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The necessary and sufficient conditions for the equivalence of arbitrary n-qubit pure quantum states under local
unitary (LU) operations derived in [B. Kraus, Phys. Rev. Lett. 104, 020504 (2010)] are used to determine the
different LU-equivalence classes of up to five-qubit states. Due to this classification new parameters characterizing
multipartite entanglement are found and their physical interpretation is given. Moreover, the method is used to
derive examples of two n-qubit states (with n > 2 arbitrary) which have the properties that all the entropies of
any subsystem coincide; however, the states are neither LU equivalent nor can be mapped into each other by
general local operations and classical communication.
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I. INTRODUCTION

The subtle properties of multipartite entangled states allow
for many fascinating applications of quantum information,
such as one-way quantum computing, quantum error cor-
rection, and quantum secret sharing [1,2]. The theory of
many-body states also plays an important role in other fields
of physics which deal with many-body systems [3]. Thus,
the investigation of the nonlocal properties of quantum states
is at the heart of quantum information theory. Compared to
the bipartite case, which is well understood, the multipartite
case is much more complex due to the exponential growth
in the dimension of the Hilbert space. Despite its relevance
and the enormous effort of theorists, many problems regarding
multipartite entanglement are still unsolved [4]. Several entan-
glement measures for multipartite states, such as the tangle [5],
the Schmidt measure [6], the localizable entanglement [7], and
geometric measure of entanglement [8] have been introduced.
Moreover, different classes of entangled states have been
identified [9], and a normal form of multipartite states has been
presented [10]. However, even for the simplest case of three
qubits the entanglement properties are still not completely
understood. One of the main reasons for the lack of knowledge
is, arguably, that for many-body entangled states we do have
only few applications [4]. This results in the existence of few
known operational entanglement measures.

One approach to gaining insight into the complicated
structure of multipartite states is to consider a restricted class
of states, such as stabilizer states [1], matrix-product states
[11], projected entangled pair states [12], locally maximally
entangleable states (LMESs) [13], or Gaussian state [14].
Considering a restricted set of states enabled researchers to
gain a lot of intuition about the usefulness and manipulation
of them. This knowledge in turn led to many of the fascinating
applications of multipartite states.

Another way to gain insight into the entanglement proper-
ties of quantum states is to consider their interconvertability.
That is, given two states |�〉,|�〉 the question is whether
|�〉 can be transformed into |�〉 by local operations [4].
One particularly interesting case is the LU equivalence of
multipartite states. We say that a n-partite state, |�〉, is LU
equivalent to |�〉 (|�〉 �LU |�〉) if there exist local unitary
operators, U1, . . . ,Un, such that |�〉 = U1 ⊗ · · · ⊗ Un|�〉.
Note that two states which are LU equivalent are equally

useful for any kind of application and they posses precisely the
same amount of entanglement. Another insight is gained by
considering more general operations, such as (deterministic)
local operations and classical communication (LOCC). Since
entanglement cannot increase under LOCC, a state, |�〉, which
can be mapped into the state |�〉 by LOCC is necessarily at
least as entangled as |�〉. Thus, all these investigations of
convertibility led to a new insight into the general problem of
characterizing the different types of entangled quantum states.

In this article we mainly focus on the LU equivalence
of multipartite states. Local polynomial invariants have been
introduced to distinguish the different LU equivalence classes
[15]. However, even though it is known that it is sufficient
to consider only a finite set of them, this complete finite
set is known only for very few simple cases. In [16] a
method for solving the LU-equivalence problem for arbitrary
n-qubit states has been presented. There an algorithm which
determines the local unitaries, which map the states into each
other (if they exist) has been derived. Within this algorithm,
different classes of states, which are easily characterized, are
distinguished. It has been shown that two states which are
within two different classes cannot have the same entangle-
ment.

Here, we use the algorithm presented in [16] in order to
investigate the nonlocal properties of multipartite states. We
present the LU-equivalence classes of few-body systems and
obtain a new insight into multipartite entanglement. The main
results derived here are summarized in Sec. II.

The remainder of the article is organized as follows. After
presenting the main results of this article (Sec. II), we review
the necessary and sufficient conditions for LU equivalence
derived in [16]. In Sec. IV we derive some additional
methods to determine the local unitaries (if they exist) which
interconvert the two states. In Sec. V we characterize the
LU-equivalence classes of up to four qubits. For five-qubit
states we consider the most challenging class (for using the
algorithm) and show how the local unitaries can be determined
then. For an arbitrary n (with n > 2), the existence of n-qubit
states, |�〉, which are not LU equivalent to their complex
conjugate are shown by presenting examples in Sec. VI. In
Sec. VII it is shown how the algorithm can be employed to
solve the LU-equivalence problem for certain mixed states
and also states which describe d-level systems. The new
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insight gained into multipartite entanglement is discussed in
Sec. VIII.

Throughout this article the following notation is used. The
Pauli operators are mainly denoted by X, Y, and Z. Whenever
we need the whole set of Pauli operators, we use the notation
�1 = X, �2 = Y, and �3 = Z and H denotes the Hadamard
transformation. Otherwise, the subscript of an operator always
denotes the system it is acting on or the system it is describing.
The reduced states of system i1, . . . ,ik of |�〉 (|�〉) are
always be denoted by ρi1,...,ik (σi1...ik ) respectively; that is,
ρi1,...,ik = tr¬i1,...,¬ik (|�〉〈�|). We denote by i the classical bit
string (i1, . . . ,in), with ik ∈ {0,1} ∀ k ∈ {1, . . . ,n}, and |i〉 ≡
|i1, . . . ,in〉 denotes the computational basis. Normalization
factors as well as the tensor product symbol is omitted
whenever it does not cause any confusion and 1 denotes the
normalized identity operator. The eigenvalues of some matrix
M are denoted by eig(M). For a subsystem A we denote by
EA(|�〉) the bipartite entanglement between A and the remain-
ing systems measured with the Von Neumann entropy of the
reduced state, ρA. For instance, Ei(|�〉) = S(ρi) denotes the
entanglement between qubit i and the remaining n − 1 qubits.
As commonly used, the states |�±〉 = |00〉 ± |11〉,
|�±〉 = |01〉 ± |10〉 denote the Bell basis. The state |�∗〉
denotes the complex conjugate of the state |�〉 in the
computational basis and MT denotes the transpose of an
operator M in the computational basis. Moreover, the matrix
Rw(α) with w ∈ x,y,z denotes the rotation around the w axis
with rotation angle α.

II. MAIN RESULTS

On the one hand, the criterion for LU equivalence [16] is
used to characterize the LU-equivalence classes for few-body
states. On the other hand, it will be employed to shed new light
on multipartite entanglement. Furthermore, the criterion will
be generalized to certain mixed states and also states which
describe d-level systems. The main results derived here can be
summarized as follows.

(i) Characterization of LU-equivalence classes: The
LU-equivalence classes of quantum states describing up to
five qubits are characterized. For two-, three-, and four-qubit
states, all the classes are explicitly derived. For five-qubit
states, whose classification would work analogously, only the
most challenging subset of states are considered. It is explicitly
shown how the algorithm can be used to determine the local
unitaries (if they exist) which transform one state to the other.

(ii) New insight into multipartite entanglement:
(a) The algorithm presented in [16] distinguishes

between different classes of states, such as the class of
states with ρ12 = ρ1 ⊗ 12 and the one with ρ12 	= ρ1 ⊗ 12.
It is shown how this classification enables us to gain a new
insight into multipartite entanglement. For instance, one
class would be the one where one of the two-qubit reduced
states is completely mixed. For four-qubit states it is shown
that this class is completely characterized by only three
nonlocal parameters. Moreover, it is proven that two states
within this class are LU equivalent if and only if (iff) the
corresponding sets of three parameters coincide. Naturally,
all the entanglement contained in a state within this class
is also determined by those three parameters to which the

following operational meaning can be given. Recall that
the completely positive map (CPM), E� , corresponding to
a state |�〉 via the Choi-Jamiolkowski isomorphism [17]
can be implemented using a system prepared in the state
|�〉 and local operations. It is shown that the nonlocal
content of the CPM, E� , is characterized by the three
parameters mentioned earlier and vice versa. This leads
to the new approach to characterizing the entanglement
of a multipartite state by the entangling capability of the
operation which can be implemented using the state as the
only nonlocal resource.
This suggests a new method of characterizing the entan-
glement contained in an arbitrary multipartite state: First,
divide the Hilbert space into the entanglement classes
resulting from the algorithm in [16]. Note that these classes
can be easily characterized. Then the entanglement of a state
within a certain class should be qualified and quantified.
Probably, the different classes might also lead to different
applications. For instance, for error correction, one-way
quantum computing, and quantum secret sharing, we have
that all the employed states have the property that all
single-qubit reduced states are completely mixed.

(b)The other new insight into multipartite entangle-
ment which we derive here using the LU-equivalence
criterion is the following. For any n > 2 examples of
n-qubit states, |�〉 and |�〉, which have the properties that
for any subsystem A, composed of arbitrary many qubits,
the eigenvalues of the reduced states, ρA = tr¬A(|�〉〈�|)
and σA = tr¬A(|�〉〈�|) coincide, are presented. Therefore,
all the bipartite entanglement in those two states, measured
with the von Neumann entropy of the reduced states,
coincide. It is shown, however, that the states are neither
LU equivalent nor LOCC comparable. Therefore, neither
|�〉 can be mapped into |�〉 by LOCC nor vice versa.
Surprisingly, in those examples we have |�〉 = |�∗〉,
where |�∗〉 denotes the complex conjugate of |�〉 in the
computational basis. The fact that |�〉 and |�∗〉 can have so
different nonlocal properties does not seem very physical.
As a consequence of the existence of these states it is
suggested to divide the Hilbert space into two subsets,
in case |�〉 is not LU equivalent to |�∗〉: one which
corresponds to |�〉 and one which corresponds to its
complex conjugate. The nonlocal properties should then
be investigated within one of the subsets since there will
not be a physical measure which will distinguish between
|�〉 and |�∗〉.
(iii) Generalization of LU-equivalence criterion: It is

demonstrated how the solution of the LU equivalence for pure
n-qubit states can be generalized to mixed states and also to
d-level systems.

III. LU EQUIVALENCE OF MULTIPARTITE STATES

Here we briefly summarize the necessary and sufficient
conditions for the existence of LU operations which transform
two n-qubit states to each other [16]. We first review a standard
form for multipartite states (see also [18] and [13]) and provide
some examples of states in their standard form. It has been
shown that two generic multipartite states, that is, states where
none of the single-qubit reduced states is proportional to the
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identity, are, such as in the bipartite case, LU equivalent
iff their standard forms coincide [16]. For nongeneric states
the systematic method of determining the local unitaries
(if they exist) which interconvert two arbitrary states is
reviewed.

A. Standard form of multipartite states

Let us first recall the definition of the standard form for
multipartite states. Any decomposition of a multipartite state
which has the property that the single-qubit reduced states are
all diagonal in the computational basis is called trace decompo-
sition. It is obtained by applying local unitary transformations,
U 1

i , which diagonalize the single-qubit reduced states, ρi ; that
is, U 1

i ρi(U 1
i )† = Di ≡ diag(λ1

i ,λ
2
i ). A sorted trace decomposi-

tion, which we denote by |�st〉 in the following, is then defined
as a trace decomposition with λ1

i � λ2
i . The sorted trace

decomposition of a generic state, |�〉 with ρi 	= 1 ∀ i is unique
up to local phase gates. That is U1, . . . ,Un|�st〉 is a sorted
trace decomposition of a generic state, |�〉, iff (up to a global
phase, α0) Ui = Zi(αi) ≡ diag(1,eiαi ). It is straightforward to
impose certain conditions on the phases αi , i ∈ {0, . . . ,n} in
order to make the sorted trace decomposition of generic states
unique [16]. We call this unique sorted trace decomposition
the standard form of the multipartite state. Note that any state
can be transformed into its standard form by local unitary
operations.

