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Analytical results for a monochromatically driven two-level system
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We show that the frequently encountered physical model of a monochromatically driven two-level system is
exactly solvable. We present an analytical exact solution to this driven system in terms of two known special
functions. Our analytical solution is valid for all parameter regimes and may find applications in current solid-state
experiments.
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I. INTRODUCTION

The periodically driven two-level model has been an
important paradigm for understanding many fundamental
phenomena in diverse branches of physics [1]. One of
the simplest nontrivial models is the interaction of a two-
level system with a monochromatic driving field. Recently,
such a monochromatically driven two-level system has re-
ceived revived interest due to artificial two-level systems in
superconducting Josephson devices [2–7]. In these driven
artificial two-level systems, all relevant system parameters
are tunable, and thus different dynamical regimes can be
reached.

Although widely studied over the past few decades [8], up to
now an analytical exact solution to the simple driven two-level
system is still lacking. At present, there are various methods
for approximate solutions, such as the rotating-wave approx-
imation, the time-averaging method, and perturbation theory
[8–17]. The widely used rotating-wave approximation works
well under the conditions of near resonance and weak coupling
[9–11]. The averaging method is applicable for the weak-
coupling region or the high-frequency region [12]. The pertur-
bation theory is generally useful for weak-coupling, strong-
coupling, high-frequency, and low-frequency cases with a
suitably chosen small parameter in the perturbation expansions
[13–17]. However, the usual perturbation series give rise to
secular terms [18], which grow linearly as a function of the time
variable. In the strong-coupling and high-frequency regimes,
two complicated methods have been used to eliminate secular
terms [15,16]. In the strong-coupling case, an efficient iterating
approach has been suggested to be valid for a wide frequency
range [17].

In this paper, we go a step further to present an an-
alytical exact solution of the two-level system under a
monochromatic driving field with the help of two known
special functions. It is shown that, for a purely oscillating
driving field, the solution is given in terms of the Heun
confluent function, and, for the oscillating driving field
with a nonzero static component, the solution is given in
terms of the Heun double confluent function. Therefore,
this widely studied driven two-level system is an exactly
solvable model. Our analytical solutions work for all parameter
regimes and may find applications in current solid-state
experiments.

II. ANALYTICAL EXACT SOLUTIONS
OF A PERIODICALLY DRIVEN

TWO-LEVEL SYSTEM

We consider a two-level system |1〉 and |2〉 described by
the following Hamiltonian (h̄ = 1) [8–17]:

H (t) = f (t)

2
(|1〉〈1| − |2〉〈2|) + ν

2
(|1〉〈2| + |2〉〈1|). (1)

Here f (t) denotes the oscillating energy bias between the
two levels induced by the external periodic force, and in
our study we assume a general time dependence of the form
f (t) = f0 + f1 sin(ωt) with oscillating amplitude f1, oscillat-
ing frequency ω, and nonzero static part f0; ν is the coupling
constant between the two levels. The parameters ν, f1, f0,
and ω have the same units. Depending on the ratios between
these parameters, this system can be in different dynamical
regimes. The periodically driven two-level model occurs in
many physical situations, such as the semiclassical description
of the interaction of a two-level atom with a single-mode
field [19,20], the tunneling of a single particle in a periodically
driven double-well potential [21], and the light propagation in
two periodically modulated coupled waveguides [22–24].

Expanding the solution |ψ(t)〉 of the time-dependent
Schrödinger equation for the Hamiltonian (1) in the set
{|1〉,|2〉}, |ψ(t)〉 = a(t)|1〉 + b(t)|2〉, we have

i
da

dτ
= ν

2ω
b +

(
f0

2ω
+ f1 sin(τ )

2ω

)
a, (2)

i
db

dτ
= ν

2ω
a −

(
f0

2ω
+ f1 sin(τ )

2ω

)
b. (3)

Since the ratios between these parameters are essential, we
have used the scale transformation τ = ωt . It is straightfor-
ward to show that the probability amplitudes a(τ ) and b(τ )
obey the following equations:

d2a

dτ 2
+

(
i
f1 cos τ

2ω
+ (f0 + f1 sin τ )2

4ω2
+ ν2

4ω2

)
a = 0, (4)

d2b

dτ 2
+

(
−i

f1 cos τ

2ω
+ (f0 + f1 sin τ )2

4ω2
+ ν2

4ω2

)
b = 0, (5)

which are similar to the Schrödinger equation for a particle
in a periodic potential. Therefore, our later analytical results
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may find applications for ultracold atoms in optical lattices
[25,26].

