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Double-slit vacuum polarization effects in ultraintense laser fields

B. King,* A. Di Piazza,† and C. H. Keitel‡

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
(Received 15 April 2010; published 17 September 2010)

The influence of the strong laser-driven vacuum on a propagating electromagnetic probe wave has been
studied in detail. We investigate two scenarios, which comprise a focused probe laser beam that passes through
a region of vacuum polarized by an ultraintense laser field. By splitting this strong field into two separated
monochromatic Gaussian pulses that counterpropagate in a plane perpendicular to the probe-field axis, we
demonstrate a leading-order light-by-light diffraction effect that generates an interference pattern reminiscent
of the classic double-slit experiment. We calculate the total number of probe photons diffracted as well as the
number diffracted into regions where the vacuum polarization signal is higher than the probe background. In
addition, we calculate the induced ellipticity and polarization rotation in the probe beam and show how, in the
realistic situation in which the centers of the two strong fields are not exactly aligned, certain ranges of beam
separation and observation distance may actually lead to an increase over the idealized case of a single strong
laser beam.
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I. INTRODUCTION

That strong electromagnetic fields can modify the di-
electric properties of the quantum vacuum has been known
since the pioneering work of Heisenberg and Euler [1],
Weisskopf [2], and Sauter [3]. Quantum electrodynamics
(QED) predicts that when the electromagnetic-field strength
nears the critical Schwinger limit required to spontaneously
create an electron-positron pair with an electron of charge
−e < 0 and mass m within the reduced Compton wavelength
λ- c = h̄/mc, a range of nonlinear vacuum polarization effects
(VPEs) should become observable. The corresponding electric
field of Ecr = √

4πm2c3/h̄e = 1.3 × 1016 V cm−1in Lorentz-
Heaviside units, would certainly allow one to access absorptive
VPE processes, namely, which involve real electron-positron
pair creation, whose rates would become large enough to
easily be observed. Moreover, recent calculations show that
these effects, in the presence of loan fields, can already
clearly be observed at intensities orders of magnitude below
critical values [4–7]. Such VPE processes have also been
discussed as a probe for new fundamental physics, with current
limits clarified and new experiments proposed [8–12]. Since
these processes are exponentially suppressed, for the case in
earth-bound laboratories, where the electric fields involved
are much less than Ecr, it is refractive VPE processes, which
involve virtual electron-positron pairs that are most likely to
be observed. Photon-photon scattering is one example of a
refractive VPE [13], which has already been carried out as
Delbrück scattering, which involves virtual photons in the
Coulomb field of a heavy nucleus [14], where the atomic
number Z is <∼1/α and α = e2/4πh̄c ≈ 1/137 is the fine-
structure constant, but has since eluded detection for purely
real photons [15]. This effect could be measured by virtue
of polarization-dependent emission in four-wave mixing [16]
by using the transverse-electric modes of plane waves to
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generate a resonant coupling in a waveguide [17] or by using
sufficiently intense lasers to compensate for the small cross
section to induce a phase shift in lasers that pass through one
another [18,19] (for a review of the applications of relativistic
lasers, see Refs. [20–22]). Other nonlinear vacuum effects
include photon acceleration [23], photon splitting in atomic
fields [24], pair plasmas [25], and laser fields [26] as well
as the corresponding reverse process of vacuum high-order
harmonic generation (e.g., in various laser setups [27,28] or in a
mixed Coulomb and laser-field setup [29]). The corresponding
critical bound of the magnetic field Bcr = √

4πm2c3/h̄e =
4.4 × 1013 G can be surpassed by ultramagnetized neutron
stars or “magnetars” [30] (for a review on x-ray pulsars,
see Ref. [31]), which provide an inhomogeneous trigger
for nonlinear effects, such as vacuum birefringence and
photon ray bending [32] as well as photon splitting [33,34].
The possibility of laboratory-based experiments that measure
second-harmonic generation within a constant inhomogeneous
magnetic field has also been considered [35]. The current
PVLAS (polarizzazione del vuoto con laser) experiment uses
a slowly varying magnetic field to attempt to detect refractive-
regime vacuum-induced birefringence and dichroism through
rotation in the polarization of a probe laser wave [36]. In
addition to in a magnetic field, birefringence can also be
induced in the vacuum by, for example, a laser field in this
regime [37–40]. This latter scenario, and that of vacuum-
induced diffraction are two examples of refractive VPEs that
we further develop in the current paper.

At the time of writing, the record for the highest intensity
laser ever produced is held by the HERCULES laser, and
stands at 2 × 1022 W cm−2 [41], seven orders of magnitude
removed from the Schwinger limit intensity of Icr = cE2

cr/2 =
2.3 × 1029 W cm−2. We foresee that with the next generation
of lasers currently being built, we will soon be in a much
better position to test vacuum effects and so work with the
quoted values for intended intensity and photon energy ranges
in the coming decade. Examples of strong-field lasers are the
ELI (extreme light infrastructure) and the HiPER (high power
laser energy research) facilities with target intensity values
of 1026 W cm−2 [42,43]. The petawatt field synthesizer [44],
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while planning a lower intensity of 1022 W cm−2, will have
a repetition rate of 10 Hz, which could be more favorable in
certain situations and provides an example of a cutting-edge
system to be commissioned in the near future. Free-electron
lasers (FELs), where undulating electrons provide the lase
medium, such as the x-ray free-electron laser (XFEL) and
the linac coherent light source (LCLS) could also be used
to polarize the quantum vacuum, especially with the so-
called “goal” parameters quoted in Ref. [45]. However, a
further application of the FELs, one that could be reached
sooner, would be as probe-field lasers, whose alteration, when
passing through vacuum polarized regions, could be measured.
The XFEL and the LCLS would be ideal for measuring
refractive effects, which are, in general, proportional to
laser frequency, as they allow continuous adjustment of the
probe wavelength down to a minimum of 0.1 and 0.15 nm,
respectively [46,47].

This paper concerns itself with laser-induced vacuum
polarization effects in the spirit of Ref. [40]. Here, the
change in polarization and ellipticity of a planar Gaussian
probe field that passes through a region of the vacuum
polarized by a perpendicular standing wave formed by two
counterpropagating ultraintense (I0 � 1023 W cm−2) Gaus-
sian beams, was calculated up until the point where probe
defocusing becomes important. We compare and expand
upon this simple setup with the following enhancements
(see Fig. 1):

(i) The two counterpropagating strong-field wave triggers
for VPEs are separated in the plane perpendicular to their
propagation, thereby modelling a more realistic situation.
This makes sense, first, from an experimental point of view,
to know how VPEs are sensitive to laser alignment, and,
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FIG. 1. The double-slit experimental setup. A monochromatic
Gaussian probe beam with electric- and magnetic-field vectors Ep

and Bp , respectively, wave vector kp , linearly polarized at an angle θ

to the x axis in the x-z plane and with a waist wp,0, much greater than
the strong-field beam waist w0,0 impinges on and is perpendicular
to two parallel counterpropagating monochromatic and Gaussian
strong-field waves with amplitudes E0/

√
2 � Ep , electric and mag-

netic fields in the x-y plane E0,1,E0,2 and B0,1,B0,2, respectively, wave
vectors ±k0 = (0,0, ∓ ω0), ω0 � ωp , with foci at (x,y) = (a,b) and
(x,y) = (−a,−b). The results of this process are then measured a
distance rd from the center of the interaction region.

second, allows us to derive an interference effect as different
parts of the probe beam pass through the double-slit-like
vacuum-polarized region. This will even turn out to increase
probe-beam polarization rotation and ellipticity.