Let us now also recall how the standard form can be defined
for states with ρi = 1, for some system i [13]. In this case the
standard form can be chosen to be limε→0 |�(ε)〉, where |�(ε)〉
denotes the unique standard form of

√
1 − ε|�〉 + √

ε|0〉,
where the phase gates are fixed by the same conditions
as for generic states [13]. It should be noted here that for
nongeneric states the standard form is not unique, as can
be seen by the following simple example of a three-qubit
states. Both the GHZ state |�〉 = |000〉 + |111〉 and HHH |�〉
are standard forms of the state |�〉; however, they do not
coincide.

Let us now derive the standard form for some examples. For
two-qubit states the standard form coincides with the Schmidt
decomposition [19]. In [20] the standard form of three-qubit
states has been derived. In order to present the standard
forms of certain n-partite states we recall here the notion of
the so-called LMESs [13]. LMESs have been introduced as
a new, physically motivated classification of pure quantum
states describing n qubits. A state is called LMES if local
auxiliary qubits can be attached to the system qubits in such
a way that the resulting state is maximally entangled in the
bipartite splitting system qubits versus auxiliary qubits. To
be more precise, a state |�〉 is a LMES if there exist local
control operations Ci = |0〉〈0| ⊗ U 0

i + |1〉〈1| ⊗ U 1
i , with U

0,1
i

single-qubit unitary operators acting on the system qubit i

such that the 2n-qubit state C1 ⊗ C2 ⊗ · · · ⊗ Cn|�〉|+〉⊗n,
with |+〉 = 1/

√
2(|0〉 + |1〉), is a maximally entangled state

between the system and the auxiliary systems. This set of
states coincides with the set of states which can be used to
encode locally the maximum amount of n independent bits.
Prominent examples of these states are the stabilizer states,
which are used for quantum error correction and one-way
quantum computing. In [13] it has been shown that a state is

LME iff it is LU equivalent to a state of the form

|�〉 =
√

1

2n

∑
i

eiαi |i〉 ≡ U�
ph |+〉⊗n, (1)

where αi ∈ IR and U�
ph denotes the diagonal unitary operator

with entries eiαi . Thus, a state is LME iff there exists a product
basis such that all the coefficients of the state in this basis are
phases.

Note that all those states can be easily transformed into their
trace decomposition by applying the local unitary operations
HUi , where Ui = diag(eiφi ,1), with cot(φi) = 〈Xi 〉

〈Yi 〉 if 〈Yi〉 	= 0
and φi = 0 else. To derive the trace decomposition from the
standard form one simply has to impose the conditions on the
local phase gates, as mentioned earlier.

B. Criterion for LU equivalence

Since the standard form is unique for generic states we
have, similarly to the bipartite case, that two generic states are
LU equivalent iff their standard forms are equivalent.

Let us now turn to the more complicated case of nongeneric
states. First, the condition of LU equivalence for generic states
is rewritten in the following way. It can be easily seen that
the standard forms of two generic states, |�〉 and |�〉, are
equivalent iff there exists a bit string k = (k1, . . . ,kn), local
phase gates Zi(αi), and a global phase α0 such that

eiα0
⊗

i

Zi(αi)X
ki

i Wi |�〉 =
⊗

i

Vi |�〉, (2)

where Wi and Vi are local unitaries which diagonalize ρi (σi).
That is,

⊗
i Wi |�〉 and

⊗
i Vi |�〉 are trace decompositions of

|�〉 and |�〉, respectively. For generic states, ki is chosen
such that the order of the eigenvalues of the single-qubit
reduced states of

⊗
i X

ki

i Wi |�〉 and
⊗

i Vi |�〉 coincides and
the phases αi are chosen to fulfill the conditions mentioned
earlier [16]. Note that the reason for the freedom of the phase
gates in Eq. (2) is simply due to the fact that we have been
considering only single-qubit reduced states to define the trace
decomposition of multipartite states.

Obviously, two arbitrary states |�〉 and |�〉 are LU
equivalent iff there exist local unitaries Vi and Wi and a
bit string k = (k1, . . . ,kn) and phases αi such that Eq. (2)
is fulfilled. For nongeneric states, a constructive method of
determining the unitaries Vi and Wi in Eq. (2) has been
presented in [16]. Once those unitaries are fixed it is then easy
to decide whether there exist local phase gates for a certain bit
string k such that Eq. (2) is fulfilled (see Lemma 1).

Since we are going to determine the local unitaries which
transform two states into each other in Sec. V we review
here the constructive method to compute the unitaries Vk and
Wk . First of all, it is easy to see that if |�〉 is such that
there exists some system i such that ρi 	= 1, the unitaries
Vi and Wi can be determined by considering the necessary
condition for LU equivalence, ρi = UiσiU

†
i . Analogously to

the generic case, the equation Di = diag(λi
1,λ

i
2) = WiρiW

†
i =

ViσiV
†
i determines Wi and Vi (and ki = 0) uniquely up to a

phase gate. Thus, for this case we have that |�〉 �LU |�〉 iff
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there exist two phases, αi and α0, and local unitaries Uj such
that

i〈l|Wi�s〉 = ei(α0+αi l)
⊗
j 	=i

Uj i〈l|Vi�s〉 for l ∈ {0,1}, (3)

where Wi and Vi are chosen such that Di = diag(λi
1,λ

i
2) =

WiρiW
†
i = ViσiV

†
i . Hence, if there is one system where the

reduced state is not completely mixed, then the problem of
LU equivalence of n-qubit states can be reduced to the one of
(n − 1)-qubit states. This statement can be easily generalized
to the case where more than one single-qubit reduced state is
not completely mixed.

Let us now turn to the remaining case where ρi = 1∀ i.
Instead of considering the necessary conditions ρi =
UiσiU

†
i , one considers the necessary conditions ρn1,...,nl ,k =

Un1 , . . . ,Unl
Ukσn1,...,nl ,kU

†
n1 , . . . ,U

†
nl
U

†
k , for some appropri-

ately chosen set {n1, . . . ,nl,k} and computes Uk as a function
of Un1 , . . . ,Unl

. More precisely, it has been shown that if
|�〉 = U1, . . . ,Un|�〉 and if there exist systems n1, . . . ,nl and
k such that ρn1,...,nl ,k 	= ρn1,...,nl

⊗ 1k , then Vk in Eq. (2) can be
determined from the state |�〉 and Wk can be determined as a
function of the unitaries Un1 , . . . ,Unl

. To be more specific, we
assume without loss of generality that n1 = 1, . . . ,nl = l. Due
to the condition ρ1,...,l,k 	= ρ1,...,l ⊗ 1k it can be shown that there
exist at least two tuples i = (i1, . . . ,il) and j = (j1, . . . ,jl) such
that at least one of the Hermitian 2 × 2 matrices B

j
i = A

j
i +

(Aj
i)† and C

j
i = iA

j
i − i(Aj

i)†, where A
j
i ≡ tr¬k[|i〉〈j||�〉〈�|] is

not proportional to the identity. Without loss of generality, we
assume that 1 	∝ B

j
i = tr¬k[(|i〉〈j| + H.c.)|�〉〈�|]. Using that

|�〉 = U1, . . . ,Un|�〉, we have

UkB
j
i U

†
k = tr¬k[(|i〉 〈j| + H.c.)U †

1 , . . . ,U
†
l |�〉 〈�|U1, . . . ,Ul].

(4)

Since B
j
i is Hermitian we can diagonalize it as well as

the right-hand side of Eq. (4). It can then be shown
that |�〉 = U1, . . . ,Un|�〉 iff there exists ik ∈ {0,1} and
α0 and αk such that eiα0XikU (αk)Wk(U1, . . . ,Ul)|�〉 =
U1, . . . ,Vk, . . . ,Un|�〉, where Vk is the unitary which diag-
onalizes B

j
i and can therefore be determined directly from the

state |�〉 and Wk(U1, . . . ,Ul) diagonalizes the right-hand side
of Eq. (4).

Note that this constructive method of computing Vk and
Wk is based on the necessary condition for LU equivalence
given in Eq. (4) for any l-tuples i,j. Since the 2 × 2 matrices
occurring in this equation are Hermitian, one can, similarly
to the previous cases, determine the unitaries Vk and Wk

by diagonalizing these matrices. In contrast to before, we
find here that Wk might depend on U1, . . . ,Ul . Again, since
those unitaries are obtained by diagonalizing a 2 × 2 matrix
the phase gate occurring in Eq. (2) cannot be determined like
that. This is the reason why the condition of LU equivalence
has been rewritten in the seemingly more complicated form
presented in Eq. (2).

In order to check then whether or not there exist phases
αi such that Eq. (2) is satisfied, the following lemma [16],
which is proven here, has been used. We consider four n-qubit
systems which are denoted by A, B, C, and D, respectively.
The ith qubit of system A is denoted by Ai , etc. Furthermore,

we use the notation |χ〉i = (|0110〉–|1001〉)Ai,Bi ,Ci ,Di
and

P i
AC = ∑

k |k〉〈kk|A1,C1,...,Ai−1,Ci−1,Ai+1,Ci+1,...,An,Cn
. Similarly,

we define P i
BD for systems B,D. For a state |�〉 we

define K� ≡ {k such that 〈k|�〉 = 0} and |�{ᾱi }〉 = |�〉 +
2e−iᾱ0

∑
k∈K�

e−i
∑n

i=1 ᾱi ki |k〉 for some phases ᾱi and |�0〉 =
|�〉 + 2

∑
k∈K�

|k〉.
Lemma 1. Let |�〉,|�〉 be n-qubit states. Then

there exist local phase gates Zi(αi) and a phase
α0 such that |�〉 = eiα0

⊗n
i=1 Zi(αi)|�〉 iff there ex-

ist phases {ᾱi}ni=0 such that (i) |〈i|�0〉| = |〈i|�{ᾱi}〉| ∀ i
and (ii) 〈χ |iP i

ACP i
BD|�0〉A|�0〉B |�{ᾱi }〉C |�{ᾱi }〉D = 0 ∀ i ∈

{1, . . . ,n}.
Condition (ii) can be interpreted as follows. Taking two

copies of the state |�0〉 and two copies of the state |�{ᾱi }〉
and projecting the four qubits, Ai , Bi , Ci , and Di onto the
state |χ〉i leads to a 4(n − 1)-qubit state, which is in the kernel
of P i

ACP i
BD for any system i. Before proving Lemma 1, we

introduce here another lemma, which will be required for
the proof. Using the same notation as before, we have the
following.

Lemma 2. |�〉 can be converted into |�〉 by local unitary
phase gates iff there exist phases {ᾱi}ni=0 such that |�0〉 is
converted into |�ᾱi

〉 by local unitary phase gates.
Proof. If |�〉 = eiα0

⊗n
i=1 Zi(αi)|�〉, for some phases

{αi}, then K� = K� and choosing ᾱi = αi for i ∈ {0, . . . ,n}
fulfills the condition. To prove the inverse direction, we
assume that there exist phases {ᾱi}ni=0 such that |�0〉 =
eiα0

⊗n
i=1 Zi(αi)|�ᾱi

〉 for some phases {αi}. Due to the factor
2 in the definition of |�0〉 and |�ᾱi

〉, this implies K� = K�.
Defining the projector P = ∑

k 	∈K�
|k〉〈k| we have P |�0〉 =

|�〉 and Peiα0
⊗n

i=1 Zi(αi)|�ᾱi
〉 = eiα0

⊗n
i=1 Zi(αi)P |�ᾱi

〉
and therefore |�〉 = eiα0

⊗n
i=1 Zi(αi)|�〉. �

The reason for introducing this lemma is that it implies
that if one wants to decide whether two states are up to local
phase-gate equivalent, one only needs to consider states where
none of the coefficients in the computational basis vanish. Let
us now use the lemma above to prove Lemma 1.

