1+ cosγ1{cosγ2 − sinγ2[cosγ1 sinγ2 + (sinγ1)2 tanγ2]},

(31)

and obey the inequalities: −1 � x
(3)
3 � 0 � x

(4)
3 � 1.

Figure 1 shows g(x3,γ1,γ2) as a function of x3 for
several different values of γ1,γ2. g(x3,γ1,γ2) is equal to
1
2 [1 + cos(γ1 ∓ γ2)] at x3 = ±1. This is consistent with the
well-known result on GM of two-qubit pure states, which is
a function of the concurrence; recall that the concurrence is
equal to sin(γ1 ∓ γ2) for the two states with x3 = ±1 [44].
g(x3,γ1,γ2) is equal to 1

2 at x3 = 0, which is independent
of the other two parameters. This observation implies that

1.0 0.5 0.0 0.5 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x3

g a

b
c
d

FIG. 1. g(x3,γ1, γ2) as a function of x3 for several different two-
qubit rank-two subspaces. (a) γ1 = π

4 , γ2 = 0, (b) γ1 = π

2 , γ2 = 0,
(c) γ1 = 3π

8 , γ2 = π

8 , and (d) γ1 = γ2 = π

4 . Curve (a) and curve
(c) coincide in a large interval, because γ1 − γ2 = π

4 for both the
rank-two subspaces, see Eq. (30).
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γ10.0 0.2
0.4

0.6
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FIG. 2. The minimum of g(x3,γ1,γ2) over x3 in each rank-two
subspace; the global minimum is obtained at γ1 = γ2 = π

4 .

G2(|ψ〉) = 1
2 for any pure three-qubit state which is maximally

entangled under some bipartite partition; a perfect example is
the GHZ state. Once the value of g(x3,γ1,γ2) is specified at the
three points x3 = ±1,0, the value of g(x3,γ1,γ2) at a generic
point can roughly be estimated by interpolation, keeping the
convexity of g(x3,γ1,γ2) with respect to x3 in mind. This
simple picture is very useful in understanding the dependence
of g(x3,γ1,γ2) on various parameters, and why the W state is
the maximally entangled state with respect to GM, as we shall
see shortly.

It is interesting to note that if x3 > x
(4)
3 or x3 < x

(3)
3 ,

g(x3,γ1,γ2) is a linear function of x3, with positive and negative
derivative, respectively. Hence, for given γ1,γ2, the minimum
of g(x3,γ1,γ2) is obtained in the interval x

(3)
3 � x3 � x

(4)
3 . If

γ2 = 0, g(x3,γ1,γ2) is an even function of x3; its minimum for
given γ1 is obtained at x3 = 0, and is equal to 1

2 . Otherwise,
the partial derivative of g(x3,γ1,γ2) with respect to x3 is
positive at x3 = 0; the minimum of g(x3,γ1,γ2) for given
γ1,γ2 is obtained in the interval x

(3)
3 � x3 < 0 and is smaller

than 1
2 . Setting the derivative of g(x3,γ1,γ2) with respect

to x3 to zero leads to a fourth-order equation about x3;
the minimum can be found after solving this equation. In
particular, −1 < x3 < 0 at the global minimum of g(x3,γ1,γ2).
Figure 2 shows the dependence of the minimum of g(x3,γ1,γ2)
over x3 on γ1,γ2; the minimum is also the minimum of g(ρrk2)
in the rank-two subspace. According to the figure, the global
minimum of g(x3,γ1,γ2) is obtained in the rank-two subspace
with γ1 = γ2 = π

4 .
To determine the maximally entangled multipartite states

is a highly nontrivial task, since it usually involves a massive
optimization process over a large parameter space. Even for
three qubits, the maximally entangled state with respect to GM
is not known for sure, although it has been conjectured with
strong evidence that the W state is such a candidate [26]. As
an immediate application of the above results, we prove this
conjecture rigorously in Appendix C.

Theorem 1. Up to local unitary transformations, the W state
is the unique maximally entangled pure three-qubit state with
respect to GM.

Theorem 1 can be generalized to mixed states according to
the convex roof definition in Eq. (3).