We first consider the simple case of a purely sinusoidal
driving field (i.e., f0 = 0). On making the transformations
z(τ ) = sin2(τ/2) and a(z) = exp[if1z/ω]φ(z), we find that
φ(z) obeys the Heun confluent equation [27,28]

d2φ

dz2
+

(
α + β + 1

z
+ γ + 1

z − 1

)
dφ

dz
+ qz + p

z(z − 1)
φ = 0, (6)

where q = δ + α(β + γ + 2)/2 and p = η + β/2 + (γ − α)
(β + 1)/2. Here the parameters α, β, γ , δ, and η are
used in the widespread computer package MAPLE, and they
are given by α = i2f1/ω, β = γ = −1/2, δ = if1/ω, and
η = −if1/2ω + 3/8 − ν2/4ω2. This equation has two regular
singularities at z = 0 and 1 and an irregular singularity
at z = ∞. The local solution of Eq. (6) around z = 0 is
the confluent Heun function, as a standard power-series
expansion around the origin, φ1(z) = HC(α,β,γ,δ,η,z) =∑∞

n=0 hnz
n [27,28], where the coefficients hn are deter-

mined by the three-term recurrence relation Anhn = Bnhn−1 +
Cnhn−2 (n � 1) with the initial conditions h0 = 1 and h−1 = 0.
Here An = 1 + β/n, Bn = 1 + (β + γ − α − 1)/n + [η −
β/2 + (γ − α) (β + 1)/2]/n2, and Cn = [δ + α(β + γ )/2 +
α(n − 1)]/n2. Another linearly independent solution of Eq. (6)
around z = 0 can be expressed as φ2(z) = z−βHC(α, − β,

γ,δ,η,z) [27,28]. With the two solutions, we obtain the two
linearly independent particular solutions for a(τ ):

ψ1(τ ) = ei
f1
ω

sin2(τ/2)HC(α,β,γ,δ,η, sin2(τ/2)), (7)

ψ2(τ ) = ei
f1
ω

sin2(τ/2) sin(τ/2)HC(α, − β,γ,δ,η, sin2(τ/2)).

(8)

It follows from Eqs. (4) and (5) that ψ∗
1 (τ ) and ψ∗

2 (τ ) are also
two linearly independent solutions of Eq. (5). Thus, one can
construct the general solutions for a and b: a(τ ) = c1ψ1(τ ) +
c2ψ2(τ ) and b(τ ) = d1ψ

∗
1 (τ ) + d2ψ

∗
2 (τ ), where the constants

c1,2 and d1,2 are determined by the conditions a(τ0), a′(τ0),
b(τ0), and b′(τ0) at the initial time τ = τ0. Here the prime
denotes the derivative with respect to τ . After a straightforward
calculation, we finally get

a(τ ) = U 1
11(τ,τ0)a(τ0) + U 1

12(τ,τ0)b(τ0), (9)

b(τ ) = U 1
21(τ,τ0)a(τ0) + U 1

22(τ,τ0)b(τ0), (10)

where U 1
11(τ,τ0) = �1(τ,τ0)/�1(τ0,τ0) + if1 sin(τ0)�2(τ,τ0)/

2ω�1(τ0,τ0),U 1
12(τ,τ0) = iν�2(τ,τ0)/2ω�1(τ0,τ0),U 1

21(τ,τ0) =
−U 1∗

12 (τ,τ0), and U 1
22(τ,τ0) = U 1∗

11 (τ,τ0) with �1(τ,τ0) =
ψ1(τ )ψ ′

2(τ0) − ψ2(τ )ψ ′
1(τ0) and �2(τ,τ0) = ψ1(τ )ψ2(τ0) −

ψ2(τ )ψ1(τ0). This leads to the time-evolution operator

U1(τ,τ0) =
(

U 1
11(τ,τ0) U 1

12(τ,τ0)

−U 1∗
12 (τ,τ0) U 1∗

11 (τ,τ0)

)
. (11)

However, the Heun confluent function HC(α,β,γ,δ,η,z) is
convergent within the circle |z| < 1 [27,28]. At z = 1, it is
divergent, since z = 1 is the singularity of Eq. (6). Therefore,
because of 0 � z(τ ) � 1, the exact solutions (9) and (10) are
not valid at z = 1. To find the solutions at z = 1, we need

to consider the local solution relative to z = 1. After the
substitution of x(τ ) = 1 − z(τ ) into Eq. (6), we have

d2φ

dx2
+

(
−α + γ + 1

x
+ β + 1

x − 1

)
dφ

dx
+ q̃x + p̃

x(x − 1)
φ = 0,

(12)

where q̃ = −δ − α(β + γ + 2)/2 and p̃ = η + δ + γ /2 +
(γ + α) (γ + 1)/2. Equation (12) is also a Heun confluent
equation with different parameters. Near z = 1, we obtain two
linearly independent particular solutions for a(τ ):