Proof. As mentioned earlier, due to Lemma 2 it remains
to show that for any state |ψ〉 with 〈k|ψ〉 	= 0 ∀ k we
have that |ψ〉 = eiα0

⊗n
i=1 Zi(αi)|φ〉 for some phases {αi} iff

condition (i) and (ii) in Lemma 1 are satisfied. Note that
condition (ii) is equivalent to 〈0k|ψ〉〈1l|ψ〉〈1k|φ〉〈0l|φ〉 =
〈1k|ψ〉〈0l|ψ〉〈0k|φ〉〈1l|φ〉, where 0,1 act on system i and
k,l denote the computational basis states of the remaining
n − 1 qubits.

Let us now prove the only if part: If |ψ〉 =
eiα0

⊗n
i=1 Z(αi)|φ〉 for some phases {αi}, then 〈i|ψ〉 =

eiφi〈i|φ〉, with φi = α0 + ∑
k αkik , which implies (i). Con-

dition (ii) (for i = 1) is then equivalent to ei(φ0k+φ1l)xkl =
ei(φ1k+φ0l)xkl, where xkl = 〈0k|φ〉〈1l|φ〉〈1k|φ〉〈0l|φ〉. It is easy
to see that this condition is fulfilled since ei(φ0k−φ1k) = e−iα1

∀ k. In the same way, one can show that the conditions for
i 	= 1 are fulfilled.

To prove the if part, we first note that condition (i) im-
plies that 〈i|�〉 = eiφi〈i|�〉 for some phases φi. Condi-
tion (ii) (for i = 1) implies then that ei(φ0k−φ1k) = ei(φ0l−φ1l)

∀ k,l, since xkl = 〈0k|φ〉〈1l|φ〉〈1k|φ〉〈0l|φ〉 	= 0 ∀ k,l. Thus,
ei(φ0k−φ1k) must be independent of k and, therefore, we have
ei(φ0k−φ1k) = e−iα1 , for some phase α1. Equivalently, we have
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eiφk1 ,k = ei(α
(k1)
1 +φ1k), where α

(0)
1 = −α1 and α

(1)
1 = 0. Simi-

larly, we obtain ei(φk10k3,...,kn−φk11k3 ,...,kn ) = e−iα2 and therefore

eiφk1 ,k2 ,k3 ,...,kn = ei(α
(k1)
1 +α

(k2)
2 +φ11k3 ,...,kn ). Continuing in this way

we find eiφk1 ,...,kn = eiα0ei
∑

j αj kj , where α0 = φ1,...,1 − ∑
αi .

Thus, we have |ψ〉 = eiα0
⊗n

i=1 Zi(αi)|φ〉. �
It is important to note here that the state on the right-hand

side of Eq. (2) is completely determined using the method
summarized previously. Thus, the set K� in Lemma 1 can be
determined and therefore this lemma can be applied. The states
are LU equivalent iff the conditions in Lemma 1 are fulfilled for
some bit string k. The unitaries which interconvert the states
are, up to the symmetry of the states, uniquely determined and
are given by Ui = W

†
i Zi(αi)Xki Vi (up to a global phase).1

In summary, the LU-equivalence problem has been solved
by presenting a systematic method to determine the local
unitaries (if they exist) which interconvert the states. This
has been achieved by determining Vi and Wi in Eq. (2) by
imposing necessary conditions of LU equivalence, such as
ρi = UiσiU

†
i and Eq. (4). Once all the unitaries Vi and Wi

are determined (even as functions of some others), the states
are LU equivalent iff there exist local phase gates which
interconvert the transformed states (after applying

⊗
i Vi ,⊗

i Wi to |�〉,|�〉, respectively). This can then be easily
decided by employing Lemma 1.

Before ending this section let us present here another way of
checking whether two states are interconvertible by local phase
gates. Due to Lemma 2 we only need to consider states |�〉,
|�〉 with K� = K� = Ø. Here and in the following we denote
by

⊙
the Hadamard product, that is, the componentwise

product, and by /. we denote the inverse operation, that is, the
componentwise division. For instance, if |�〉 = ∑

i ai|i〉 and
|�〉 = ∑

i bi|i〉, with bi 	= 0 ∀ i, then |�〉/.|�〉 = ∑
i ai/bi|i〉.

Lemma 3. Let |�〉 and |�〉 be n-qubit states with K� =
K� = Ø. Then there exist phases {αi} such that |�〉 =
eiα0

⊗
i Z(αi)|�〉 iff (i) |〈i|�〉| = |〈i|�〉| and (ii) |�〉/.|�〉 is

a product state.
Proof. (Only if): If |�〉 = eiα0

⊗
i Z(αi)|�〉, condition

(i) is obviously fulfilled. In order to show that con-
dition (ii) is fulfilled we use that eiα0

⊗
i Z(αi)|�〉 =

eiα0
⊗

i Z(αi)|+〉⊗n
⊙ |�〉. Thus, |�〉/.|�〉 = eiα0

⊗
i Z(αi)

|+〉⊗n, which is a product state.
(If): Due to condition (i) we have that |�〉/.|�〉 = ∑

eiαi |i〉
for some phases αi. That is, |�〉/.|�〉 is a LME state. Due
to condition (ii) this LME state must be a product state; that
is,

∑
eiαi |i〉 = ⊗

i |φi〉, where |φi〉 = ei�i
0 (λi

0|0〉 + ei�i
1λi

1|1〉),
with λi

k � 0. This implies that eiαi = ei(�0+
∑

k �k
1ik), where

�0 = ∑
k �k

0. Thus, the LME state is a product state iff it
is equivalent to eiα0

⊗
i Z(αi)|+〉⊗n for some phases {αi} and

therefore |�〉 = eiα0
⊗

i Z(αi)|�〉. �
As mentioned earlier, Lemma 2 can be used to generalize

Lemma 1 to states |�〉 for which K� 	= Ø. Note that condition
(ii) has a physical interpretation. The Hadamard product of
two states |ψ〉, |φ〉 corresponds to the state one would get by
the following procedure. Let |ψ〉 (|φ〉) describe the system
11, . . . ,n1 (12, . . . ,n2), respectively, and consider n pairs

1Note that the phases αi can be easily computed.

of maximally entangled two-qubit states, |�+〉 = ∑1
i=0 |ii〉,

describing systems 13,14, . . . ,n3,n4. Then, |φ〉⊙ |ψ〉 =⊗n
i=1〈�0

i1,i2,i3
|ψ〉11,...,n1 |φ〉12,...,n2

⊗n
i=1 |�+〉i3,i4 , where |�0〉

denotes the GHZ states here. This resembles the procedure
of gate teleportation [21]. Note that condition (ii) is fulfilled
iff there exists a product state,

⊗
i |φi〉 such that |�0〉 =

|�ᾱi
〉⊙ ⊗

i |φi〉.

IV. ADDITIONAL METHODS FOR COMPUTING
THE LOCAL UNITARIES

We have seen before how the local unitaries which
occur in Eq. (2) can be determined by imposing cer-
tain necessary conditions of LU equivalence [see Eq. (4)].
One might also use other necessary conditions for
LU equivalence to determine those local unitaries. For
instance, if |�〉 = U1, . . . ,Un|�〉 then tr1(ρ1 ⊗ 12ρ12) =
U2tr1(σ1 ⊗ 12σ12)U †

2 and tr23(ρ123 ⊗ 11′ρ1′23 ⊗ 11) = U1 ⊗
U1′ tr23(σ123 ⊗ 11′σ1′23 ⊗ 11)U †

1 ⊗ U
†
1′ . Of course, any gener-

alization of these equations must be fulfilled too. Here we will
use those and other necessary conditions for LU equivalence
to derive some additional methods to compute the unitaries
in Eq. (2) for certain multipartite states. Depending on the
properties of the states of interest, one method or the other
might be better suited. In Sec. V we use the various methods
to compute the local unitaries directly, that is, not as a
function of other unitaries. This makes the characterization
of LU-equivalence classes easier.

Here we first consider the LU equivalence of two-qubit
mixed states. Then we focus on those states for which there
exists at least one system i with ρi 	= 1 and derive a simple
way to determine the unitaries in Eq. (2).

A. Two-qubit mixed states

For two-qubit mixed states ρ, σ , necessary and sufficient
conditions for LU equivalence have been derived in [22].
However, if ρ = ρij (σ = σij ) denotes the reduced state
of some systems i,j of a multipartite state, |�〉 (|�〉),
respectively, and the aim is to investigate the LU equivalence
of |�〉 and |�〉, then one must determine all local unitaries,
Ui,Uj , which fulfill ρij = UiUjσijU

†
i U

†
j and then check if

there exists one of them, which transforms the multipartite
states into each other. We show here how to achieve this task.

We have seen earlier that if there exists some system i

such that ρi 	= 1, then Vi , Wi , and ki in Eq. (2) can be
determined by imposing the necessary condition ρi = UiσiU

†
i .

Thus, it remains to consider the case where both reduced
states are proportional to the identity which implies that
ρ = 1 + ∑

k,l �k,l�k ⊗ �l , where � = ∑
kl λkl|k〉〈l| is real.

Applying the local unitary operation U1 ⊗ U2 to the state,
ρ leads to U1 ⊗ U2ρU

†
1 ⊗ U

†
2 = 1 + ∑

k,l �
′
k,l�k ⊗ �l , with

�′ = O1�OT
2 . Here, O1,O2 are real orthogonal matrices

which are defined via the equation Ui(�n�σ )U †
i = (Oi �n�σ ) for

i = 1,2. Using the singular value decomposition of the real
matrix �, � = O1DOT

2 , where D is a diagonal matrix
and O1,2 are real and orthogonal, and the fact that the
state 1 + ∑

k,l Dk,k�k ⊗ �k , is Bell diagonal shows that the

032121-5



B. KRAUS PHYSICAL REVIEW A 82, 032121 (2010)

eigenbasis of any two-qubit density matrix with completely
mixed reduced states is maximally entangled.

In order to show now under which conditions two two-qubit
states are LU equivalent we recall the following lemma which
was proven in [23].

Lemma 4. Any two maximally entangled basis of two
qubits can be mapped to each other using local unitary
operations [23]. That is, if {|�i〉}4

i=1 and {|�i〉}4
i=1 denote two

maximally entangled bases, then there exist four phases γi ,
and local unitaries U1,U2 such that |�i〉 = eiγi U1 ⊗ U2|�i〉
∀ i ∈ {1,2,3,4}.

This lemma, together with the fact that the eigenbasis of
any two-qubit density matrix with completely mixed reduced
states is maximally entangled, implies the following corollary.

Corollary 1. Let ρ and σ be two-qubit density matrices with
completely mixed reduced states. Then ρ �LU σ iff eig(ρ) =
eig(σ ).