Theorem 2. The W state is the maximally entangled state
among all three-qubit states with respect to GM.
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IV. CONCLUSIONS

We have provided analytical methods for deriving the
GM of symmetric pure multiqubit states with non-negative
amplitudes in the Dicke basis and symmetric pure three-qubit
states. Also, we have introduced a systematical method for
studying the GM of pure three-qubit states in virtue of a
canonical form of their bipartite reduced states. In particular,
we have derived explicit analytical formulas of GM for the
family of pure three-qubit states one of whose rank-two
two-qubit reduced states is a convex combination of the
maximally entangled state and its orthogonal pure state within
the rank-two subspace. Based on these results, we further
proved that the W state is the maximally entangled three-
qubit state with respect to GM. Our studies can simplify
the calculation of GM and provide a better understanding
of multipartite entanglement, especially the entanglement in
three-qubit states. Our results also facilitate the comparison of
GM with other entanglement measures, like relative entropy
of entanglement [28,45]. Moreover, they may help investigate
the physical phenomena in multipartite entangled systems
emerging in condensed matter physics.
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APPENDIX A: DERIVATION OF EQS. (10)–(12)

We will use the technique in Refs. [35,36] to simplify the
problem. According to the definition in Eq. (1),

G2(|	〉) = max
|a〉|b〉|c〉

Tr[|	〉〈	|(|a〉〈a| ⊗ |b〉〈b| ⊗ |c〉〈c|)]
= max

|a〉|b〉
Tr[(TrC |	〉〈	|)(|a〉〈a| ⊗ |b〉〈b|)], (A1)

where |a〉,|b〉 are normalized qubit states. The second equality
follows from Theorem 1 of E. Jung et al. [47], which states
that any (n − 1)-qudit reduced state uniquely determines the
GM of the original n-qudit pure state, as we have mentioned
in the second paragraph of Sec. III.

To reduce Eq. (A1), we use the Bloch sphere representation
of qubit [22]:

ρ := 1
2 (I + sρ · σ ), (A2)

where the components of σ are three Pauli matrices and sρ is
the Bloch vector.

Suppose the states |a〉,|b〉 have Bloch vectors s1,s2,
respectively. Then Eq. (A1) gives rise to two sets of equations:

r1 + Gs2 = λ1s1, r2 + Gs1 = λ2s2,
(A3)

r1 = Tr[TrBC(|	〉〈	|)σ ], r2 = Tr[TrAC(|	〉〈	|)σ ],

where λ1,λ2 are Lagrange multipliers, and the 3 × 3 matrix
G has elements Gij = Tr[(TrC |	〉〈	|)(σi ⊗ σj )]. Since the

reduced density operators TrBC |	〉〈	| and TrAC |	〉〈	| are
identical, one can show that r1 = r2 = r after some algebra.
It follows that s1 = s2 = s, λ1 = λ2 = λ, and Eq. (A3) reduces
to

r + Gs = λs. (A4)

The solutions to Eq. (A4) determine the GM of the state |	〉
in Eq. (8).

Define s = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) with θ ∈ [0,π ]
and ϕ ∈ [0,2π ]; then Eq. (A4) reduces to Eqs. (10)–(12).

APPENDIX B: DERIVATION OF EQ. (30)

In this Appendix, we derive Eq. (30). Recall that the relevant
parameter range is 0 � γ2 � γ1 � π

2 , γ2 + γ1 � π
2 , and −1 �

x3 � 1, see Sec. III A. To simplify the following discussion,
we also assume 0 < γ1 < π

2 and |x3| < 1; but it turns out that
the final result is applicable without this restriction.

When x1 = x2 = 0, according to Eqs. (28) and (29),

f (a,b,c) = 1 + c cos γ1 cos γ2 + cx3 sin γ1 sin γ2 + |w|,

w =

⎛
⎜⎝

a(cos γ2 sin γ1 − x3 cos γ1 sin γ2)

b(−x3 cos γ2 sin γ1 + cos γ1 sin γ2)

cx3 + x3 cos γ1 cos γ2 + sin γ1 sin γ2

⎞
⎟⎠

T

;

(B1)

According to Sec. III B, to compute g(x3,γ1,γ2), or equiva-
lently, the maximum of f (a,b,c) over the unit sphere, we need
only to maximize f2(c) = f (

√
1 − c2,0,c) over the single

variable c for −1 � c � 1. Here f2(c) can be expressed as
follows,

f2(c) = 1 + u0c +
√

u1c2 + 2u2c + u3,

u0 = cos γ1 cos γ2 + x3 sin γ1 sin γ2 > 0,

u1 = x2
3 − (cos γ2 sin γ1 − x3 cos γ1 sin γ2)2, (B2)

u2 = (x3 cos γ1 cos γ2 + sin γ1 sin γ2)x3,

u3 = (sin γ1)2 + x2
3 (cos γ1)2 > 0.