ψ3(τ ) = e−i
f1
ω

cos2(τ/2)HC(−α,γ,β, − δ,η + δ, cos2(τ/2)),

(13)

ψ4(τ ) = e−i
f1
ω

cos2(τ/2) cos(τ/2)

× HC(−α, − γ,β, − δ,η + δ, cos2(τ/2)). (14)

The general solutions for a and b are thus given by a(τ ) =
c3ψ3(τ ) + c4ψ4(τ ) and b(τ ) = d3ψ

∗
3 (τ ) + d4ψ

∗
4 (τ ), where c3,4

and d3,4 are constants determined by the conditions a(τ1),
a′(τ1), b(τ1), and b′(τ1) at time τ = τ1. Similarly, we can get

a(τ ) = U 2
11(τ,τ1)a(τ1) + U 2

12(τ,τ1)b(τ1), (15)

b(τ ) = U 2
21(τ,τ1)a(τ1) + U 2

22(τ,τ1)b(τ1), (16)

where U 2
11(τ,τ1) = �3(τ,τ1)/�3(τ1,τ1) + if1 sin(τ1)�4(τ,τ1)/

2ω�3(τ1,τ1),U 2
12(τ,τ1) = iν�4(τ,τ1)/2ω�3(τ1,τ1),U 2

21(τ,τ1) =
−U 2∗

12 (τ,τ1), and U 2
22(τ,τ1) = U 2∗

11 (τ,τ1) with �3(τ,τ1) =
ψ3(τ )ψ ′

4(τ1) − ψ4(τ )ψ ′
3(τ1) and �4(τ,τ1) = ψ3(τ )ψ4(τ1) −

ψ4(τ )ψ3(τ1). The corresponding time-evolution operator is
given by

U2(τ,τ1) =
(

U 2
11(τ,τ1) U 2

12(τ,τ1)

−U 2∗
12 (τ,τ1) U 2∗

11 (τ,τ1)

)
. (17)

These analytic exact solutions relative to z = 0 and z = 1
can be connected at the common regions of 0 < z(τ ) < 1
and 0 < x(τ ) = 1 − z(τ ) < 1. With Eqs. (11) and (17), we
can construct the total time-evolution operator by dividing
the evolution time into different time intervals. For each time
interval, we have the corresponding time-evolution operator.
For example, the well-known Floquet operator F (T ,0), defined
as the time-evolution operator over one period T = 2π , can
be written as

F (2π,0) = U1(2π,τ2)U2(τ2,τ1)U1(τ1,0), (18)

where τn must be appropriately chosen to avoid the cases of z =
1 and x = 1. In Fig. 1, we use the computer package MAPLE

to show our analytical and numerical results for three set of
parameters corresponding to the high-frequency, resonance,
and low-frequency cases, respectively. It is clearly seen that
they agree very well. To show our analytical solutions, we have
taken τn = 3n to connect solutions in different time intervals.
In particular, for the case of f1/ω = 2.404 and ν/ω = 6, the
system initially in the level |1〉 remains almost in the same
level. This effect is known as coherent destruction of tunneling
and was found originally by Grossmann et al. for a particle in
a driven double-well potential [21].

Now we consider the general case in the presence of
the static part f0. On substituting the transforms z1(τ ) =
−i tan(τ/2) and a(τ ) = exp[−f1 sin(τ )/2ω]φ(z1) into Eq. (4),
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FIG. 1. |a(τ )|2 vs the dimensionless time τ with a(0) = 1 and
b(0) = 0 for (a) ν/ω = 1/6 and f1/ω = 2.404, (b) ν/ω = 1 and
f1/ω = 1, (c) ν/ω = 10 and f1/ω = 10. The circles are for the
numerical results with Eqs. (2) and (3), and the solid lines are for
the analytical exact results. To compute our analytical exact solutions,
we have taken τn = 3n to connect solutions in different time intervals.