(ii) Defocusing terms were introduced into the probe beam
and the vacuum-induced ellipticity and rotation of the probe
polarization were correspondingly updated. This extends the
limited range of detector distances in Ref. [40], where we could
have compared theory to experiment, as our new expressions
are also valid in the far-field diffraction zone, where they
converge to a nonzero value.
(iii) The electric field generated in the new setup by the

current of the polarized vacuum, which we, henceforth, label
the diffracted field, was also calculated in the probe beam’s
transverse plane, which allows us to again model the more
realistic situation where a detector is placed off axis, in regions
where the diffracted field, which has a wider spread, is larger
than the probe background.

Throughout, we will make the analogy with the single-
and double-slit diffraction experiment. According to Babinet’s
principle, the diffraction pattern generated by light that
passes an opaque obstacle is the same as that for light that
traverses an aperture with the same shape as the obstacle [48].
Regions of the vacuum polarized by the two strong-field laser
beams then represent translucent obstacles for photons in
the probe beam, by having, as we will show, a nontrivial
polarization and magnetization. Unlike the typically sharp
two-dimensional slits used in demonstration experiments,
the strong lasers, which are Gaussian in beam profile, form
smooth, three-dimensional slits. One consequence of this will
be that no single-slit fringes occur in the far field. However,
the probe photons scattered from each strong beam will
interfere with one another, and, in this way, we will have a
double slit. As the scattering of probe photons occurs with
such a small probability, the complete double-slit pattern will
only be observable when the background of probe photons that
pass unperturbed through the apparatus, is subtracted. At the
detector, the total field will, in general, consist of the probe
signal plus the vacuum contribution of the scattered photons.
In calculating the interference between these two fields, we
demonstrate an additional diffractive effect of the polarized
vacuum, which we accentuate by forming the double-slit-like
experimental setup. In addition, we also compare polarization
results with a second beam geometry, namely, that of the
probe, which propagates antiparallel to the strong field, which
we label the double-shaft (or single-shaft) setup. Our results
are complementary to findings in Ref. [37], which focus
on only the pure diffracted intensity for a different laser
geometry.

The paper is organized as follows: In Sec. II, we first
introduce the Euler-Heisenberg theory upon which the re-
sults are based and the range of experimental scenarios we
considered; then, in Sec. III, follows an analysis of the
first part of the results, the intensity of the bare-diffracted
field and the time-averaged difference in the probe plus
diffracted signal in terms of the number of photons; the
second part of the results deals with the change in rotation
and ellipticity of polarization for both of the two geometries,
and the paper is concluded with a recapitulation of the main
results.
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II. THEORETICAL BASIS

A. Leading-order vacuum current

By making two basic assumptions, we can drastically sim-
plify the interaction terms that occur in our field theory [49].
From the assumption that the photon energies involved are
much lower than the electron rest energy, it follows that the
loop contribution of spatiotemporal extent can be consistently
regarded as a single local interaction point, thereby allowing
us to write down the so-called Euler-Heisenberg local point
Lagrangian density L, which we will use to describe vacuum
polarization effects. Second, from the aforementioned laser
intensities that are either currently available or scheduled
for the future, we will work with the comfortable as-
sumption that field strengths are much lower than critical
values. Then, this allows us to use the weak-field expansion
of the Euler-Heisenberg Lagrangian, the leading order of
which (in a system of units adopted henceforth, h̄ = c = 1)
reads

L = 1

2
(E2 − B2) + 2α2

45m4
[(E2 − B2)2 + 7(E · B)2], (1)

for electric and magnetic fields E and B and their square
moduli E2 = E · E, B2 = B · B, respectively. By extremizing
the action with respect to the vector potential that corresponds
to these fields, we achieve the following wave equations of
motion, for an induced vacuum current Jvac:

∇2E − ∂2
t E = Jvac = ∇ ∧ ∂tM − ∇(∇ · P) + ∂2

t P, (2)

P := 4α2

45m4
[2(E2 − B2)E + 7(E · B)B], (3)

M := − 4α2

45m4
[2(E2 − B2)B − 7(E · B)E]. (4)

There are many similarities one can draw between biref-
ringent solid-state materials and the behavior of the vacuum
under intense electromagnetic fields. Direct from the preceding
wave equation, Eq. (2), we can liken the vacuum current to
one, which represents the response from such a birefringent
material, that is to say, to label P its polarization, and M its
magnetization.1 As these are functions of both E and B, the
inhomogeneity in our fields, which plays a central role here,
is included at this point.

B. Definition of experimental scenario

In this paper, we will focus mainly on the double-slit setup
sketched in Fig. 1, and will include only a summary of the
polarization results for the single-shaft setup that corresponds
to a head-on probe and a strong-field collision toward the
end of the paper (here, we use the label shaft contrary to
the one in Ref. [37], where it was also labeled a slit). For
our double-slit setup, two tightly focused [we assume the
diffraction limit has been reached (i.e., focused down to
a wavelength)] counterpropagating monochromatic strong-
field Gaussian pulses that polarize the vacuum, with waists
w0,0 centered at (x,y) = (a,b) and (x,y) = (−a,−b), electric

1Due to a printing error on p. 2 of Ref. [40], the magnetization
appears here first with the correct overall minus sign.

fields E0,1(x,y,z,t), E0,2(x,y,z,t), and wave vectors k0 =
(0,0,−ω0) and −k0 = (0,0,ω0), respectively, are permeated
simultaneously by a broader and weaker linearly polarized
transverse monochromatic Gaussian probe field, polarized at
an angle θ to the x axis with waist wp,0, electric field Ep,
and wave vector kp = (0,ωp,0), which will gain a diffracted
component, whose intensity and polarization will be measured
some distance rd away. By using the Gaussian beam solution
from Ref. [20], in the effective interaction region, we therefore
have the following:

E0(x,y,z,t) := [E0,1(x,y,z,t) + E0,2(x,y,z,t)]x̂,

E0,1(x,y,z,t) := E0,0(x − a,y − b,z) sin

(
ψ0 + ω0t + ω0z

−φg,0(z) + ω0z

2

(x − a)2 + (y − b)2

z2 + z2
r,0

)
,

E0,2(x,y,z,t) := E0,0(x + a,y + b,z) sin

(
ψ0 + ω0t − ω0z

+φg,0(z) − ω0z

2

(x + a)2 + (y + b)2

z2 + z2
r,0

)
,

(5)

Ep(x,y,z,t) := Ep,0(x,y,z) sin

(
ψp + ωpt − ωpy + φg,p(y)

− ωpy

2

x2 + z2

y2 + y2
r,p

)
(x̂ cos θ + ẑ sin θ ), (6)

where we have defined the strong- and probe-field amplitudes
E0,0(x,y,z), Ep,0(x,y,z), respectively, with their maximum
values E0/

√
2 and Ep � E0, as

E0,0(x,y,z) := E0√
2

e−(x2+y2)/w2
0√

1 + (z/zr,0)2
,

Ep,0(x,y,z) := Ep

e−(x2+z2)/w2
p√

1 + (y/yr,p)2
.