Let us now consider two LU-equivalent states, ρ,σ with
ρi = σi = 1 for i = 1,2 and derive some conditions on the
local unitary operations, which transform σ to ρ. First we apply
local unitaries Vi and Wi such that ρ̄ = W1W2ρW

†
1 W

†
2 = 1 +∑

i(Dρ)i�i�i and σ̄ = V1V2σV
†

1 V
†

2 = 1 + ∑
i(Dσ )i�i�i ,

with Dρ = Dσ = diag(λ1,λ2,λ3). We choose, without loss of
generality, the order of λi such that if there is no degeneracy
λ1 > λ2 > λ3; otherwise, λ1 = λ2. If Dρ is not proportional
to the identity, it is easy to see that ρ̄ = Ū1Ū2σ̄ Ū

†
1 Ū

†
2 implies

that Ūi is of the form Z(αi)Xki , for some phase αi and
ki ∈ {0,1}.2 Thus, if ρ and σ denote for instance the reduced
state of system 1 and 2 of some multipartite state, |�〉, |�〉,
respectively, then |�〉 �LU |�〉 iff Eq. (2) is fulfilled for V1,V2

and W1,W2 such that W1W2ρW
†
1 W

†
2 = σ̄ = V1V2σV

†
1 V

†
2 =

1 + ∑
i(Dρ)i�i�i , where Dρ = diag(λ1,λ2,λ3) with λi sorted

as mentioned earlier.
Otherwise, if Dρ is proportional to the identity and ρ 	= 1,

we apply the local unitaries Vi and Wi defined earlier and
denote the resulting states again by ρ,σ , respectively. In this
case we find ρ = σ = 1 − λ|�−〉〈�−| for some λ 	= 0. Then
any pair of unitaries U1, U2 which transforms σ to ρ must fulfill
that U2 = U1. Hence, in this case we have that if ρ and σ de-
note, for instance, the reduced state of system 1 and 2 of some
multipartite state, |�〉, |�〉, respectively, then |�〉 �LU |�〉 iff
Eq. (2) is fulfilled for V1 = V2 = 1, k1 = k2 = 0, α1 = α2,
and W1 = W2 = eiβ1Xi eiγ1Zi , for some phases β1,γ1. Note
that if ρ12 = 1 − λ|�−〉〈�−| with λ 	= 1, then |�〉 �LU |�〉
implies that 12〈�−|�〉 �LU 12〈�−|�〉 since U ⊗ U |�−〉 =
|�−〉 for any unitary U . Thus, similar to the case where ρi 	= 1,
one would simply measure those systems where the reduced
state is a full-rank Werner state [24].

In the remaining case, that is, if ρ = 1, it is clear that
considering the two-qubit reduced state will not help us to find
any condition on the local unitaries.

So far we have seen that whenever there exist two systems
i,j such that ρij is not LU equivalent to 1 + λ

∑
i �i ⊗ �i ,

then the unitaries Vi,Vj ,Wi,Wj and ki,kj in Eq. (2) can be

2This can be easily seen by noting that the condition O1DρO
T
2 = Dρ

implies that OiD
2OT

i = D2, for i = 1,2, which defines Oi uniquely
up to Rz(α)Rx(π )k , for k = 0,1.

easily determined. We are going to show next that in this case
also other unitaries, Vl and Wl , for l 	∈ {i,j} can be easily
computed. As before we consider the case where ρi = 1 ∀ i.
In the following lemma we say that the unitaries can be
determined by considering a certain operator if they can be
determined using the fact that the operator for the state |�〉 and
the one for the state |�〉 must be LU equivalent if |�〉 �LU |�〉.

Lemma 5. If there exist systems i,j such that ρij is not
LU equivalent to 1 + λ

∑
i �i ⊗ �i for any λ ∈ IR, then, for

any system l for which either ρil 	= 1 or ρjl 	= 1, Vl,Wl , and
kl can be determined by either considering ρil or ρjl or by
considering tri(ρijρil) or trj (ρijρjl).

Proof. If ρil or ρjl is not LU equivalent to 1 + λ
∑

i �i ⊗
�i , for some λ, then Vl , Wl , and kl can be determined
as shown previously. Otherwise, we assume, without loss
of generality, that ρil 	= 1. Then we have that ρil = 1 +∑3

i1,i2=1 �i1i2�i1 ⊗ �i2 with � proportional to a real orthogo-
nal matrix and ρij = 1 + ∑

l �̃l1l2�l1 ⊗ �l2 with �̃ not propor-
tional to a real orthogonal matrix. Then, we find tri(ρijρil) =
1 + ∑

i1,i2
�̃i1l2�i1i2�l2�i2 , where the matrix (�̃)T � is not

orthogonal. Since the unitaries Vi and Wi are already fixed, the
equation WjWl tri(ρijρil)W

†
j W

†
l = VjVl tri(σijσil)V

†
j V

†
l deter-

mines Vl , Wl , and kl = 0. �

B. States where there exists a system i with ρi �= 1

Let us now turn to the case where there exists at least
one system i such that its reduced state is not completely
mixed. Without loss of generality, we chose i = 1. Let us
assume that the states of interest, |�〉 and |�〉, do have sorted
trace decomposition. That is, in particular, the unitaries Vi

and Wi which make ρ1 and σ1 diagonal in the computational
basis [see Eq. (2)] have already been applied. Then we
know that U1 = Z(α1) for some phase α1. We present now
several methods to determine the unitaries Vi and Wi of
Eq. (2). As in [16], the idea is to construct out of the
states |�〉 and |�〉 nondegenerate 2 × 2 matrices which must
be LU equivalent in case |�〉 and |�〉 are, for example,
UρiU

† = σi or tr1[(ρ1 ⊗ 1i)ρ1i] = Ui tr1[(σ1 ⊗ 1i)σ1i]U
†
i .

Those necessary conditions of LU equivalence can then be
used to fix Wi , Vi , and ki in Eq. (2). The local phase gates,
which cannot be fixed in this way, must be determined at the
end using one of the lemmas in Sec. III.

Since the states |�〉 and |�〉 have sorted trace de-
composition, we have |�〉 = √

p1|0〉|�0〉 + √
1 − p1|1〉|�1〉,

with 〈�i |�j 〉 = δi,j and p1 > 1/2 and |�〉 = √
p2|0〉|�0〉 +√

1 − p2|1〉|�0〉 with 〈�i |�j 〉 = δi,j and p2 > 1/2, which
is just the Schmidt decomposition for the bipartite splitting,
system 1 versus the rest. Then we have that the states are LU
equivalent iff (1) p1 = p2 and (2) there exist phases φ, α1 and
unitaries Uj such that

|�0〉 = eiγ1
⊗
j 	=1

Uj |�0〉,
(5)

|�1〉 = eiγ2
⊗
j 	=1

Uj |�1〉,

where γ1 = φ + α1 and γ2 = φ − α1 [see Eq. (3)].
Note that the last two conditions are fulfilled iff
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β1|�0〉〈�0| + β2|�1〉〈�1| = ⊗
j 	=1 Uj (β1|�0〉〈�0| + β2|�1〉

〈�1|)
⊗

j 	=1 U
†
j for all values of β1,β2.

There are several ways now to compute the unitaries Vi

and Wi in Eq. (2). First of all, if ρi 	= 1, then Ui = Z(αi) for
some phase αi . Let us now consider the case where ρi = 1. If
ρ1i 	= ρ1 ⊗ 1, Eq. (4) can be used to compute Vi , Wi , and ki .
In particular, we would consider one of the matrices Bl,m ≡
tr 	=i(|�l〉〈�m| + H.c.) or Cl,m ≡ tr 	=i(i|�l〉〈�m| + H.c.) for
some l,m and diagonalize this matrix in order to compute
Wi , Vi , and ki .

It is the aim of this section to derive some other methods
toof determining those unitaries. First, we use the fact that
Eq. (4) must be fulfilled for any values of l,m if the states
are LU equivalent. Considering certain combinations of those
equations will lead to other approaches to determine the
unitaries Vi and Wi and the bit value ki . In the second part
of this section we show how a combination of the Eqs. (5) can
be used to compute those unitaries.

If ρ1i 	= ρ1 ⊗ 1, then Vi and Wi can be easily computed
as follows. First of all, it is clear that if ρ1 	= σ1, then the
states are not LU equivalent. Thus, we assume that ρ1 = σ1.
The fact that ρ1 	= 1 and ρi = 1 implies that ρ1i = 1 + aZ1 +∑3

j1,j2=1 �j1j2�j1 ⊗ �j2 for some a ∈ IR and where � 	= 0
since ρ1i 	= ρ1 ⊗ 1. Similarly, we have σ1i = 1 + aZ1 +∑3

j1,j2=1 �j1j2�j1 ⊗ �j2 . As mentioned before, the two states

are LU equivalent; that is, ρ1i = U1Uiσ1iU
†
1U

†
i iff there exists

a real orthogonal matrix Oi and a phase α1 such that � =
O1�OT

i , where O1 = Rz(α1). As explained in Sec. II A, if � is
not orthogonal, then the unitaries Vi and Wi can be easily com-
puted. Otherwise, we use the following necessary condition
for LU equivalence: (ρ1 ⊗ 1i)ρ1i = U1Ui[(σ1 ⊗ 1i)σ1i]U

†
1U

†
i

and therefore tr1[(ρ1 ⊗ 1i)ρ1i] = Ui tr1[(σ1 ⊗ 1i)σ1i]U
†
i . Since

tr1[(ρ1 ⊗ 1i)ρ1i] = 1 + a
∑

j λ3j�j , the preceding equation
can be used to determine Vi and Wi (and ki = 0) as those
operators which diagonalize tr1[(ρ1 ⊗ 1i)ρ1i] and tr1[(σ1 ⊗
1i)σ1i], respectively. That is, unless �3j = 0 ∀ j , Vi and Wi are
defined by the equation Vi tr1[(ρ1 ⊗ 1i)ρ1i]V

†
i = Wi tr1[(σ1 ⊗

1i)σ1i]W
†
i = diag(γ1,γ2) for some γi . If �3i = 0 ∀ i, � cannot

be orthogonal and therefore the unitaries can be determined
as explained in Sec. IV A. Thus, if ρ1i = U1Uiσ1iU

†
1U

†
i the

methods described previously will lead to the unitaries Vi and
Wi in Eq. (2) unless ρ1i = ρ1 ⊗ 1.

Another method of computing the unitaries is the fol-
lowing. Instead of considering the single equation |�〉 =
U1, . . . ,Un|�〉, we use the fact that the basis for the first system
has been fixed. Therefore, we can use both equations given in
Eq. (5). Note that the states |�0〉, |�1〉 and the states |�0〉,
|�1〉 are orthogonal, respectively. In [25] it has been shown
that two orthogonal multipartite pure states can be perfectly
distinguished using local operations. We are going to use this
result now in order to determine the unitaries Vi and Wi . It is
easy to see that for any pair of orthogonal states, |�0〉, |�1〉,
there exist local unitaries, Wi such that [25]

Mi ≡ tr¬i(|�0〉〈�1|) = WiNiW
†
i , (6)

where Ni is an off-diagonal matrix with (Ni)1,2 = ai,

(Ni)2,1 = bi , for some complex numbers ai,bi . If |ai | 	= |bi |,
that is, if NiN

†
i 	∝ 1, it is easy to see that by imposing

the condition that |ai | > |bi |, this equation determines Wi

uniquely (up to a phase gate). If |ai | = |bi | 	= 0, Mi is, up
to a global phase, a Hermitian traceless matrix. Thus, in this
case we would choose Wi such that Mi = eiᾱW

†
i DiWi for

some phase ᾱ and Di diagonal. Defining Vi in the same way
for the state |�〉 we have that |�〉 �LU |�〉 iff Eq. (2) has a
solution for the so chosen matrices Vi and Wi .3

Before concluding this section we mention another method
of computing the unitaries in Eq. (5) for a general state with
ρ1 	= 1. It is based on the following observation. Let us denote
by |�0〉 (|�1〉) a (un-normalized) state describing systems
2, . . . ,n (2′, . . . ,n′), respectively. Then 〈�−|ii ′�0,�1〉 = 0
iff the state |�〉 = |0〉|�0〉 + |1〉|�1〉 is either a product
state in the bipartite splitting system 1 versus the rest or
system i versus the rest. This can be easily verified as
follows. We write |�k〉 = |0〉i |�k0〉 + |1〉i |�k1〉 for k ∈ {0,1}.
Then 〈�−|ii ′�0,�1〉 = 0 iff either (a) |�00〉|�11〉 = 0 and
|�01〉|�10〉 = 0, which implies that either |�〉 = |k〉1|�k〉 or
|�〉 = |k〉i(√p|0〉1|�0k〉 + √

1 − p|1〉1|�1k〉) for k ∈ {0,1},
or (b) |�00〉 = a|�01〉 and |�10〉 = a|�11〉, for some a.
In this case we find |�〉 = (a|0〉 + |1〉)i ⊗ (

√
p|0〉|�01〉 +√

1 − p|1〉|�11〉). Note that if |�〉 is a product state in any
bipartite splitting, system i versus the rest, then the unitaries
Vi and Wi and the bit value ki in Eq. (2) can obviously be
easily determined. If |�〉 is not a product state in this splitting,
then we can combine the two equations in Eq. (5) to

〈�−|ii ′�0,�1〉 = ei(γ1+γ2)
⊗
j 	=i,1

Uj

⊗
j ′ 	=i ′,1′

Uj ′ 〈�−|ii ′�0,�1〉,

(7)

where we used that |�−〉 = U ⊗ U |�−〉 for any unitary U .
This approach will be useful if there are only a few unitaries not
determined, for instance, if |�〉 is a three-qubit state. Choosing,
without loss of generality, i = 2, we have 〈�−|22′�0,�1〉 =
ei(γ1+γ2)U3U3′ 〈�−|22′�0,�1〉, which can then be used to
determine U3, or equivalently V3, W3, and k3. Of course, the
projection onto the singlet state can also be performed on more
systems.