it follows that φ(z) obeys the Heun double confluent equation
[27,28]

d2φ

dz2
1

+ 2z1
(
z2

1 − 1
)2 − α

(
z4

1 − 1
)(

z2
1 − 1

)3

dφ

dz1

+ βz2
1 + (γ + α)z1 + δ(

z2
1 − 1

)2 φ = 0, (19)

where the parameters α, β, γ , and δ are also used
in the widespread computer package MAPLE, which
reads α = i2f1/ω, β = −(f 2

0 + f 2
1 + ν2)/ω2 + i2f1/ω, γ =

i4f0f1/ω
2, and δ = (f 2

0 + f 2
1 + ν2)/ω2 + i2f1/ω. This

equation has two irregular singularities, located at z = −1
and z = 1, and the origin z = 0 is a regular point. The
Heun double confluent equation has a local solution φ1(z1) =
HD(α,β,γ,δ,z1), which is called the Heun double confluent
function. Another independent solution can be given by
φ2(z1) = exp[−αz1/(z2

1 − 1)]HD(−α,β,γ,δ,z1). With the two
solutions, we obtain the two linearly independent particular
solutions for a(τ ):

χ1(τ ) = e− f1
2ω

sin(τ )HD(α,β,γ,δ, − i tan(τ/2)), (20)

χ2(τ ) = e
f1
2ω

sin(τ )HD(−α,β,γ,δ, − i tan(τ/2)). (21)

Following our above treatment, we immediately obtain the
time-evolution operator

Ũ1(τ,τ0) =
(

Ũ 1
11(τ,τ0) Ũ 1

12(τ,τ0)

−Ũ 1∗
12 (τ,τ0) Ũ 1∗

11 (τ,τ0)

)
, (22)

where Ũ 1
11(τ,τ0) = �̃1(τ,τ0)/�̃1(τ0,τ0) + i[f0 + f1 sin(τ0)]

�̃2(τ,τ0)/2ω�̃1(τ0,τ0) and Ũ 1
12(τ,τ0) = iν�̃2(τ,τ0)/2ω�̃2

(τ,τ0). Here �̃1,2 have the same expression with �1,2 by
replacing ψ1,2 with χ1,2. The latter �̃3,4,5,6,7,8 also have
similar expressions. Because the radius of convergence of
the Heun double confluent function is |z1| < 1, together with

z1 ∈ i[−∞,∞], our solutions are valid only in a certain time
interval. For simplicity, we only consider the solutions in a
period T . Clearly, our time-evolution operator Ũ1(τ,τ0) is valid
for 0 � τ0 � τ < π/2 and 3π/2 < τ0 � τ � 2π .

To obtain the solutions relative to z1 = −i at τ = π/2, we
can make other different transforms z2 = −i tan(τ/2 − π/4)
and a(z2) = exp[if1 cos(τ )/2ω]φ(z2), thereby leading to an-
other version of the Heun double confluent equation:

d2φ

dz2
2

+ 2z2
(
z2

2 − 1
)2 − α̃

(
z4

2 − 1
)(

z2
2 − 1

)3

dφ

dz2

+ β̃z2
2 + (γ̃ + α̃)z2 + δ̃(

z2
2 − 1

)2 φ = 0, (23)

where the parameters are α̃ = −2f1/ω, β̃ = −(f 2
0 + ν2 −

2f0f1)/ω2, γ̃ = 4f1/ω, and δ̃ = (f 2
0 + ν2 + 2f0f1)/ω2. The

resulting two linearly independent particular solutions for a(τ )
can be written as

χ3(τ ) = ei
f1
2ω

cos(τ )HD(̃α,β̃,γ̃ ,̃δ, − i tan(τ/2 − π/4)), (24)

χ4(τ ) = e−i
f1
2ω

cos(τ )HD(−α̃,β̃,γ̃ ,̃δ, − i tan(τ/2 − π/4)).

(25)

The corresponding time-evolution operator is given by

Ũ2(τ,τ1) =
(

Ũ 2
11(τ,τ1) Ũ 2

12(τ,τ1)

−Ũ 2∗
12 (τ,τ1) Ũ 2∗

11 (τ,τ1)

)
, (26)

where Ũ 2
11(τ,τ1) = �̃3(τ,τ1)/�̃3(τ1,τ1) + i[f0 + f1 sin(τ1)]

�̃4(τ,τ1)/2ω�̃3(τ1,τ1) and Ũ 2
12(τ,τ1) = iν�̃4(τ,τ1)/2ω�̃3

(τ,τ1). We can see that the time-evolution operator Ũ2(τ,τ1) is
valid for 0 < τ1 � τ < π . Therefore, the two time-evolution
operators can be connected at the time τ1 = π/2 − �τ1 with
�τ1 being positive small.