The square of the waist of focusing is defined from beam
parameters as w2

0 := w2
0,0[1 + (z/zr,0)2], w2

p := w2
p,0[1 +

(y/yr,p)2], where wp,0 � w0,0, with Rayleigh lengths defined
in the usual way zr,0 = ω0w

2
0,0/2 = πw0,0 (as we have

assumed w0,0 = λ0), yr,p = ωpw2
p,0/2, and the Gouy phases,

respectively, φg,0(z) = tan−1(z/zr,0), φg,p(y) = tan−1(y/yr,p).
The fields in Eq. (5) are chosen as a first-order approxi-
mation to the solution of Maxwell’s equations in vacuum
(see, e.g., Ref. [20], pp. 64–65 for details on the higher-
order terms in this expansion), which is an expansion in
the small parameters εz = w0,0/zr,0 = λ0/(πw0,0) ≈ 1/π and
εy = wp,0/yr,p = λp/(πwp,0) � 1 (as by definition, the probe
is not intensely focused and so wp,0 � λp). Therefore,
throughout this calculation, we work to the accuracy given
by the largest term neglected in the expansion εz.
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The magnetic fields consistent with this level of approxi-
mation are then:

B0(x,y,z,t) = −[E0,1(x,y,z,t) − E0,2(x,y,z,t)]ŷ, (7)

Bp(x,y,z,t) = Ep,0(x,y,z)(x̂ sin θ − ẑ cos θ )

× sin

(
ψp + ωpt − ωpy + φg,p(y)

− ωpy

2

x2 + z2

y2 + y2
r,p

)
. (8)

Since the probe field’s strength is much lower than that of the
strong field, we regard terms ∝E2

p,B2
p and smaller as negligi-

ble in Eqs. (3) and (4). In addition, as we are only interested
in the effects on the probe field, we drop terms that only
depend on the strong field ∝E3

0 ,B
3
0 . With E = E0 + Ep and

B = B0 + Bp, the vacuum polarization and magnetization then
become

P = 4α2

45m4
[2(E0 · E0 − B0 · B0)Ep

+ 4(E0 · Ep)E0 + 7(E0 · Bp)B0], (9)

M = − 4α2

45m4
[2(E0 · E0 − B0 · B0)Bp

+ 4(E0 · Ep)B0 − 7(E0 · Bp)E0]. (10)

C. Diffracted field off axis

We will focus on the diffracted electric field Ed (rd ,t)
generated by the polarized vacuum current in Eq. (2), at
a displacement rd , from the center of the interaction vol-
ume (centered at the origin of the coordinate system), in
the direction of the propagation of the probe beam. By
using Green’s functions to solve the inhomogeneous wave
equation driven by a current J(r,t), we have, in general,
Ed (rd ,t) = −1/(4π )

∫
d3r|rd − r|−1J(r,t − |rd − r|) [50]. It

can be seen from the definition of our current in Eq. (2) that
we are going to have cubic terms in the electromagnetic field,
which means cross terms between our probe and strong fields
in the interaction region. As our waves are monochromatic,
we see that photons of discrete energies ωp and ωp ± 2ω0,
etc. will be produced. Photons with the latter energies are
evanescent and can therefore be neglected, which turns out to
be equivalent to averaging the expression in time. We Fourier
transform our current in time in order to use this discreteness
and then, as we are only interested in effects in the probe, will
later set the frequency ω to ωp:

Ed (rd ,ω) = − 1

4π

∫
d3r dt

[∇ ∧ ∂tM − ∇(∇ · P) + ∂2
t P
]

× exp[−iω(|rd − r| + t)]

|rd − r| . (11)

It will be useful to expand the exponential by using the
assumption that the detector is placed much further away
than the dimensions of the interaction volume, taken as the
standard deviation width of the beams. By using w0,0 <

wp,0 � rd , and then, by assuming (w0,0/λp)(wp,0/rd )2,

(wp,0/λp)(wp,0/rd )3 � 1, we can curtail the expansion to

exp[−iω(|rd − r| + t)]

|rd − r|
≈ 1

rd

exp

{
−iω

[(
rd − r̂d · r + 1

2rd

|r̂d ∧ r|2
)

+ t

]}
.

(12)

By retaining the quadratic coordinate terms, we indicate that
we will be working in the Fresnel regime. We can then
split Eq. (11) into three integrals and integrate by parts to
remove surface terms, which we assume, by using Gaussian
expressions, tend to zero at the boundaries. This leaves us with

Ed (rd ,ω) ≈ ω2 exp[−iωrd ]

4πrd

×
∫

d3r dt(M ∧ r̂d + P − P · r̂d r̂d )

× exp

[
iω

(
r̂d · r − 1

2rd

|r̂d ∧ r|2 − t

)]
. (13)

We expect the main vectorial contribution to the probe from
the vacuum polarization and magnetization to be in the x

and z directions (i.e., the directions of the probe and strong
electromagnetic fields). When we substitute our particular
scenario by using Eqs. (9) and (10) into the previous equation
and then Fourier transform back into (rd ,t) coordinates, we
achieve the following:

Ed (rd ,t) = E∗
d (rd )

exp[i(−ωprd + ωpt + ψp)]

2i

− Ed (rd )
exp[−i(−ωprd + ωpt + ψp)]

2i
,

Ed (rd ) := I0

Icr

αEp

45λ2
prd

[
(V1 + V2) u1 + (V3 − V4) u2

+
(

4∑
i=1

Vi

)
u3

]
, (14)

where the volumes Vk and the vectors ui are defined as the
following:

Vk :=
∫ ∞

−∞
d3r exp

[
+iωp

(
x2 + y2 + z2

2rd

− xxd + yyd + zzd

rd

− (xxd + yyd + zzd )2

2r3
d

+ y

)
− x2 + z2

w2
p,0

]
Ik

1 + (z/zr )2
,

(15)

I1 := exp

(
− 2

w2
0

(x2 + y2 + a2 + b2)

)
exp

[
−2i

(
ω0z−φg,0(z)

+ ω0z(x2 + y2 + a2 + b2)

2
(
z2 + z2

r

)
)]

,

I2 := exp

(
− 2

w2
0

(x2+y2+a2+b2)

)
exp

[
2i

(
ω0z−φg,0(z)

+ ω0z(x2 + y2 + a2 + b2)

2
(
z2 + z2

r

)
)]

,
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I3 := exp

(
− 2

w2
0

[(x − a)2 + (y − b)2]

)
,

I4 := exp

(
− 2

w2
0

[(x + a)2 + (y + b)2]