In summary, in this subsection we have explained some
simple ways to compute Vi , Wi , and ki for states which have the
properties that ρi = 1 and that there exists some system j such
that ρj 	= 1. For states with ρji 	= ρj ⊗ 1, the unitaries can be
easily computed using either that (ρ1 ⊗ 1)ρ1i �LU (σ1 ⊗ 1)σ1i

is a necessary condition for LU equivalence or that the states
|�0〉 and |�1〉 in Eq. (5) are orthogonal. For general states
(not requiring that ρji 	= ρj ⊗ 1) where there exists a system
j with ρj 	= 1, Eq. (7) (and its generalizations) can be used to
find new conditions on the unitaries. Note that if ρ1 	= 1 and
ρ12 = ρ1 ⊗ 1, then we have

|�〉 = √
p|0〉(|0〉|�00〉 + |1〉|�01〉)

+
√

1 − p|1〉(|0〉|�10〉 + |1〉|�11〉), (8)

3Note that if ρ1i = ρ1 ⊗ 1, the condition that tr¬i(|�0〉〈�1|) ∝
〈0|1ρ1i |1〉1 is local unitarily equivalent to tr¬i(|�0〉〈�1|) cannot, like
any other necessary condition of LU equivalence considering just ρ1i ,
enable us to determine the unitaries Vi and Wi . In fact, in this case
we find Mi = 0.
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with 〈�ij |�kl〉 = 1/2δikδjl , where p and 1 − p denote the
eigenvalues of ρ1.

V. EXAMPLES

We employ now the algorithm presented in [16] and the
results shown in the previous section to characterize the
LU-equivalence classes of up to five qubits. We show that in
all these cases it is not necessary to determine some unitaries
as functions of some others but that it is always possible to
determine them directly.

A. Two-qubit states

The standard form of a two-qubit state is |�〉 = λ1|00〉 +
λ2|11〉, with λ1 � λ2 � 0, which coincides with the Schmidt
decomposition [19]. It is a well-known fact that bipartite states
are LU equivalent iff their Schmidt coefficients coincide. Let
us now demonstrate how this result can be rederived with the
method presented in [16] for two qubits. If λ1 	= λ2, that is,
ρi 	= 1 then, |�〉 �LU |�〉 iff eig(ρ1) = eig(σ1), that is, iff the
Schmidt coefficients λi are the same. For λ1 = λ2 we have
that ρ1 = ρ2 = 1 and therefore the states are LU equivalent iff
eig(ρ) = eig(σ ) (Corollary 1), which is obviously the case.

B. Three-qubit states

First we transform both states, |�〉 and |�〉, to their sorted
trace decomposition. If there exists some i such that ρi 	= 1, we
know that Ui = Z(αi). Without loss of generality, we assume
i = 1. Then we have that the states |�〉 = √

p1|0〉|�0〉 +√
1 − p1|1〉|�1〉 for some p1 > 1/2 and 〈�i |�j 〉 = δij and

|�〉 = √
p2|0〉|�0〉 + √

1 − p2|1〉|�1〉 for some p2 > 1/2 and
〈�i |�j 〉 = δij are LU equivalent iff (1) eig(ρ1) = eig(σ1), that
is, iff p1 = p2, and (2) there exist local unitaries U2,U3 and
two phases, φ and α1 such that

|�0〉 = eiγ1U2 ⊗ U3|�0〉,
(9)|�1〉 = eiγ2U2 ⊗ U3|�1〉,

where γ1 = φ + α1 and γ2 = φ − α1. Since the states are not
LU equivalent if p1 	= p2, we assume that p1 = p2 and show
now in detail how the unitaries can be computed. According
to the method summarized in Sec. II, we distinguish the two
cases (1) ρ12 	= ρ1 ⊗ 1 and (2) ρ12 = ρ1 ⊗ 1. Since the rank
of ρ12 cannot be larger than 2, the second case is only possible
if p = 1, that is, the states |�〉 is a product state. Then, the
two states are LU equivalent iff the two-qubit states 1〈0|�〉
and 1〈0|�〉 are (see Sec. V A). In the first case we have that
either (1a) at least one of the two states |�i〉 is not maximally
entangled or (1b) both are maximally entangled. To investigate
the case (1a), we assume, without loss of generality, that
|�0〉 is not maximally entangled and denote by Wi (Vi) the
local unitaries which map |�0〉 (|�0〉) to its standard form,
respectively; that is, |�0〉 = W

†
1 W

†
2 (

√
q1|00〉 + √

1 − q1|11〉),
with q1 > 1/2 [|�0〉 = V

†
1 V

†
2 (

√
q2|00〉 + √

1 − q2|11〉 with
q2 > 1/2)]. Obviously, |�0〉 �LU |�0〉 iff q1 = q2. In this case,
the most general unitaries which transform |�0〉 to |�0〉, that is,
|�0〉 = eiγ1U2 ⊗ U3|�0〉, are of the form Ui = WiZ(αi)V

†
i for

some phase αi . Thus, we have that |�〉 �LU |�〉 iff there exists
phases αi such that Eq. (2) is fulfilled for k1 = k2 = k3 = 0,

V1 = W1 = 1, and Vi and Wi as defined earlier. This condition
can then be easily checked using Lemma 1. In case (1b) we
have that both |�0〉 and |�1〉 are maximally entangled and are
therefore LU equivalent to |�±〉. Thus, |�〉 is LU equivalent to
|�〉 in this case iff 1〈k|�〉 is maximally entangled for k = 0,1.
Since any state in this class is LU equivalent to the state√

p1|0〉|�+〉 + √
1 − p1|1〉|�−〉, the unitaries which map two

states within this class to each other can be easily computed.
Let us now consider the remaining case where all single-

qubit reduced states are completely mixed. Since ρ1 = ρ2 = 1,
the eigenbasis of ρ12 is maximally entangled and therefore LU
equivalent to the Bell basis (see Sec. IV A). Thus, any state with
ρi = 1 ∀ i is LU equivalent to |�〉 = |�+〉|0〉 + |�−〉|1〉 =
1 ⊗ 1 ⊗ H |�0〉, where |�0〉 = 1/

√
2(|000〉 + |111〉) denotes

the GHZ state [26].
In summary, we obtained the following necessary and

sufficient condition for LU equivalence: The two three-qubit
states |�〉 and |�〉 are LU equivalent iff one of the following
conditions are fulfilled:

(1) Ei(|�〉) = Ei(|�〉) = 1 ∀ i (i.e., ρi = 1∀ i).
(2) There exists some system i such that Ei(|�〉) =

Ei(|�〉) = 0 and Ej (|�〉) = Ej (|�〉) for some system j 	= i.
(3) There exists some system i such that 0 < Ei(|�〉) < 1

and Ei(|�〉) = Ei(|�〉) and either
(3a) Ej (i〈k|�〉) = Ej (i〈k|�〉) = 1 for k = 0,1 for some

system j 	= i holds;4 or
(3b) Ej (i〈k|�〉) = Ej (i〈k|�〉) < 1 for one value of k ∈
{0,1}, and for the unitaries which can be easily and directly
determined in this case there exists a bit string k and local
phase gates such that Eq. (2) has a solution.

For three qubits the polynomial invariants which define the
different LU-equivalence classes are known [15,27]. In [28] we
will compare them to the criterion derived here and investigate
the measures of entanglement which are required to identify
the different classes.

This completes the solution to the LU-equivalence problem
of three-qubit states. However, in order to illustrate the method
presented in [16], we apply it to the most complicated case,
where ρi = 1 ∀ i. We show now that all these states are LU
equivalent without using the fact that they are LU equivalent
to the GHZ state, |�0〉. In other words, we determine now
the unitaries {Ui} such that |�〉 = |�0〉 = U1U2U3|�〉, where
|�〉 = S

†
1S

†
2S

†
3|�〉. Here, Si are some fixed unitaries. Since

the rank of ρ12 is 2, we can compute U2 as a function
of U1. We find U

†
2 tr¬2(|i〉〈i|1|�〉〈�|)U2 = U

†
2 |i〉〈i|2U2 =

S
†
2tr/2(W †

1 |i〉〈i|1W1|�〉〈�|)S2, where W1 = U1S
†
1. Since the

rank of these matrices is 1, we have (due to the fact
that W1 is unitary) that either 〈0|W †

1 |0〉 = 0 (which implies
that 〈1|W †

1 |1〉 = 0) or 〈1|W †
1 |0〉 = 0 (which implies that

〈0|W †
1 |1〉 = 0). Thus, W1 = Xk1Z(α1) (up to a global phase),

for some k1 ∈ {0,1} and some phase α1. Due to the symmetry
of the state the same holds true for all Wi = UiS

†
i . Thus,

we have that |�〉 = U1U2U3|�〉 iff there exists k1,k2,k3 and
phases αi such that |�〉 = eiα0

⊗
i Z(αi)Xki |�〉. Of course,

it is straightforward to determine the remaining parameters,

4Recall that the states |�〉 and |�〉 do have trace decomposition.
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but in order to continue with the algorithm we use Lemma 1
to show for which values of ki the states are up to phase
gates local unitary equivalent. The first condition, |〈i|�〉| =
|〈i|�〉| ∀ i, implies that k1 = k2 = k3. Then we have |�〉
is LU equivalent to |�〉 iff there exist phases αi such
that |�〉 = eiα0

⊗
i Z(αi)|�〉, which is true iff α0 = 0 and

ei(α1+α2+α3) = 1. Thus, using the preceding method we found
Ui = Z(αi)Xki Si , with ei(α1+α2+α3) = 1 and k1 = k2 = k3. The
unitaries are not uniquely defined due to the symmetry of the
state.

C. Four-qubit states

In this subsection we consider the LU equivalence of two
four-qubit states, |�〉 and |�〉. Similarly to the other cases,
we transform both states, |�〉 and |�〉, into their sorted trace
decomposition. As before, the solution can, of course, be found
using the method summarized in Sec. II. However, we will
show here that also in this case it is possible to determine
the unitaries Vi and Wi (and the bit values ki) directly. That
is, it will not be necessary to consider some of the unitaries
as variables and to determine those unitaries by solving the
equations which occur in Lemma 1.