To give the solutions at τ = π , for which |z1| > 1 and z2 =
−i, the substitution of x1 = 1/z1 = i cot(τ/2) into Eq. (19) can
yield another version of itself. The corresponding parameters
transform according to α = −α, β = −δ, and γ = −γ .
Therefore, the resulting two linearly independent particular
solutions for a(τ ) can be written as

χ5(τ ) = e− f1
2ω

sin(τ )HD(−α, − δ, − γ, − β,i cot(τ/2)), (27)

χ6(τ ) = e
f1
2ω

sin(τ )HD(α, − δ, − γ, − β,i cot(τ/2)). (28)

The corresponding time-evolution operator is given by

Ũ3(τ,τ2) =
(

Ũ 3
11(τ,τ2) Ũ 3

12(τ,τ2)

−Ũ 3∗
12 (τ,τ1) Ũ 3∗

11 (τ,τ2)

)
, (29)

where Ũ 3
11(τ,τ2) = �̃5(τ,τ2)/�̃5(τ2,τ2) + i[f0 + f1 sin(τ2)]

�̃6(τ,τ2)/2ω�̃5(τ2,τ2) and Ũ 3
12(τ,τ2) = iν�̃6(τ,τ2)/2ω�̃5

(τ,τ2). The time-evolution operator is valid for π/2 <

τ2 � τ < 3π/2. Therefore, the two time-evolution operators
Ũ2(τ,τ1) and Ũ3(τ,τ2) can be connected at τ2 = π − �τ2 with
�τ2 being positive small.

To obtain the solutions at τ = 3π/2, on substituting x2 =
1/z2 = i cot(τ/2 − π/4) into Eq. (23), we have another ver-
sion of it. The corresponding parameters transform according
to α̃ = −α̃, β̃ = −δ̃, and γ̃ = −γ̃ . Therefore, the resulting
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two linearly independent particular solutions for a(τ ) can be
written as

χ7(τ ) = ei
f1
2ω

cos(τ )HD(−α̃, − δ̃, − γ̃ , − β̃,i cot(τ/2 − π/4)),

(30)

χ8(τ ) = e−i
f1
2ω

cos(τ )HD(̃α, − δ̃, − γ̃ , − β̃,i cot(τ/2 − π/4)).

(31)

The corresponding time-evolution operator is given by

Ũ4(τ,τ3) =
(

Ũ 4
11(τ,τ3) Ũ 4

12(τ,τ3)

−Ũ 4∗
12 (τ,τ3) Ũ 4∗

11 (τ,τ3)

)
, (32)

where Ũ 4
11(τ,τ3) = �̃7(τ,τ3)/�̃7(τ3,τ3) + i[f0 + f1 sin(τ3)]

�̃8(τ,τ3)/2ω�̃7(τ3,τ3) and Ũ 4
12(τ,τ3) = iν�̃8(τ,τ3)/2ω�̃7

(τ,τ3). The time-evolution operator is valid for π < τ3 � τ <

2π . Therefore, the two time-evolution operators Ũ3(τ,τ2) and
Ũ4(τ,τ3) can be connected at τ3 = 3π/2 − �τ3 with �τ3 being
positive small. In addition, the two time-evolution operators
Ũ1(τ,τ0) and Ũ4(τ,τ3) can be connected at τ0 = 2π − �τ4

with �τ4 being positive small. With these time-evolution
operators, the well-known Floquet operator F̃ (2π,0) can be
written as

F̃ = Ũ1(2π,τ4)Ũ4(τ4,τ3)Ũ3(τ3,τ2)Ũ2(τ2,τ1)Ũ1(τ1,0). (33)

It is known that in certain parameter regimes some
approximations can be used to obtain analytical results for this
periodically driven two-level system, such as high-frequency,
rotating-wave, and adiabatic approximations. For simplicity,
we only focus on the simple case of f0 = 0. We assume that
the system is in an initial state with a(0) = 1 and b(0) = 0.
In the high-frequency limit 0 < ν/ω � 1, the high-frequency
approximation (HFA) gives the following approximate results
[12–16]:

aHFA(τ ) = e−i
f1
ω

sin2( τ
2 ) cos

[
ντ

2ω
J0(f1/ω)

]
, (34)

bHFA(τ ) = −ie−i
f1
ω

cos2( τ
2 ) sin

[
ντ

2ω
J0(f1/ω)