)
;

u1 :=

⎡
⎢⎢⎢⎣

(
1 − yd

rd

)
cos θ − xd

rd

(
xd

rd
cos θ + zd

rd
sin θ

)
zd

rd
sin θ + xd

rd
cos θ − yd

rd

(
xd

rd
cos θ + zd

rd
sin θ

)
(
1 − yd

rd

)
sin θ − zd

rd

(
xd

rd
cos θ + zd

rd
sin θ

)
⎤
⎥⎥⎥⎦ ,

u2 :=

⎡
⎢⎢⎢⎣

zd

rd
cos θ + 7

4
xd

rd

yd

rd
sin θ

7
4

[(
yd

rd

)2 − 1
]

sin θ

− xd

rd
cos θ + 7

4
yd

rd

zd

rd
sin θ

⎤
⎥⎥⎥⎦ ,

u3 :=

⎡
⎢⎢⎢⎣

[
1 − ( xd

rd

)2]
cos θ

− 7
4

zd

rd
sin θ − xd

rd

yd

rd
cos θ

7
4

yd

rd
sin θ − xd

rd

zd

rd
cos θ

⎤
⎥⎥⎥⎦ .

The main contribution from the integrals Vi will be within
the widths of our laser beams, and so we can regard
x,y <∼ w0,0, z <∼ wp,0. If we evaluate the expression at these
values, the probe-amplitude defocusing terms become [1 +
(y/yr,p)2]−1/2 ≈ 1 − (1/2)(y/yr,p)2, and we see that the cor-
rection (1/2)(y/yr,p)2 � εz (the accuracy of our computa-
tion) is therefore negligible. Moreover, by considering the
defocusing phase terms, when we assume these ranges for
x,y, and z throughout the integration φg,p(y) ≈ (y/yr ) � 1,
the final defocusing term ωpy(x2 + z2)/[2(y2 + y2

r,p)] ≈
2λpw0,0/(πw2

p,0) � 1 for the realistic parameters that we take
for our lasers, (defined later in Sec. III). Therefore, to be
consistent with our beam expansion, we have considered all
probe defocusing terms as constant [wp(y) → wp,0] within
the integral preceding Eq. (14). Whenever the probe occurs
explicitly in expressions outside the integrals, the full space
dependence will be used.

From this integral Eq. (15), it can be seen that the x and
y coordinates can be integrated out to give just an integral in
z [see Eq. (A1) in the Appendix]. On inspection, we notice
certain factors in the complex exponential of the integrand
constrain the diffracted field to be sharply peaked around
xd ≈ 0 and yd ≈ rd , which agrees with physical intuition. By
taking the limits rd → yd ≡ (0,yd,0); a,b → 0, we can easily
recover the expression for an on-axis measurement of a single
strong beam plus probe collision given in Ref. [40]. Simi-
larly, we can derive the diffracted magnetic field Bd (rd ,ωp),
and by using Maxwell’s inhomogeneous equations again,
show Bd (rd ,ωp) = k̂p ∧ Ed (rd ,ωp) to within our calculational
accuracy and therefore, that the flow of energy described
by Poynting’s vector proceeds as Sd (rd ,ωp) = Ed (rd ,ωp) ∧
Bd (rd ,ωp)/2 = |Ed (rd ,ωp)|2k̂p/2, which simplifies our cal-
culation of the intensity pattern. We have assumed our earlier
conditions on w0,0 and wp,0 that we used in Eq. (12) as well
as that of (yd/rd )2 ≈ 1. One can question how sensitive these
results are to being able to align the strong-field lasers parallel
to one another, by considering them to be focused from a
distance away by two large mirrors. For a small rotation δφ of

k0,1 and k0,2 around the x axis in the directions ±ŷ, respec-
tively, one can show, for B′

0,1 = B0,1 cos δφ + E0,1 sin δφẑ,
B′

0,2 = B0,2 cos δφ − E0,2 sin δφẑ (E′
0,1 = E0,1,E′

0,2 = E0,2):

P(δφ) = P − δφ
28α2

45m4

(
E2

0,1 − E2
0,2

)
cos θ ŷ + O[(δφ)2],

(16)

M(δφ) = M + δφ
16α2

45m4

(
E2

0,1 − E2
0,2

)
cos θ ŷ + O[(δφ)2].

(17)

In keeping within the aforementioned bounds in the detector
plane, the corrections in δφ cancel in the combination (M ∧
r̂d + P − P · r̂d r̂d ), which means corrections to Ed ∼ (δφ)2,
which implies, by envisaging δφ ∼ 0.1, that the parallel
idealization is sufficient to within the accuracy of the present
treatment 1/π .

A further consideration would be what role the finite length
of the strong-field beams plays during the passage of the probe
beam. Both the diffracted intensity and the polarization effects
that we will study are proportional to the intensity of the
strong field, so the corresponding longitudinal distribution is
∼1/[1 + (z/zr,0)2]. In the absence of a well-defined decay
length, we take the effective length to be that at which the
intensity falls to below 1

10 of its initial value, which gives an
effective length of l0 = 3zr,0 = 7.5 µm. A finite pulse length
leads to consideration of the temporal envelope. For the case
of a Gaussian beam, the leading temporal correction should be
of the order 1/ω0τ0, which we have already specified through
our assumption of monochromaticity, to be �1. If we ensure
that the strong-field pulse length τ0 is such that cτ0 > 2l0,
then the deviation should be negligible to within our level
of accuracy (for the sake of clarity, we have temporarily
reintroduced c as the speed of light in vacuum). Therefore,
we choose cτ0 ≈ 2 × 2l0, with τ0 = 100 fs, which will limit
the maximum strong-field intensity that obeys I0τ0A = E for
a fixed laser energy E and focus area A.

III. ANALYSIS OF THE RESULTS

We present results that follow from the numerical evaluation
in MATLAB of the one-dimensional integral for Ed (rd ) given in
Eq. (A1) in the Appendix.

The results are presented in two sections for (i) intensity
and (ii) polarization. These are further divided into the form
of intensity along the x axis, along the z axis, and in the x-z
plane, followed by an explanation of the polarization rotation
and ellipticity expressions along the probe propagation axis.

A. Intensity measurements off axis

The nonlinearity of the vacuum brought about by the two
strong-field waves generates the diffraction patterns one would
expect from a refractive solid-state material. The integral
expression of Ed (rd ,ω) in Eq. (13) allows one to interpret the
effect at hand as an example of Fresnel diffraction, by including
as it does, squared coordinate terms in the exponential. By
satisfying the inequality: (w0,0zr,0/λprd )(x2

d + z2
d )/r2

d � 1,
we can neglect the xz cross terms in the exponential and form
two independent diffraction parameters ξx = w2

0,0/λprd and
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FIG. 2. The one-dimensional diffracted field along the x axis that
is predicted by first-order QED theory for the parameters a/w0,0 =
6, b/w0,0 = 0, w0,0 = λ0 = 0.8 µm, λp = 0.4 nm, wp,0 = 100 µm,
θ = π/2, yd = 1 m, and I0 = 1024 W cm−2, is plotted with a solid
line. The dashed line indicates the result obtained by using the
simplified analytical approach based on Eq. (20).