According to the general method, we first distinguish the
cases (1) there exists some system i with ρi 	= 1 and (2) ρi = 1
for any system i. In the first case we choose i = 1 and know that
U1 = Z(α1) for some phase α1. Then we can either have that
(1a) ρ12 	= ρ1 ⊗ 1 or (1b) ρ12 = ρ1 ⊗ 1. In case (1a) W2, V2,
and k2 in Eq. (2) can easily be determined using the methods
presented in Sec. IV. Then systems 1 and 2 can be measured
in the computational basis leading to four two-qubit states.
The remaining unitary operators can then be easily found.
If ρ12 = ρ1 ⊗ 1 [case (1b)] we will show next that at least
one of the unitaries Vi and Wi and the bit values ki can
be determined for i ∈ {3,4}. First note that the eigenvalues
of ρ34 are p/2,p/2,(1 − p)/2,(1 − p)/2, with p 	= 1/2, and
therefore ρ34 is neither 1 nor LU equivalent to 1 − λ|�−〉〈�−|,
for any value of λ. Thus, the unitaries Wi , Vi , and ki for i = 3,4
can be easily computed unless ρ34 = ρ3 ⊗ 1 (or ρ34 = 1 ⊗ ρ4).
However, in this case, since ρ34 	= 1, the unitaries V3 and
W3 and the bit value k3 (or V4, W4, and the bit value k4,
respectively) can be easily determined.

Let us now consider the remaining case where ρi = 1 ∀ i

(case 2). There, all two-qubit reduced states are LU equivalent
to 1 + ∑

i λi�i ⊗ �i and the reduced states are LU equivalent
to each other iff the eigenvalues are the same (Corollary 1). We
distinguish now the two cases (2a) ρ12 	= 1 and (2b) ρ12 = 1.
In the first case U2 can be determined as a function of U1

(see Sec. IV). Let us apply local unitaries to both states, |�〉
and |�〉, such that ρ12,ρ34 and σ12,σ34 are both Bell diagonal
(see Lemma 4). We sort the eigenvalues in such a way that
if there is threefold degeneracy; then the states are such that
ρ12 = ρ34 = 1 − λ|�−〉〈�−|.5 The resulting states will again
be denoted by |�〉, |�〉, respectively. If ρ12 	= 1 − λ|�−〉〈�−|,

5Note that if ρ12 = 1 − λ|�−〉〈�−|, then ρ34 = 1 − λ|�−〉〈�−|
follows from the fact that all single-qubit reduced states are
completely mixed and that the state describing all four systems is
pure.

then the unitaries can be easily determined (see Sec. IV). In
the “worst” case, where ρ12 = 1 − λ|�−〉〈�−|, we only find
U2 = U1. We show next that also in this case U2, or more
precisely V2, W2, and k2 in Eq. (2), can be directly computed.
That is, we do not need to compute any of those unitaries as a
function of some others.

Using Lemma 4 it is easy to see that any state
|�〉 with ρ12 = 1 − λ|�−〉〈�−|, is LU–equivalent (up to
a global phase) to a state |�+〉|�+〉 + eiγ1 |�−〉|�−〉 +
eiγ2 |�+〉|�+〉 + √

1 − λeiγ3 |�−〉|�−〉, for some phases γi .
Since the operations �i ⊗ �i for i ∈ {1,2,3} always change
the sign of two states out of the four Bell states, we can choose
γ1,γ2 � π . We are going to show next that two states of this
form with the choice γ1,γ2 � π are LU equivalent iff the
complex coefficients which occur here coincide.

Let us denote by Umb the 4 × 4 unitary matrix, which
transforms the computational basis into the magic ba-
sis, that is, Umb|00〉 = |�+〉,Umb|01〉 = −i|�−〉,Umb|10〉 =
|�−〉,Umb|11〉 = −i|�+〉. It is a well-known fact that for
any U1,U2 unitary we have that U

†
mbU1 ⊗ U2Umb = O, where

O is a real and orthogonal 4 × 4 matrix. Furthermore, it
is easy to see that Oi ≡ U

†
mbUi ⊗ UiUmb can be written as

Oi = Õi ⊕ |01〉〈01| (Umb|01〉 = |�−〉), where Õi is a three-
dimensional rotation.

Since ρ12 = σ12 = 1 − λ|�−〉〈�−| and therefore ρ34 =
σ34 = 1 − λ|�−〉〈�−|, we know that there exist local unitaries
Ui which map |�〉 into |�〉 iff U2 = U1 and U4 = U3. Thus,
we have |�〉 �LU |�〉 iff there exist real orthogonal matrices,
Oi = Õi ⊕ |01〉〈01|, with Õi a three-dimensional rotation
such that

|�̃〉 ≡ U
†
mb ⊗ U

†
mb|�〉 = O1 ⊗ O3|�̃〉. (10)

Note that |�̃〉 = |00〉|00〉 − eiγ1 |10〉|10〉 − eiγ2 |11〉|11〉 +√
1 − λeiγ3 |01〉|01〉 and that the phases γi are not local phases.

Similarly, we have |�̃〉 ≡ U
†
mb ⊗ U

†
mb|�〉 = eiγ̄0 (|00〉|00〉 +

eiγ̄1 |10〉|10〉 + eiγ̄2 |11〉|11〉 + √
1 − λ̄eiγ̄3 |01〉|01〉) for some

phases γ̄i and coefficient λ̄. Using now that the real and
orthogonal matrices O1,O3 are of the form Õi ⊕ |01〉〈01|,
it is easy to see that |�〉 �LU |�〉; that is, Eq. (10) is satisfied
iff {eiγi }2

i=1 = {eiγ̄i }2
i=1 and

√
1 − λeiγ3 = √

1 − λ̄eiγ̄3 .
For the case (2b), where ρ12 = 1, which implies that

ρ34 = 1 we write |�〉 = ∑
ij |i,j 〉|ψi,j 〉, with 〈ψij |ψkl〉 =

δikδjl . Since these states form an orthonormal (ON) basis, we
can find a 4 × 4 unitary U such that |ψi,j 〉 = U |ij 〉. Recall that
any two-qubit unitary operator U can be written as U = U1 ⊗
U2UdV1 ⊗ V2, where Ud , the nonlocal content of U , is diag-
onal in the magic basis, that is, Ud = ei(φ1X⊗X+φ2Y⊗Y+φ3Z⊗Z),
for some phases φi [23]. Note that Ud can be made
unique by imposing certain conditions on the phases, φi

[29]. We transform the state by local unitary operations
into the form 112 ⊗ Ud

∑
ij |ij 〉|ij 〉 = 112 ⊗ Ud |�+〉13|�+〉24.

Then the two states, |�〉 = 112 ⊗ Ud (�)
∑

ij |�+〉13|�+〉24

and |�〉 = 112 ⊗ Ud (�)
∑

ij |�+〉13|�+〉24 are LU equivalent
iff Ud (�) = Ud (�). Thus, these LU-equivalence classes are
characterized by Eij (|�〉) = 2 for some systems i,j and the
three parameters, φ1,φ2,φ3, which define the nonlocal content
of Ud . In Sec. VIII we give a physical meaning to these
parameters and discuss its generalization.
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Using the fact that any four-qubit state with ρ12 = 1 is
LU equivalent to the state |�〉 = 112 ⊗ Ud

∑
ij |ij 〉|ij 〉, where

Ud = Umbdiag(1,eiφ1 ,eiφ2 ,eiφ3 )U †
mb for some phases φi , it is

also easy to rederive the result that there exists no four-qubit
state with the property that all two-qubit reduced states are
completely mixed, that is, ρij = 1 ∀ i,j [30]. This can be
seen as follows. Since |�〉 = 112 ⊗ Ud

∑
ij |ij 〉|ij 〉, we find

ρ13 = tr4(Ud |�+〉〈�+|13 ⊗ 14U
†
d ). Then the conditions ρ13 =

ρ23 = 1 imply that cos(φi) = 0 and cos(φi − φj ) = 0 ∀ i,j .
Since it is impossible to fulfill those equations simultaneously,
we have that there exists no four-qubit state such that ρij =
1 ∀ i,j . This implies that the case (2b) is actually contained in
(2a). In fact, it corresponds to the case where λ = 0.

In summary, for the four-qubit case we have the following
possibilities:

(1a) There exist some systems i and j with ρi 	= 1 and
ρij 	= ρi ⊗ 1: Without loss of generality, we choose i = 1 and
j = 2. Then W1 = V1 = 1 and k1 = 0 in Eq. (2) and V2, W2,
and k2 can be easily computed using the methods presented in
Sec. IV.

(1b) There exists some system i with ρi 	= 1 and some
system j with ρij = ρi ⊗ 1: Without loss of generality, we
chose i = 1 and j = 2. Then the unitaries Wi , Vi , and ki for
i = 3,4 can be easily computed by considering ρ34, which can
be neither 1 nor 1 − λ|�−〉〈�−| for any value of λ.

In both cases at least for two systems the operators Vi and
Wi and the bit values ki can be determined. Thus, measuring
those two systems in the computational basis leads to four
equations for two-qubit states. The missing operators Vi and
Wi and the bit values ki can then be easily computed. The
states are LU equivalent iff there exist some phases αi such
that Eq. (2) has a solution, which can easily be checked using
Lemma 1.

(2a) For any system i, ρi = 1 and there exists a system
j such that ρij 	= 1 for some system i: Without loss of
generality, we chose i = 1 and j = 2. First, we apply local
unitaries to both states, |�〉 and |�〉, such that ρ12,ρ34 and
σ12,σ34 are all Bell diagonal (see Sec IV A). The resulting
states are again denoted by |�〉, |�〉, respectively. If ρ12 	=
1 − λ|�−〉〈�−| for any λ ∈ IR (which implies that ρ34 	=
1 − λ|�−〉〈�−| for any λ ∈ IR), the unitaries Vi , Wi , and ki

in Eq. (2) can be directly computed using the methods of
Sec. IV. If ρ12 = 1 − λ|�−〉〈�−| for some λ ∈ IR we map |�〉
into the form |�+〉|�+〉 + eiγ1 |�−〉|�−〉 + eiγ2 |�+〉|�+〉 +√

λeiγ3 |�−〉|�−〉, for some phases γi with γ1,2 < π . Two
states of this form are LU equivalent iff their complex
coefficients which occur here coincide.

(2b) For any system i, ρi = 1 and there exists a system
j such that ρij = 1 for some system i: Without loss of
generality we chose i = 1 and j = 2. In this case the state
is LU equivalent to the state |�〉 = 112 ⊗ Ud (�)

∑
ij |ij 〉|ij 〉,

where Ud (�) = Umbdiag(1,eiφ1 ,eiφ2 ,eiφ3 )U †
mb can be chosen

uniquely. Then two states are LU equivalent iff Ud (�) =
Ud (�). Note that since there exists no four-qubit state with
ρij = 1 ∀ i,j case (2b) is contained in (2a).

Similarly to the three-qubit case, we will consider now the
most complicated case (for the algorithm proposed in [16]) and
show how the unitaries which transform two LU-equivalent
states into each other can be determined. The most complicated

case for four qubits is the one where ρij = 1, for some systems
i,j which we chose to be 1,2. Thus, we consider the exam-
ple |�〉 = 112 ⊗ U34|�+〉13|�+〉24, where we choose U34 =
Umbdiag(1,eiφ,eiφ,1)U †

mb such that ρ12 = ρ34 = ρ23 = 1.
It can be easily shown that ρ13 = ρ24 = 1/4(1 + X ⊗ X +
cos(φ)(Z ⊗ Z − Y ⊗ Y ). Our aim is to determine Ui such
that |�〉 = U1, . . . ,U4|�〉, where |�〉 = S

†
1, . . . ,S

†
4|�〉, for

some given unitaries Si . Since ρ13 	= 1 and ρ24 	= 1, we can
compute U3 (U4) as a function of U1 (U2), respectively.
Considering Eqs. (4) for all values of l and m simulta-
neously, we have ρ13 = 1/4[1 + X ⊗ X + cos(φ)(Z ⊗ Z −
Y ⊗ Y )] = U1U3(S†

1S
†
1ρ13S1S3)U †

1U
†
3 . It is straightforward to

see that the last equation can only be fulfilled if U1S
†
1 =

U3S
†
3 = �k for k ∈ {0,1,2,3}, where �0 = 1. Similarly, we

find U2S
†
2 = U4S

†
4 = �l . Thus, we have Ui = �ki

Si , where
k1 = k3 = k and k2 = k4 = l. It is straightforward to show
that |�〉 = �k�l�k�l|�〉 for certain values of k,l (e.g.,
k = 0,l = 3 or k = 1,l ∈ {0,1}). Again, the reason why the
unitaries are not uniquely determined using this method is the
symmetries of the state.