]
, (35)

where J0(f1/ω) is the zero-order Bessel function. The rotating-
wave approximation usually works well for near-resonance
and weak-coupling cases. For brevity, we consider the exact
resonant case of ν/ω = 1. The weak coupling corresponds to
the weak field situation with 0 < f1/ω � 0 in the Hamiltonian
(1) for the driven system. The rotating-wave approximation
(RWA) leads to [9–11]

aRWA(τ ) = 1√
2

[
e−iπ/4 cos

(
f1τ

4ω
− τ

2

)
+ eiπ/4 cos

(
f1τ

4ω
+ τ

2

)]
, (36)

bRWA(τ ) = i√
2

[
e−iπ/4 sin

(
f1τ

4ω
− τ

2

)
+ eiπ/4 sin

(
f1τ

4ω
+ τ

2

)]
. (37)

For the low-frequency (LF) case of ν/ω 
 1, it then follows
on applying the adiabatic approximation that [13]

aLF(τ ) = 1
2

[
e−i

∫ τ

0 E+(s)dsϕ+(τ ) + e−i
∫ τ

0 E−(s)dsϕ−(τ )
]
, (38)

bLF(τ ) = 1
2

[ − e−i
∫ τ

0 E+(s)dsϕ−(τ ) + e−i
∫ τ

0 E−(s)dsϕ+(τ )
]
,

(39)

where E±(τ ) = ±
√
f 2

1 sin2(τ ) + ν2/2ω are the instantaneous

eigenvalues and ϕ± =
√

1 ± f 2
1 sin2(τ )/

√
f 2

1 sin2(τ ) + ν2.
These approximate results are applicable for the total time.
However, the analytical solutions given by Eqs. (9), (10),
(15), and (16) are valid in different time intervals, and they
are connected at the common region of 0 < sin2(τ/2) < 1
and 0 < cos2(τ/2) < 1. For example, with τ0 = 0 in Eqs. (9)
and (10), we have

a(τ ) = e−i
f1
ω

sin2( τ
2 )HC

(
−i

2f1

ω
, − 1

2
, − 1

2
,i

f1

ω
,

− i
f1

2ω
+ 3

8
− ν2

4ω2
, sin2

(
τ

2

))
, (40)

b(τ ) = − iν

ω
ei

f1
ω

sin2( τ
2 ) sin

(
τ

2

)
HC∗

(
−i

2f1

ω
,
1

2
, − 1

2
,i

f1

ω
,

− i
f1

2ω
+ 3

8
− ν2

4ω2
, sin2

(
τ

2

))
, (41)

where we have used the identity HC(α,β,γ,δ,η,z) =
exp(−αz)HC(−α,β,γ,δ,η,z) for z < 1. Although the above
analytical exact solution is valid for 0 � τ < π , on applying
the following relations [29]

cos

(
uτ

2

)
= HC

(
0, − 1

2
, − 1

2
,0,

3

8
− u2

4
, sin2

(
τ

2

))
,

(42)

sin

(
uτ

2

)
= u sin

(
τ

2

)
HC

(
0,

1

2
, − 1

2
,0,

3

8
− u2

4
, sin2

(
τ

2

))
,

(43)

and HC(−i2f1/ω, − 1/2, − 1/2,if1/ω,− if1/2ω + 3/8,

sin2(τ/2)) = 1, we obtain the expected results that when
f1/ω = 0, we have a(τ ) = cos(ντ/2ω) and b(τ ) =
−i sin(ντ/2ω), and when ν/ω = 0, we have a(τ ) =
exp[−if1 sin2(τ/2)/ω] and b(τ ) = 0. However, it is a very
difficult task to give the analytical expressions for the
asymptotic behavior of the analytical exact solutions in
various parameter regimes, since the theory of the Heun
functions is not developed enough.

III. CONCLUSION

In conclusion, we have given an analytical exact solution
of a two-level system driven by a sinusoidal driving field
in terms of two special functions. For a purely sinusoidal
driving field, the analytical exact solution is given with the
help of the Heun confluent function. For a general sinusoidal
driving field with a nonzero static component, the analytical
exact solution is given with the help of the Heun double
confluent function. Although one of our original aims is to use
these analytical exact solutions to test the validity of various
approximation methods, there is not enough mathematical
knowledge about the asymptotic behavior of the two special
functions in different parameter ranges. This needs further
study of the two special functions. Additionally, our analytical
solutions may find applications in optical lattice systems and
current solid-state experiments.
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