ξz = w2
p,0/λprd , for which ξx,z � 1 implies we can take the

near-field limit, while ξx,z � 1 implies we can take the far-field
limit and, hence, the Fourier transform of the transmission
function [48].

1. Analysis of field diffracted onto the x axis

Numerical evaluation of the leading-order QED contribu-
tions to the field diffracted onto the x axis is shown in Fig. 2. For
our probe beam, we take the XFEL at DESY in Hamburg, for
which we have 80 GW in a 100 fs pulse of 0.4-nm wavelength
radiation focused into a waist wp,0 = 100 µm [46]. We maxi-
mize the intensity of the diffracted field by setting θ = π/2. In
addition, we take, for our strong-field beams, parameters from
the upcoming ELI and HiPER facilities (i.e., λ0 = 0.8 µm)
and assume that they can be focused up to the diffraction limit
(i.e., that λ0 = w0,0) (although the consequences of focusing
to a width of a few wavelengths are not drastic for the results).
As already discussed, we then choose a pulse duration of τ0 =
100 fs and a total peak intensity of I0 = 1024 W cm−2. The
strong beams are separated by a/w0,0 = 6 and observations
are made at yd = 1 m. In Fig. 2, we plot the diffracted field
intensity, which clearly shows a familiar squared cosine, with a
symmetric decaying envelope function, similar to the square of
the Fourier transform of a double-slit transmission aperture.
This result is expected if one notes that, with the preceding
numerical parameters, the diffraction parameter ξx along the
x direction is much smaller than unity. We also note at this
point, that separation of the strong beams in the direction
transverse to the detector plate has, in general, no observable
effect on our numerical results for intensity, which can be
understood intuitively. As the vacuum signal Ed is created
in phase with the probe, the total phase difference between

sources of vacuum waves separated by 2b in the longitudinal
direction is 2bωp(1 − yd/rd ), as can be seen from Eq. (12)
in the far field. By setting zd = 0 for simplicity, the condition
to be fulfilled for a corresponding first minimum would be
λp/2 = b(xd/rd )2. Since we are using an x-ray probe, for
realistic separation of the strong-field beams of the order of
a few multiples of w0,0, the first minimum would occur for
values of xd far outside our detector plate. Moreover, for a
finite strong-beam x separation 2a, any additional separation
of the beams in the y direction, will not create an appreciable
separation perpendicular to the diffracted wave vector. For
these reasons, we can disregard b and set it equal to zero in
this section.

In the present case, xd,zd � yd , and this implies that
the terms proportional to the vectors u1 and u2 in Ed (rd )
are negligible. Also, we notice that for the typical situation
w0,0 + a � wp,0, the cosine term formed from the integrals
V1 + V2 can be neglected when both:

2πwp,0

λ0
� 4

√√√√1 +
(

πw2
p,0

ydλp

)2

and
λ0

2λp

zd

rd

� 1. (18)

These observations considerably reduce our diffraction inte-
gral in Eq. (14) to just

Ed (rd ) ≈ α

45λ2
prd

I0

Icr
Ep(V3 + V4) u3. (19)

The full Fresnel-like diffraction integral that couples the x,
y, and z coordinates together, is unwieldy when attempting
to garner qualitative information. By assuming ξx � 1, the
Fresnel integral will produce a diffraction pattern with the
same shape as if we took the Fourier limit. In this way, by
performing the integral in x in V3 and V4, we obtain, for the
diffracted field intensity Id (rd ,ωp) = |Sd (rd ,ωp)|, that

Id (xd,yd,zd = 0,ωp)

∼ Ip,0 exp

[
− (xd/rd )2

2σ 2
d,x

]
cos2[ωpa(xd/rd )],

σ 2
d,x := λp

√
2

πw0,0
, (20)

with Ip,0 = E2
p/2, which is what one would expect from

the Fourier transform of a Gaussian convoluted with two
δ functions. The cosine term originates from the interference
between the vacuum current generated in the two slits, and
the Gaussian is the effect of the single-slit shapes of both
strong beams. We use the ∼ sign to emphasize the illustrative
nature of our arguments. Although the fringe positions are
correctly predicted, the single-slit shape is incorrect, as seen in
Fig. 2. This is an example of a consequence of nontrivial beam
geometry, for which the full three-dimensional integration
must be performed.

2. Analysis of field diffracted onto the z axis

An example of a diffraction pattern in the z direction
is shown in Fig. 3. The numerical parameters are those
used in the previous case but with a/w0,0 = 0 and now the
reverse situation xd = 0 and zd � yd . From this figure, we
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FIG. 3. The one-dimensional diffracted field along the z axis (i.e.,
along the axis of propagation of the strong-field beams) predicted by
first-order QED theory is plotted with a solid line for the same physical
parameters as in Fig. 2 but now with a/w0,0 = 0. The dotted line
represents the simplified analytical approach by keeping quadratic
terms in the exponential, described in the text.

see that the intensity pattern is formed by a central peak of
width ≈ 50 µm and two smaller exponential-shaped peaks
some distance away. Concerning the central peak, when we
consider that the amplitude of the strong field along the
z axis, and hence the “vacuum transmission aperture” are
governed by the factor 1/[1 + (z/zr,0)2], we see very clearly
that the diffracted electromagnetic field does not result from
the aperture’s Fourier transform, which would have been a
decaying exponential, symmetric about the origin (i.e., the
wrong shape and with a smaller width of about 10 µm).
The presence of the two peaks can be described by the
diffraction-grating-like sinusoid along the z axis. That the
simple Fourier analysis applied in the previous case does
not work here, is already clear from the diffraction parameter
ξz ∼ 25, which is not smaller than unity.

Again, we wish to explain our diffracted field qualitatively,
but this time how it, and hence Eq. (14), depends upon the z

coordinate in the detector plane, zd . We can see from Eq. (A1)
how the decay of the integrand in the z direction is controlled
by the soft core 1/[1 + (z/zr,0)2] term. The importance and the
presence of this term prevents us from separating out the z from
the x and y integration variables and hence the zd from the xd

and yd detector-plane coordinates in the integrands Vk , as we
managed to do in the previous case. However, if we consider
that xd = 0 and that zd � yd , we can again neglect in Eq. (13)
the terms proportional to the vectors u1 and u2. Unlike the
previous situation, however, the condition Eq. (18) to neglect
the integrals V1 and V2 is not fulfilled for arbitrary zd � rd ,
and they are accordingly not negligible. It can be shown, by
performing an analysis similar to the one in the previous case,
that the integrals V3 and V4 give rise to the central peak (with
width wp,0/2 = 50 µm), while the integralsV1 andV2 give rise

to the secondary smaller peaks located at zd = ∓2rdλp/λ0 =
∓1000 µm. Therefore, the secondary peaks originate from the
standing wave of the strong field, which the probe experiences
as if it were a diffraction grating, and is another example of the
effect of nontrivial beam shape. Similar arguments that lead to
Eq. (20), which retain the quadratic terms in the exponential
give the dashed line in Fig. 3 and again show good agreement.