D. Five-qubit states

Instead of considering now, similarly to the other cases,
all possible classes of five-qubit states, we consider here one
of the hardest examples to illustrate the method presented
in [16]. First, we construct a five-qubit state, |�〉, which
has the property that all the two-qubit reduced states are
completely mixed. Then we consider the two states |�〉
and |�〉 = S1 ⊗ · · · ⊗ S5|�〉 for some local unitaries Si and
compute the unitaries, Ui , which map |�〉 into |�〉, using the
algorithm presented in [16] and summarized in Sec. III. We
show that also in this case it will not be necessary to determine
any of the unitaries as a function of some others but that it will
be possible to determine them directly.

In order to construct the five-qubit state |�〉 with
ρij = 1 ∀ i,j , we write |�〉 = |0〉|�0〉 + |1〉|�1〉, where
〈�i |�j 〉 = δij . As shown earlier, any four-qubit state
which has the property that ρ12 = 1 is LU equiva-
lent to a state 112 ⊗ Ud

∑
i,j |ij 〉|ij 〉, where Ud = Umbdiag

(1,eiα1 ,eiα2 ,eiα3 )U †
mb. Imposing now also that ρ23 = ρ14 = 1

and that the phases αi fulfill 0 � αi < π , we find |�0〉 = 112 ⊗
Ud1

∑
i,j |ij 〉|ij 〉, where Ud1 = Umbdiag(1,eiα1 ,eiα1 ,1)U †

mb. It
is easy to see that two states, |�0〉,|�1〉, of this form are
orthogonal to each other iff α2 = α1 + π . We consider now the
five-qubit state |�〉 = |0〉|�0〉 + |1〉|�1〉 with |�0〉 = 112 ⊗
Ud1

∑
i,j |ij 〉|ij 〉 and |�1〉 = 112 ⊗ Ud2

∑
i,j |ij 〉|ij 〉, with

Ud2 = Umbdiag(1, − eiα1 ,−eiα1 ,1)U †
mb. It is straightforward to

show that all two-qubit states ρij are completely mixed. Note
that |�〉 = |+〉(|�+,�+〉 + |�+,�+〉) + eiα|−〉(|�−,�−〉 +
|�−,�−〉).

Let us now consider the state |�〉 = S1 ⊗ · · · ⊗ S5|�〉
for some local unitaries Si and compute the unitaries,
Ui , which map |�〉 into |�〉. Since ρij = 1, we choose
U1,U2 as parameters. Note that ρ123 	= 1, since it can
have at most rank 4. Thus, we can compute the unitary
U3 as a function of U1 and U2 considering ρ123,
which can be easily shown to be 1/8(1 + X ⊗ X ⊗ X).
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We have U
†
3 |�〉 = U1U21U4U5|�〉 and therefore

U
†
3 tr¬3(|kl〉12〈ij ||�〉〈�|)U3 = tr¬3 (U †

1U
†
2 |kl〉12 〈ij |U1U2|�〉

〈�|) for any i,j,k,l. It can be easily shown that
tr¬3(|00〉12〈11||�〉〈�|) = X/2 and that tr¬3(U †

1U
†
2 |00〉12

〈11|U1U2|�〉〈�|) = xS3XS
†
3, where x depends on U1,U2.

Since only x depends on U1 and U2, U3 can be directly
computed (not only as a function of U1,U2). We find
U3 = eiα3XS

†
3 for some phase α3. Thus, denoting by

|�̃〉 = H3|�〉 we have |�〉 �LU |�〉 iff there exist
local unitaries U1,U2,U4,U5 and a phase α3 such that
|�̃〉 = U1U2Z(α3)HS†

3U4U5|�〉, where S3 is determined.
Projecting now the third system onto |0〉, we find a state
of system 1245 with the property that ρ24 ∝ 1 + X ⊗ X.
Imposing then the necessary condition ρ24 = U2U4σ24U

†
2U †

4
of LU equivalence leads immediately to U2 = eiα2XS†

2 and
U4 = eiα4XS†

4. Similarly, we find the other unitaries. Thus,
we have |�〉 �LU |�〉 iff there exist phases αi such that⊗5

i=1 Hi |�〉 = eiα0
⊗

i Z(αi)(
⊗5

i=1 HiS
†
i )|�〉. The existence

of the phases can be easily verify either by looking at the
coefficients in the computational basis or by employing
Lemma 1.

VI. LOCC INCOMPARABILITY

The results presented here lead also to conditions for the
existence of more general operations transforming one state
to the other, namely, LOCC. This is due to the fact that
two multipartite states, having the same marginal one-party
entropies, are either LU equivalent or LOCC incomparable
[31,32]; that is, none of the states can be mapped to the other
by LOCC.

In this section we show that for any n > 2 there exists a
pair of n-qubit states, {|�〉,|�〉} such that for any bipartition
A/B, where A contains a qubits and B contains n − a qubits,
eig(ρA) = eig(σA), but the states are not LU equivalent. In
particular, the entropies of the reduced states of any subsystem
coincide; that is, all bipartite entanglement, measured with
the von Neumann entropy of the reduced states, is the same
for both states. Since the eigenvalues of all single-qubit
reduced states coincide, those states are not even LOCC
comparable [31,32]. Surprisingly, in those examples |�〉 will
be the complex conjugation (in the computational basis) of
|�〉. That is, for any n (n > 2) there exist n-qubit states which
are not even LOCC comparable to its complex conjugate. The
consequence of the existence of these states will be discussed
in Sec. VIII.

Note that for three-qubit states examples of such states
have already been presented in [33]. There the fact that the
states are not LU equivalent has been proven by employing a
polynomial invariant of degree 12. Here we use the necessary
and sufficient condition for LU equivalence presented in [16]
and Sec. III to prove that the considered n-qubit states are not
LU equivalent. First we present a three-qubit state |�〉 which
is not LU equivalent and therefore not even LOCC comparable
to its complex conjugate. Then we will generalize this example
to n-qubit states.

We consider the LME states |�〉 = U123(φ)|+〉⊗3 and
|�〉 = U123(φ + π )|+〉⊗3, where U123(α) is the three-qubit
phase gate defined by U123 = 1 − (1 − eiφ)|111〉〈111|. As

mentioned in Sec. III an arbitrary LMES, |�〉, can be easily
transformed into its trace decomposition, |�tr〉, by applying
the local unitary operations HZ(φi), where φi is chosen
such that cot(φi) = 〈Xi 〉

〈Yi 〉 . For the symmetric state |�〉 we find
〈Xi〉 = 1/4[3 + cos(φ)] and 〈Yi〉 = sin(φ)/4 and therefore
cot(φi) = cot(φ) + 3 csc(φ) for i = 1,2,3. For φ = π/2 the
marginal entropies of |�〉 and |�〉, which is equivalent to the
complex conjugate of |�〉 in this case, coincide. However, it
is easy to show that |�tr〉/.|�tr〉∗ is not a product state and
therefore the states |�〉 and |�〉∗ are not LU equivalent (see
Lemma 1). Moreover, due to the fact that the eigenvalues of
all the reduced states are the same for |�〉 and |�∗〉, those
two states are not even LOCC comparable. Note that those
two states have the same bipartite entanglement (considering
any bipartite splitting) and the same value for the tangle [5],
the value of which is the same for a state and its complex
conjugate.

Let us now generalize this example to n-qubit
states (for n > 2). That is, the two n-qubit states,
|�〉 = U1,...,n(π/2)|+〉⊗n and |�〉 = |�∗〉, have the property
that eig(ρA) = eig(σA) for any subsystem A. However,
the states are not even LOCC comparable. In order to
prove that, we first note that the eigenvalues of ρA and
ρ∗

A coincide for any subsystem A. Furthermore, since the
state is symmetric with respect to particle exchange, all
single-qubit reduced states coincide. They are of the form ρ =
|+〉〈+| + 2−n{√2[(1 + i)|1〉〈+| + (1 − i)|+〉〈1|] + 2|1〉〈1|},
with eigenvalues 1/2(1 ± 2−n

√
8 − 22+n + 22n). Thus, none

of the reduced states is proportional to the identity
and therefore the states are LU equivalent iff their
standard forms coincide. Since those states are LMESs,
we know that their trace decompositions are of the
form [HZ(α)]⊗n|�〉, where α is determined via the
equation cot(α) = 〈X1〉

〈Y1〉 = 1 − 2n−1. It is straightforward
to show that |�tr〉 = cos(α/2)|0〉 − i sin(α/2)|1〉]⊗n +
2−n(i − 1)eiαn/2[|0〉 − |1〉]⊗n and therefore none of
the coefficients in the computational basis vanishes for
n > 2. There exist now several ways to prove that |�〉 is
not LU equivalent to its complex conjugate. We could either
compute the standard form, |�s〉, and show that it does
not coincide with the one of |�∗〉, that is, show that |�s〉
is not real, or we could employ Lemma 1 or Lemma 3.
We use here Lemma 3 to show that the sorted trace
decompositions are not related to each other by local phase
gates, which proves that the states are not LU equivalent.
Since the first condition [condition (i)], |〈i|�tr〉| = |〈i|�∗

tr〉| is
obviously fulfilled, we have that |�〉 �LU |�∗〉 iff |�〉/.|�∗〉
is a product state. Since |�〉 is symmetric, this last condition
is fulfilled iff there exists a single-qubit state |φ〉 such
that |�〉/.|�∗〉 = |φ〉⊗n. In other words, the states are LU
equivalent iff there exists two phases α0 and α1 such that
|�tr〉 = eiα0Z(α1)⊗n|�∗

tr〉. This last equation is fulfilled iff
there exists a phase α1 such that U1,...,n(π/2)|+〉⊗n = eiα0V ⊗n

α1

U1,...,n(−π/2)|+〉⊗n, where Vα1 = Z(−α)HZ(α1)HZ(−α) =
e−iα1/2[cos(α1/2)Z(−2α) − i sin(α1/2)e−iαX]. Rewriting
this condition we have that the states are LU equivalent iff
there exists a phase α1 such that |+〉⊗n + (i − 1)|1〉⊗n =
eiα0 [(Vα1 |+〉)⊗n + (−i − 1)(Vα1 |1〉)⊗n]. It can be easily shown
that this condition can only be fulfilled if Vα1 |+〉 ∝ |e1〉 and
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Vα1 |+〉 ∝ |e2〉, where |ei〉 ∈ {|1〉,|+〉}, for i = 1,2 and e1 	∝ e2.
We consider the two possible cases, (a) Vα1 |+〉 = a|1〉 for
some a ∈ IC and (b) Vα1 |+〉 = a|+〉 for some a ∈ IC.
Case (a) is possible iff cos(α1/2) + i sin(α1/2)e−iα = 0 and
cos(α1)e−2iα + i sin(α1)e−iα = a. It is easy to see that the
first condition cannot be fulfilled since α is determined
as mentioned earlier. Since Vα1 |+〉 = a|+〉 [case (b)]
implies that cos(α1) = 0 it is also easy to see that in this
case V |1〉 = ±ie−iα|0〉 and therefore V |1〉 	= a|ei〉 with
|ei〉 ∈ {|1〉,|+〉}, for i = 1,2. This proves that for any n > 2,
the two n-qubit states, |�〉 and |�∗〉, are not LU equivalent.