The four coefficients u0,u1,u2,u3 in Eq. (B2) satisfy the
following relations,

u2 > u1, u2
2 − u1u3 > 0, u2

0 − u1 > 0; (B3)

these relations are useful in the following discussion.
To determine the maximum of f2(c) for −1 � c � 1, we

shall differentiate three cases according to the sign of u1. Note
that u1 is a quadratic function of x3 with a positive quadratic
coefficient, and that it has the following two zeros:

x
(1,2)
3 = cos γ2 sin γ1

±1 + cos γ1 sin γ2
, (B4)

which satisfy the inequalities: −1 � x
(2)
3 < 0 < x

(1)
3 < 1; x

(2)
3

is equal to −1 only if γ1 + γ2 = 1.
Case 1: x3 = x

(1)
3 or x3 = x

(2)
3 . In this case u1 = 0, u0,

u2 > 0,

f2(c) = 1 + u0c +
√

2u2c + u3, (B5)

so the maximum of f2(c) can only be obtained at c = 1.
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Case 2: x3 < x
(2)
3 or x3 > x

(1)
3 . In this case, u0,u1,u2 > 0,

the discriminant of the quadratic function u1c
2 + 2u2c + u3

about c is 4(u2
2 − u1u3) > 0, so the quadratic function has two

zeros with mean −u2/u1 < 0. Since the quadratic function
must be non-negative in the interval [−1,1] by definition, both
zeros must be smaller than or equal to −1. In the interval
[−1,1], this quadratic function and f2(c) are both strictly
increasing, so the maximum of f2(c) can only be obtained
at c = 1.

Case 3: x
(2)
3 < x3 < x

(1)
3 . In this case u1 < 0, the quadratic

function u1c
2 + 2u2c + u3 is positive between its two zeros.

One zero is smaller than or equal to −1, and the other larger
than or equal to 1. To determine the maximum of f2(c), we
take the first and the second derivatives of f2(c):

f ′
2(c) = u0 + u1c + u2√

u1c2 + 2u2c + u3

,

(B6)

f ′′
2 (c) = u1u3 − u2

2

(u1c2 + 2u2c + u3)3/2
< 0,

where the last inequality follows from Eq. (B3). There is only
one solution to the equation f ′

2(c) = 0,

c̄ = −[
x2

3 − (cos γ2 sin γ1 − x3 cos γ1 sin γ2)2
]−1

× [x3(x3 cos γ1 cos γ2 + sin γ1 sin γ2)

+ sin γ1(cos γ1 cos γ2 + x3 sin γ1 sin γ2)

× (sin γ1 − x3 cos γ1 tan γ2)] � 0. (B7)

Since the second derivative of f2(c) is always negative, c̄ is the
global maximum of the function f2(c) in the interval where it
is real valued. Restricted to the interval [−1,1], the maximum
of f2(c) is obtained at c̄ if c̄ < 1 and at c = 1 otherwise. In
both cases, the maximum point is unique. Hence, it remains to
determine when c̄ � 1 and when c̄ < 1.

After some algebra, one can show that x
(1,2)
3 defined in

Eq. (B4) and x
(3,4)
3 defined in Eq. (31) satisfy the following

inequalities,

−1 � x
(2)
3 � x

(3)
3 < 0 � x

(4)
3 < x

(1)
3 < 1. (B8)

If γ1 + γ2 = π
2 , then x

(3)
3 = x

(2)
3 = −1, and c̄ satisfies the

following relation,{
c̄ < 1 −1 < x3 < x

(4)
3 ,

c̄ � 1 x
(4)
3 � x3 < x

(1)
3 .

(B9)

If γ1 + γ2 < π
2 , then −1 < x

(2)
3 < x

(3)
3 , and c̄ satisfies the

following relation,{
c̄ < 1 x

(3)
3 < x3 < x

(4)
3 ,

c̄ � 1 x
(2)
3 < x3 � x

(3)
3 or x

(4)
3 � x3 < x

(1)
3 .