3. Single-slit pattern

We have now seen from some results that a consequence
of the nontrivial strong-field beam shape is a deviation from
the ideal double-slit analogy. As mentioned in Sec. I, this
mainly affects the interpretation of each strong-field laser as
a single slit. We can illustrate the difference brought about by
smooth edges when we consider diffraction from a single slit
of dimension 2lx × 2lz centered at the origin. The diffracted
electric field in the far field Ed,Rect can be calculated via Fourier
transformation of the aperture function,

Ed,Rect ∝
∫ ∞

−∞
dx

∫ ∞

−∞
dz exp

(
−iω

xd

rd

x − iω
zd

rd

z

)

× Rect

(
x

lx

)
Rect

(
z

lz

)
, (21)

where Rect(x/a) equals unity only in the region x ∈] − a,a[,
otherwise being zero. This gives a diffracted intensity Id,Rect ∝
|Ed,Rect|2,

Id,Rect ∝ sin2(ωxd/rd )

(ωxd/rd )2

sin2(ωzd/rd )

(ωzd/rd )2
, (22)

which gives the familiar single-slit minimum conditions (n +
1/2)λ = 2lxxd,n/rd , (n + 1/2)λ = 2lzzd,n/rd , for n ∈ Z and
λ = 2π/ω. For our Gaussian slits, our diffracted electric field
Ed,Gauss becomes

Ed,Gauss ∝
∫ ∞

−∞
dx

∫ ∞

−∞
dz exp

(
−iω

xd

rd

x − iω
zd

rd

z

)

× exp

(
− x2

w2
0,0(1 + z2)

)
1

1 + z2
. (23)

This can be analytically evaluated after setting zd = 0, giving
an intensity,

Id,Gauss ∝ exp

[
−
(

ωw0,0xd

2rd

)2
]

K2
0

[
1

2

(
ωw0,0xd

2rd

)2
]

,

(24)

where K0 is the zeroth-order modified Bessel function of the
first kind and is monotonically decreasing (i.e., without fringe
structure). As other terms introduce only a finer structure and
as the final integration in y would also be over a smooth
function, we see that no periodicity arises from our single-slit
diffraction pattern, which is consistent with numerical results.
Beyond the far-field limit, however, a deviation displaying
interference behaviour would be expected to develop. One
example of this was calculated in Ref. [51], where a relativistic
Gaussian electron wave packet in the Coulomb field of some
highly charged ions acquires an interference pattern structure
when placed in an intense laser field.
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4. Resultant intensity difference off axis

For the relevance to experiment, however, instead of just
plain diffraction theory, we will be more interested in studying
the difference brought about by vacuum polarization effects.
With 〈〉, which denotes an average over a laser cycle, the
difference can be shown to be

Itot − Ip = (〈|Ep + Ed |2〉 − 〈|Ep|2〉)
= Ipd + Id,

Ipd = I0

Icr

αIp,0

180πλ2
p

exp
[−(x2

d + z2
d

)/
w2

p

]
yd

√
1 + (yd/yr )2

× (V i sin η − V r cos η)·(x̂ cos θ + ẑ sin θ ) , (25)

Id = 〈|Ed |2〉; (26)

V r := Re(V), V i := Im(V), (27)

V = (V1 + V2) u1 + (V3 − V4) u2 +
(

4∑
i=1

Vi

)
u3, (28)

η = tan−1

(
yd

yr

)
− ωpyd

2

x2
d + z2

d

y2
r + y2

d

. (29)

We evaluate this expression on an xd -zd grid at a fixed distance
yd and calculate the differences in photon rates brought about
by the polarized vacuum. Our procedure was to make many
such grids that became ever finer so that we could see how
the integral and therefore the predicted number of photons
per shot, converged. Since the diffraction pattern must be
smooth, this number should then yield a reliable value. We took
the same following parameters of a typical experimental run:
yd = 1 m, a/w0,0 = 12, b/w0,0 = 0, w0,0 = λ0 = 0.8 µm and
I0 = 1024 W cm−2, which gives the patterns shown in Fig. 4(a)
(the parameters of the probe field were those already employed
in the previous examples). We focus on the diffracted photons
described by the interference term between Ep(rd ,t) and
Ed (rd ,t). This term spreads out in the x-z plane with a width√

2 larger than that for the probe field, as the multiplying
diffraction signal has a much wider overall decay, so there
exist regions in which the ratio of the diffracted-to-probe signal
is favorable, which can be seen on the log plot of the total
difference due to vacuum signal over the probe background
Fig. 4(b). At the same time, moving too far from the center of
the pattern will reduce the intensity to the point where nothing
can be detected. If we consider drilling a hole of radius ρ into
the center of the detector and approximate the decay of Ipd

to come entirely from the probe Gaussian, by considering the
single strong-beam scenario in order to maximize the signal,
we can obtain limits on ρ,[

ln
Np

Npd

]1/2

<∼
ρ

wp(y)
<∼ [ln Npd ]1/2 (30)

for the total incident probe and cross-term diffracted photons
Np,Npd . This agrees with the intuitive notion that, to stand
any chance of measurement, the signal must be larger than
statistical noise from the background, which if modeled
with Poisson statistics, implies Npd >

√
Np.2 We can either

2When the statistical error in the number of photons is modeled by a
Poisson distribution, the relative error in the mean photons measured
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FIG. 4. Plot (a) is of the quantity Ipd , the vacuum-probe cross term
in time-averaged total intensity, at a distance rd ≈ yd = 1 m, with the
same experimental parameters as in the example of diffraction along
the x axis apart from a/w0,0 = 12. Plot (b) is the logarithm to base
10 of this divided by the time-averaged probe intensity (i.e., the
logarithm of the signal-to-noise ratio for the same parameters).

fulfill this condition that the vacuum signal is larger than
the minimum background noise over the entire plate, or
we can consider measuring counts only in regions where
Npd (ρ) >∼ Np(ρ). In both cases, the number of diffracted
photons will simply increase with probe intensity, whereas
as Np depends only on the probe laser energy and wavelength
λp, and so, for larger probe intensity, we can easier fulfill both
bounds on ρ in Eq. (30). First, setting yd = 50 cm and the
still, at ELI, comfortably attainable I0 = 5 × 1024 W cm−2,
for a probe focal width of 8 µm, we achieve Npd = 7.5 × 107

from Np = 8.0 × 1012 probe photons per shot. Second, we
can plot how Npd (ρ) varies with the hole radius, and for
a tighter probe-beam focal width of wp,0 = 3.6 µm (recent
results from the LCLS include focusing down to 0.12 nm [52]),

per shot µ is given by 1/
√

nµ for n shots. As long as lower intensity
lasers still satisfy the condition Npd >

√
Np , they can indeed be used,

it is just a question of how long the experiment can be run to make
nµ large enough to be certain to have observed an effect.
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FIG. 5. For a probe beam focused at wp,0 = 3.6 µm, wp(yd ) =
5.0 µm, and a large enough detector hole radius ρ, the photon count
from the vacuum-probe cross term Npd (ρ) (solid line) becomes com-
parable to that from the probe Np(ρ) = Np(0) exp{−2[ρ/wp(yd )]2}
(dashed line) (here, around two diffracted photons) and greater than
statistical noise from the probe

√
Np(ρ) (dotted line).

we expect to be attainable in the near future, we achieve the
dependency shown in Fig. 5. In the region Npd (ρ) >∼ Np(ρ), by
taking the efficiency of commercially available charge-coupled
devices for λp = 0.4 nm or 3.1-keV photons ( >∼90% [53]) into
account, we expect approximately two diffracted photons to
be measurable per shot of the probe beam. This can then be
compared with results for Id which, by not being subjected to
the probe Gaussian envelope, has a much wider spread, and is
possibly easier to measure as reported in Ref. [37], with the
caveat that an optical probe beam was used with a total energy
2.5 × 103 larger than in the present x-ray case.