VII. LU EQUIVALENCE OF MIXED STATES
AND d-LEVEL SYSTEMS

We show here that the criterion of LU equivalence presented
in [16] serves also as a criterion of LU equivalence for certain
mixed and also for certain multipartite states which describe a
system composed of d-level systems.

For instance, if we want to find out whether two mixed
states are related to each other by local unitaries and if there
exists at least one eigenvalue of the mixed state which is not
degenerate, then the same method can be used. This is due to
the fact that the unitaries cannot change the eigenvalues; thus,
if ρ �LU σ , then it must hold that |�〉 �LU |�〉, where |�〉
(|�〉) denote the eigenstates to the nondegenerate eigenvalue of
ρ (σ ), respectively. In order to check then if the two mixed
states are LU equivalent, one first uses the algorithm to deter-
mine the local unitaries which transform |�〉 into |�〉. Those
unitaries must also transform σ into ρ, which can then be easily
checked.

The criterion for LU equivalence for pure states can also
be employed for mixed states if there does not exist a
nondegenerate eigenvalue, but one which is twofold degen-
erate. Let us denote by |�0〉,|�1〉 and |�0〉,|�1〉, the eigen-
vectors corresponding to the twofold degenerate eigenvalue
of ρ,σ , respectively. As before, we have that if ρ �LU σ ,
then there exist local unitaries Ui such that |�0〉〈�0| +
|�1〉〈�1| = ⊗

i Ui(|�0〉〈�0| + |�1〉〈�1|)
⊗

i U
†
i . This equa-

tion is fulfilled iff there exists a 2 × 2 unitary, V , with
|�k〉 = ⊗

i Ui

∑
l Vkl|�l〉, for k = 1,2. Note that this is

equivalent to finding the local unitaries which map the state
|�〉 = |0〉|�0〉 + |1〉|�1〉 into |�〉 = |0〉|�0〉 + |1〉|�1〉. Thus,
solving the LU-equivalence problem of mixed n-qubit states,
where one eigenvalue is twofold degenerate is equivalent to
solving the LU-equivalence problem of n + 1-qubit states,
where ρ1 = 1.

Suppose now that ρ is a n-qubit mixed state and its eigen-
value with the smallest degeneracy is l-fold degenerate. We
denote by |�k〉 (|�k〉) the eigenstates of ρ (σ ) corresponding
to this eigenvalue. Then ρ �LU σ implies that

∑
k |k〉|�k〉 =

V
⊗

i Ui

∑
k |k〉|�k〉, where V is a l × l unitary and all the

other Ui are single-qubit unitary operations. The idea is then
to first fix the unitaries Ui using the algorithm presented in [16]
and at the end try to fix the unitary V .

The LU-equivalence problem for d-level systems can be
investigated in a similar way. However, due to the additional
degeneracy which can occur in this case, the situation gets
more complicated. For instance, if a state |�〉 describes a
system composed out of d-level systems, then ρi , which

describes a single d-level system can be l-fold degenerate,
where l � d. Thus, in this case the unitaries occurring
in Eq. (2) can in general not be determined up to local
phase gates. If there is no degeneracy, similar methods
can of course be applied to solve the problem of LU
equivalence.

VIII. MULTIPARTITE ENTANGLEMENT

The algorithm presented in [16] cannot only be used to solve
the LU-equivalence problem, but allows us also to gain a new
insight into the entanglement properties of multipartite states.
Within the algorithm the classes ρn1,...,nl ,k 	= ρn1,...,nl

⊗ 1
and ρn1,...,nl ,k = ρn1,...,nl

⊗ 1 for some subset of qubits,
n1, . . . ,nl,k, are distinguished. In the first case the unitary Wk

can be computed as a function of the unitaries Un1 , . . . ,Unl
,

whereas it cannot (using the proposed algorithm) be computed
in the second case. Therefore, in this case a new variable, Uk is
required. As explained in [16], those classes correspond also
to different entanglement classes. For instance, applying any
von Neumann measurement on the first subsystem described
by the state |�〉, with ρ12 = ρ1 ⊗ 1, always results in a state
where the second system is maximally entangled with the
remaining systems, independent of the measurement outcome.
Obviously, this is not the case for a state with ρ12 	= ρ1 ⊗ 1.
This suggests that, in order to understand how a many-body
system can be entangled, one first identifies the entanglement
class (as described previously) to which the state belongs. Note
that this classification is based on multipartite, not bipartite
entanglement properties. However, it is easy to perform this
classification since one only needs to consider the reduced state
of certain subsystems. Within the identified entanglement class
it is then feasible to understand how multipartite entanglement
can be qualified and even quantified. For instance, as we have
seen in Sec. V, the LU-equivalence classes of four-qubit states
with ρij = 1, for some systems i and j are characterized by
three parameters. This is due to the fact that any state in
this class (choosing, without loss of generality, i = 1,j = 2)
can be written as |�〉 = 112 ⊗ Ud |�+〉13|�+〉24, where Ud =
ei(φ1X⊗X+φ2Y⊗Y+φ3Z⊗Z), for some phases φi . Thus, also the
entanglement contained in such a state is completely char-
acterized by E12(|�〉) = 2 and the three phases, φi . Recall
that any two-qubit gate, U , can be decomposed as U = U1 ⊗
U2UdV1 ⊗ V2, with Ud as previously denotes the nonlocal
content of the gate U . Using all that allows us to give the three
parameters φi the following physical meaning. Recall that
the state |�〉 = 112 ⊗ U34|�+〉|�+〉 is the Choi-Jamiolkowski
state corresponding to the operation U [17]. That is, given
the state |�〉 the operation U can be implemented using just
local operations.6 This shows that the nonlocal properties
of a four-qubit state for which there exists a maximally
entangled bipartite splitting between two versus two qubits

6The implementation works as follows. First, a system is prepared
in the state |�〉. Then local Bell measurements are preformed on |�〉
and the input state, ρ. In case the measurement |�+〉 is performed, the
output state is E(ρ). In case any other measurement result is obtained,
the output will be E(�i ⊗ �jρ�

†
i ⊗ �

†
j ) for properly chosen local

operation �i ⊗ �j .
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is completely characterized by the amount of entanglement
which can be generated using this state as the only nonlocal
resource.

Of course, this new insight in characterizing multipartite
entanglement by the amount of entanglement which can be
generated using this state as the only nonlocal resource can be
generalized to an arbitrary state, independent of the dimension
and even for mixed states. Note that the quantum operation
corresponding to a state describing n subsystems is acting
only on �n/2� systems. As in the example of four-qubit states,
the corresponding operation is acting on two qubits. This fact
simplifies the characterization of multipartite entanglement,
since, for example, the nonlocal properties of two-qubit
operations are very well understood. It should be further noted
here that the operation corresponding to the state |�〉 via the
Choi-Jamiolkowski isomorphism is unitary iff the state has
the property that it is maximally entangled in the considered
bipartite splitting.

Let us point out here that the algorithm gets more and
more complicated the larger is the number of systems l for
which ρn1,...,nl

= 1 for any choice of n1, . . . nl , since then
l unitaries have to be considered as variables. In the worst
case, where any bipartition of �n/2� qubits is maximally
entangled with the rest, �n/2� unitaries have to be considered
as variables. It is known, however, that only for very few
values of n do such states exist [34]. On the other hand, the
more systems are maximally entangled with the rest, the fewer
parameters remain to characterize the LU-equivalence class.
For instance, in the example of four qubits, the class with
ρij = 1, for some systems i,j can be characterized with only
three parameters. For the other extreme case of generic states,
all the parameters occurring in the standard form determine,
such as in the bipartite case, the entanglement contained in the
state.

Another insight into multipartite entanglement which we
gained here is the fact that for any n > 2 there exists a n-qubit
state, |�〉, which is not LOCC comparable to its complex
conjugate (Sec. VI). Thus, the nonlocal properties of |�〉 and
|�∗〉 seem to be really different. Since the mapping |�〉 →
|�∗〉 corresponds to the redefinition of the complex unit i by
−i, one might expect that this change does not lead to any new
physics. In fact, for any observable O, we have 〈�|O|�〉 =
〈�∗|O∗|�∗〉. Thus, whatever measurement outcome we can
get by measuring a system described by the state |�〉, the
same outcome can be obtained by measuring O∗ on |�∗〉.
Due to that, there will not exist a physical measure which is
capable of distinguishing those two states. This shows that it
will not be possible to characterize all LU-equivalence classes
by operational entanglement measures.7

This suggests the introduction of a function, I1, with
I1(|�〉) = 0 if |�〉 �LU |�∗〉 and I1(|�〉) = 1 otherwise. If
I1(|�〉) = 1, the Hilbert space should be divided into two
subsets, one containing |�〉 and the other containing |�∗〉.
After making this distinction, one proceeds investigating the
nonlocal properties of the state |�〉 within the subset associated
to it.

7Note that in [35] it has been shown that the orbit of a state is
uniquely defined by the set of all entanglement monotones.

In [28] we will follow the approach to investigate the
multipartite entanglement properties in the way outlined here.
In particular, we will consider multipartite state, describing
several qubits, and introduce the function which determines
if a state is LU equivalent to its complex conjugate or
not. Moreover, we will analyze the entanglement contained
in the state by investigating the amount of entanglement
which can be generated using this state as the only nonlocal
resource to implement quantum operations on a smaller
system.

IX. CONCLUSION

We used the criterion of LU equivalence of multipartite
pure states to derive the different LU-equivalence classes of
up to four qubits. For five-qubit states, which can be treated
analogously, it is shown that the most complicated class of
states, where all two-qubit reduced states are completely
mixed, can be easily considered using the algorithm developed
in [16]. Even though it is, in principle, necessary to determine
some of the local unitary operations as a function of some
others, it is shown that for those cases this is, in fact,
not required. That is, the unitaries can always be directly
computed. The algorithm suggests to distinguish different
classes of entangled states, such as the one where ρ12 	=
ρ1 ⊗ 1 and where ρ12 = ρ1 ⊗ 1. We considered here all the
possible classes and showed that, within certain classes, new
operational entanglement parameters can be identified which
completely characterize the nonlocal properties of the states.
For instance, it has been shown that any four-qubit state
for which one two-qubit reduced state is completely mixed
is LU equivalent to a state |�〉 = 1 ⊗ Ud |�+〉|�+〉, where
Ud = ei(α1X⊗X+α2Y⊗Y+α3Z⊗Z) with αi ∈ IR, is the nonlocal
content of a two-qubit gate [23]. The state |�〉 is the Choi-
Jamiolkowski state corresponding to the operation Ud [17].
Thus, Ud can be implemented by local operations if the state
|�〉 is used as a resource. This new approach of characterizing
the entanglement of a multipartite state by the entangling
capability of the operation which can be implemented using
the state as the only nonlocal resource can be generalized to
arbitrary states. Moreover, we derived examples of n-qubit
states (for n > 2) which are not LOCC comparable to their
complex conjugate. This observation suggests the introduction
of a new measure, which distinguishes the cases |�〉 �LU |�∗〉
and |�〉 	�LU |�∗〉. If the states are not LU equivalent, two
different subsets of the Hilbert space should be considered,
one for |�〉 and one for |�∗〉, in order to further investigate the
properties of multipartite entangled states. In [28] we will
prove that the examples of n-qubit states, |�〉, which are
presented here, cannot even be mapped into their complex
conjugate by allowing stochastic LOCC. That is, it is not
possible to transform |�〉 into |�∗〉 by local operations even
with an arbitrary small probability of success.
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