(B10)

According to the observations in the above three cases, if
−1 < x3 � x

(3)
3 or x

(4)
3 � x3 < 1, the maximum of f2(c) is

obtained at 1; if −x
(3)
3 < x3 < x

(4)
3 , the maximum is obtained

at c̄. The maximum point is unique in both cases. The values

of f2(c) at 1 and c̄ are respectively given by

f2(c̄)

= 2
(
1 − x2

3

)
sin γ1 cos γ2(cos γ2 sin γ1 − x3 cos γ1 sin γ2)

−[
x2

3 − (cos γ2 sin γ1 − x3 cos γ1 sin γ2)2
] ,

f2(1) = 1 + cos γ1 cos γ2 + x3 sin γ1 sin γ2

+ |x3 + x3 cos γ1 cos γ2 + sin γ1 sin γ2| (B11)

=
{

(1 − x3)[1 + cos(γ1 + γ2)], x3 � x
(3)
3 ,

(1 + x3)[1 + cos(γ1 − γ2)], x3 � x
(4)
3 ,

where in deriving the last equality, we have noticed that{
x3 + x3 cos γ1 cos γ2 + sin γ1 sin γ2 � 0, x3 � x

(3)
3 ,

x3 + x3 cos γ1 cos γ2 + sin γ1 sin γ2 � 0, x3 � x
(4)
3 .

Now Eq. (30) follows immediately when 0 < γ1 < π
2 and

|x3| < 1; recall that g(x3,γ1,γ2) = 1
4 max−1�c�1 f2(c). It is

straightforward to verify that the formula is also valid in the
special cases |x3| = 1 or γ1 = 0, π

2 , hence the derivation is
complete.

APPENDIX C: PROOF OF THEOREM 1

To prove Theorem 1 in Sec. III C, it suffices to show that
the global minimum of g(ρrk2) is obtained at the two-qubit
reduced state of the W state.

In the relevant parameter range 0 � γ2 � γ1 � π
2 , γ1 +

γ2 � π
2 , by taking its derivative with respect to γ2 in Eq. (30),

one can show that, for given γ1,x3, g(x3,γ1,γ2) is mono-
tonically decreasing with γ2 for x3 < 0 and monotonically
increasing with γ2 for x3 > 0. Assuming x3 < 0, where the
global minimum point should satisfy according to Sec. III C;
then g(x3,γ1,γ2) is monotonically decreasing with γ2. Hence,
either γ1 = γ2 or γ1 + γ2 = π

2 at the global minimum of
g(x3,γ1,γ2). We shall show that the unique minimum is
obtained at the two-qubit reduced state of the W state in both
cases.

1. Special case: γ1 + γ2 = π
2

If γ2 = π
2 − γ1 (π

4 � γ1 � π
2 ), ρrk2 is supported on the

symmetrical subspace, according to Eqs. (22)–(24). In this
case, Eq. (30) reduces to

g

(
x3,γ1,

π

2
− γ1

)

=
{

1
2 − (1+x3)x3(cos γ1)2

−1+3x3+(1+x3) cos(2γ1) , −1 � x3 < x
(4)
3 ,

(1+x3)[1+sin(2γ1)]
4 , x

(4)
3 � x3 � 1,

(C1)

where

x
(4)
3 = 1 − √

2 sin
(
2γ1 + π

4

)
3 + √

2 sin
(
2γ1 + π

4

) . (C2)

g(x3,γ1,
π
2 − γ1) is equal to 1

2 at x3 = 0,−1, independent of
γ1; g(x3,γ1,

π
2 − γ1) is monotonically increasing with γ1 for

−1 < x3 < 0, and monotonically decreasing for 0 < x3 � 1
(see also Fig. 1).
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To determine the maximum of g(x3,γ1,
π
2 − γ1) for given

γ1, we can set its derivative with respect to x3 to 0 (in
the interval −1 � x3 < x

(4)
3 ), which leads to the following

quadratic equation over x3,

[3 + cos(2γ1)]x2
3 + [−2 + 2 cos(2γ1)]x3 + cos(2γ1) = 1.