B. Polarization results (double slit)

This section concerns itself with the induced ellipticity
and rotation of the probe polarization due to VPEs, which
can be measured on the probe beam’s propagation axis. By
setting xd = zd = 0, it can be shown that new expressions that
incorporate defocusing terms in the probe, for the polarization
ψ and ellipticity ε, are given by

ψ = α sin 2θ

120λ2
p

I0

Icr

4∑
k=1

( V i
k

yr,p

+ V r
k

yd

)
, (31)

ε = α sin 2θ

120λ2
p

I0

Icr

4∑
k=1

( V r
k

yr,p

− V i
k

yd

)
, (32)

where in the limit of a,b, → 0, yr,p → ∞, we again recover
the expression in the original paper [40]. We also note that
the introduction of experimentally relevant defocusing terms
in the probe produces the more realistic and expected result
that limyd→∞{ψ,ε} �= {0,0}.

By varying yd with xd/rd,zd/rd = 0 and setting θ = π/4
to maximize the effect of the polarized vacuum, we show a
demonstrative plot in Fig. 6, for how ψ and ε vary for a fixed
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FIG. 6. The absolute value of the new polarization and ellipticity
expressions derived with probe defocusing terms and separated
strong-field beams as a function of the observation distance yd , for
the same parameters as in Fig. 2 but with a/w0,0 = 12. The dashed
lines are the former analytical polarization and ellipticity formulas
for a = 0 without probe defocusing terms, given in Ref. [40], with
the solid lines as the new polarization and ellipticity presented in this
paper. Darker lines are drawn for polarization rotation and lighter
ones for ellipticity.

strong-field beam separation a/w0,0 = 12, with the other pa-
rameters the same as in the previous examples. The first differ-
ence we note is that, in comparison with results from Ref. [40],
for yd � yr,p, polarization and ellipticity oscillate rapidly, and
there are sizable ranges where both are larger than that for
previously derived results. For the choice of parameters in the
plot, yr,p ≈ 80 m, and so, if we keep within this range (i.e.,
disregard the effect of probe defocusing terms), we can clearly
ascertain the improvement brought by separating the strong-
field beams. This perhaps counterintuitive result can be shown
to be consistent with our analysis by following through these
conditions on the detector-plane coordinates and studying the
form of the integrals V3,4 that appear in our expressions for ψ

and ε (we can once more disregard the contribution of V1,2):

V3,4 =
∫ ∞

−∞
dz

1

1 + (z/zr,0)2

× exp

(
−iωp

z2

2yd

− z2

w2
p,0

)
Iy,±Jx,±, (33)

Iy,± =
∫ ∞

−∞
dy exp

(−2(y − b)2

w2
0

)
, (34)

Jx,± =
∫ ∞

−∞
dx exp

(
−iωp

x2

2yd

)
exp

(
− x2

w2
p,0

)

× exp

(−2(x ∓ a)2

w2
0

)
. (35)
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From Eq. (34), we can see more clearly, that under these
conditions [especially as yr,p � 2(w0,0 + b)], since there is no
other structure in the y direction, b becomes an inconsequential
parameter when measuring polarization and ellipticity, just as
it was for the diffracted field, and will likewise be set to zero. By
separating strong-field beams in the x direction, we see that we
only produce an effect on the x integrals Jx,±. When consider-
ing the contribution from the first complex exponential factor
in Eq. (35), for a fixed a, in varying yd , we vary the overlap
this factor’s real cosine and imaginary sine functions with the
other two Gaussian integrand factors, which have maxima at
x = 0 and x = ∓a, respectively. Hence, some values of yd

form local maxima in ψ and ε, and due to the trigonometric
nature of the varying function, we have the oscillating shape
in Fig. 6. However, in the limit yd → 0 (by taking all V’s into
account), both of these values tend to constants:

ψ = 0, ε = α
√

π

30
√

2

I0

Icr

w0,0

λp

exp

(
−2a2

w2
0,0

)
sin 2θ. (36)

We also show how ψ and ε depend upon beam separation
a in Fig. 7 and can show consistency by using the same
arguments as earlier for the dependence on yd . In varying a, the
first two factors in Eq. (35) act as fixed peaks, whereas the final
Gaussian term is moved to place its peak x = ∓a, at such a
position that could be used to maximize the integral. We recall
from Eqs. (31) and (32), that ψ and ε contain mixtures of both
the real and imaginary parts of this integral. When considering
the contribution from the imaginary part of the integrand, we
see that the maximum of the first complex exponential factor
(i.e., of the sinusoidal) will not occur at the origin, unlike
that of the second Gaussian factor, and, hence, in order to

strong beam x position a/w0,0

|ψ
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)/
ψ
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)|,
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ε(
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|
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FIG. 7. The ratios of |ψ(a)/ψ(0)| (continuous line) and
|ε(a)/ε(0)| (dashed line) in the double-slit setup for the same param-
eters as in Fig. 2 but with wp,0 = 200 µm. The ratio |ψ(a)/ψ(0)| was
chosen in preference to the ratio of |ψ(a)| with that in the original
paper [40] because the introduction of defocusing terms does not
make the latter a viable comparison.

maximize this integral, which comprises three functions, we
should place the peak of the third function somewhere between
the peaks of the first two, which corresponds to a value a �= 0.
Moreover, as the first sinusoidal factor is periodic and has a
wavelength much smaller than the width wp,0 of the Gaussian
that multiplies it, we should have a series of maxima in both
ψ(a) and ε(a) that decay slowly with a (see Fig. 7). For the
case yd � yr,p, our explanation would, on one hand, predict
that the value of ε(a) would initially rise as a increases, and
on the other hand, would justify the maximum of ψ(a), which
is very close to the origin, and hence that ψ(a) would decrease
as a initially increases from 0. These results can be further
confirmed via differentiation under the integral in Eq. (33)
and are exactly what we observe in the numerical evaluation
depicted in Fig. 7. This increase is another reflection of the
role of Fresnel terms in a nontrivial beam geometry. From
numerical analysis, the polarization and ellipticity were found
to increase by a factor of 1.4 over a = 0 values.