(C3)

Given π
4 � γ1 � π

2 , the only solution with modulus less than
or equal to 1 is

x
(5)
3 = 2 sin γ1(sin γ1 − √

2)

3 + cos(2γ1)
. (C4)

The minimum of g(x3,γ1,
π
2 − γ1) for given γ1 is

g

(
x

(5)
3 ,γ1,

π

2
− γ1

)
= [1 + cos(2γ1) + √

2 sin γ1]2

[3 + cos(2γ1)]2
. (C5)

One can show that g(x(5)
3 ,γ1,

π
2 − γ1) is monotonically in-

creasing with respect to γ1 by taking its derivative with
respect to γ1; hence, its minimum is obtained at γ1 = π

4 .

At this minimum point, γ1 = γ2 = π
4 , x3 = x

(5)
3 = − 1

3 , and
g(− 1

3 , π
4 , π

4 ) = 4
9 . This minimum is also the global minimum

of g(ρrk2).
The rank-two state corresponding to this minimum is

exactly the two-qubit reduced state of the W state; moreover,
up to local unitary transformations, the W state is the only
pure three-qubit state with this rank-two state as a two-qubit
reduced state. To see this, recall that the two-qubit reduced
state of |W〉 = 1√

3
(|100〉 + |010〉 + |001〉) is

ρrk2(W) = 1
3 |00〉〈00| + 2

3 |ψ+〉〈ψ+| (C6)

with |ψ+〉 = 1√
2
(|01〉 + |10〉), which is a convex combination

of a pure product state and a orthogonal Bell state, thus γ1 =
γ2 = π

4 , according to Ref. [44]. In this rank-two subspace,
the Bloch vectors of the two states |00〉 and |ψ+〉 are (0,0,1)
and (0,0,−1), respectively, and the Bloch vector of the state
ρrk2(W) is exactly (0,0,− 1

3 ).

2. Special case: γ2 = γ1 � π
4

In this case, Eq. (30) reduces to

g(x3,γ1,γ1)

=

⎧⎪⎪⎨
⎪⎪⎩

(1−x3)
2 (cos γ1)2, −1 � x3 � x

(3)
3 ,

−(1−x3)2(1+x3)[sin(2γ1)]2

−1+x3(2+7x3)+(1−x3)2 cos(4γ1) , x
(3)
3 < x3 < 0,

(1+x3)
2 , 0 � x3 � 1,

(C7)

where

x
(3)
3 = −(tan γ1)2. (C8)

It is interesting to note that g(x3,γ1,γ1) is independent of
γ1 when 0 � x3 � 1. If x3 < 0, g(x3,γ1,γ1) is monotonically
decreasing with γ1. Hence, γ1 = π

4 at its minimum, the corre-
sponding rank-two subspace is then symmetric. According to
the result on symmetric states in the previous subsection, the
unique minimum of g(x3,γ1,γ1) is also obtained at γ1 = γ2 =
π
4 , x3 = − 1

3 .
We have shown that the unique minimum of g(x3,γ1,γ2) is

obtained at γ1 = γ2 = π
4 , x3 = − 1

3 , and that the corresponding
state is the two-qubit reduced state of the W state. This
minimum is also the global minimum of g(ρrk2). To prove
that the minimum is unique among all two-qubit rank-two
states, it remains to show that it is unique in the rank-
two subspace with γ1 = γ2 = π

4 . It suffices to verify that
g(x1,x2,− 1

3 , π
4 , π

4 ) > g(0,0,− 1
3 , π

4 , π
4 ) for x2

1 + x2
2 > 0 [here

we write g(x1,x2,x3,γ1,γ2) for g(ρrk2)]. Due to the rotational
symmetry of g(x1,x2,x3,γ1,γ2) about the x3 axis discussed in
Sec. III A, this is true if g(x1,0,− 1

3 , π
4 , π

4 ) > g(0,0,− 1
3 , π

4 , π
4 )

for x1 > 0. According to Eq. (29), when γ1 = γ2 = π
4 , x2 = 0,

x3 = − 1
3 ,

f

(
2
√

2

3
,0,

1

3

)
= 2

9
[5 + 3x1 +

√
9 + 3x1(10 + 9x1)]; (C9)

hence,

g

(
x1,0,−1

3
,
π

4
,
π

4

)
� 1

4
f

(
2
√

2

3
,0,

1

3

)
,

(C10)

>
4

9
= g

(
0,0,−1

3
,
π

4
,
π

4

)
.

This completes the proof of Theorem 1.
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[32] R. Orús, S. Dusuel, and J. Vidal, Phys. Rev. Lett. 101, 025701

(2008).
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