C. Polarization results (single shaft)

Here, we briefly want to consider a different field con-
figuration, in which the strong beams propagate parallel and
antiparallel to the probe field. In this experimental setup,
we exchange the coordinates y and z in the expressions
for the strong fields in Eq. (5), gaining a corresponding
y-axis strong-field Rayleigh length yr,0 and Gouy phase
φg,0 = tan−1(y/yr,0). To the probe field, we add defocusing
terms inside the integral, which would allow us to consider the
case wp,0 < w0,0. The diffracted field Ed (rd ) is then given by
the following expression:

Ed (rd ) := I0

Icr

αEp

45λ2
prd

[2V ′
1u′

1 + (V ′
3 + V ′

4) u′
34], (37)

V ′
k :=

∫ ∞

−∞
d3r exp

[
iωp

(
x2 + y2 + z2

2rd

− xxd + yyd + zzd

rd

− (xxd + yyd + zzd )2

2r3
d

+ y

)
− x2 + z2

w2
p

− 2

w2
0

(x2 + z2 + a2 + b2) + iωpy(x2 + z2)

2
(
y2 + y2

r,p

)
− i tan−1

(
y

yr,p

)] I ′
k

1+(y/yr,0)2

1√
1+(y/yr,p)2

, (38)

I ′
1 := exp

(
− 4

w2
0

(xa + zb)

)
,

I ′
3 := exp

[
2i

(
ω0y − tan−1 y

yr,0

+ ω0y(x2 + z2 + a2 + b2)

2
(
y2 + y2

r,0

) )
+ i�ψ0

]
, (39)

I ′
4 := exp

[
− 2i

(
ω0y − tan−1 y

yr,0

+ ω0y(x2 + z2 + a2 + b2)

2
(
y2 + y2

r,0

) )
− i�ψ0

]
,
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where we have also introduced a phase difference term �ψ0 =
ψ0,2 − ψ0,1 between the absolute phases of the two strong
beams, which turns out to have a negligible effect for the same
reasons as separating the beams in the longitudinal direction
and is correspondingly set to zero. The vectors u′

1 and u′
34

are

u′
1 :=

⎡
⎢⎢⎣
(
1 + yd

rd

)
cos θ + xd

rd

(
xd

rd
cos θ + 7

4
zd

rd
sin θ

)
− 7

4
zd

rd
sin θ + yd

rd

xd

rd
cos θ + 7

4
yd

rd

zd

rd
sin θ

7
4

yd

rd
sin θ + xd

rd

zd

rd
cos θ + 7

4

[(
zd

rd

)2 + 1
]

sin θ

⎤
⎥⎥⎦ , (40)

u′
34 :=

⎡
⎢⎢⎣

2
(
1 − yd

rd

)
cos θ + 2

(
xd

rd

)2
cos θ + − 3

4
xd

rd

zd

rd
sin θ

3 xd

rd
cos θ − 3

4
zd

rd
sin θ

(
yd

rd
+ 1
)+ 2 xd

rd

yd

rd
cos θ

3
4

(
yd

rd
− 1
)

sin θ + 2 xd

rd

zd

rd
cos θ − 3

4

(
zd

rd

)2
sin θ

⎤
⎥⎥⎦ .

(41)

As in the previous case, we set (xd/rd ),(zd/rd ) →
0,(yd/rd ) → 1 in Eqs. (40) and (41), which removes the latter
vector completely, effectively eliminating any contribution
from E0,2(r,t), the strong-field beam with a wave vector
parallel to that of the probe. This result then coincides with
the general property of a plane wave that it does not polarize
the vacuum. In this geometry, we obtain, for the polarization
ψ and the ellipticity ε, the following expressions:

ψ = α sin 2θ

15λ2
p

I0

Icr

(V ′r
1

yd

+ V ′i
1

yr,p

)
, (42)

ε = α sin 2θ

15λ2
p

I0

Icr

( V ′r
1

yr,p

− V ′i
1

yd

)
. (43)

We can compare these to existing results arrived at by Heinzl
et al. [39] when we take a = b = 0 and the two limits:
the refractive-index and the crossed-field limits. The first is
obtained when we take yd → 0 (near region) in a regime where
ψ becomes linear with yd and, therefore, disappears, and ε

converges to a constant. The crossed-field limit corresponds to
a constant strong field (i.e., ω0 → 0), which we can achieve
when we let the counterpropagating pulse be, for example,
of the form of a cosine. This ensures that neither the strong
electric nor the magnetic field disappears in this limit so that
we can keep the normalization used in Eqs. (42) and (43).
To be consistent, the time-averaging procedure that removes
evanescent waves must be repeated with the precondition that
ω0 = 0. Then, Eq. (43) tends to the result in Ref. [39]:

ε = 2απ

15

I0

Icr

y0

λp

sin 2θ, y0 = yr,pyr,0

yr,p + yr,0
. (44)

The only difference to the formula in Ref. [39] is that we have
incorporated the focusing of the strong and probe fields, which
automatically generates the effective interaction length y0 of
the beams.

Another feature that is different here, is that we allow the
strong-field wave to be positioned off axis. We showed and
explained how this increases the ellipticity and polarization
in the double-slit setup, and in this single-shaft experiment
with just one beam, one acquires a similar result (see Fig. 8).
For the same experimental parameters as in Fig. 2 but with
yd = 50 cm and a/w0,0 = 10, we achieve a modest increase

strong beam x position a/w0,0

|ψ
(a

)/
ψ

(0
)|,

|ε
(a

)/
ε(

0)
|

0 5 10 15 20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 8. The ratios of |ψ(a)/ψ(0)| (continuous line) and
|ε(a)/ε(0)| (dashed line) in the single-shaft setup for the same
experimental parameters as in Fig. 2 but with yd = 50 cm.

in the ellipticity of 1.3 over single strong-beam values. We
mention here that one could also form a double-shaft geometry,
which leads to the same relative increase as for the off-axis
single-shaft one. As xd = zd = 0, this can be understood as a
result of the symmetry of the setup, which can also be seen in
Eq. (38), which is symmetric in x and a in this limit.

IV. CONCLUSION

The main focus of this paper was to extend the results
derived in Ref. [40] to incorporate more features applicable
to experiment. One development has been to extend into the
far-field region, the range in which polarization rotation and
ellipticity formulas are valid. These results were calculated
for two different geometries: double slit and single or double
shaft. Another addition has been to include a separation of
the strong-field beams. This nontrivial beam geometry, in
conjunction with higher-order Fresnel diffraction terms, was
shown to increase polarization rotation and ellipticity values
for a range of beam parameters in the double slit case by a
factor of 1.4 and, in the single or double shaft case, by a factor
of 1.3. Although these increases are relative to the values at
zero beam separation, we acknowledge that, since the overall
accuracy of the calculation is ≈1/π , some care should be
taken in interpreting these results [calculations performed after
submission with a larger w0,0 (e.g., w0,0 = 5λ0) show that
the effect both persists and is larger than the corresponding
accuracy of the order of λ0/πw0,0]. By calculating the
diffraction pattern that results from the interference between
the polarized vacuum and probe signals, we have illuminated
another possible route for measuring laser-induced VPEs.
For experimental parameters comfortably attainable at the
upcoming XFEL and ELI facilities, we have shown how
approximately 10−5 of the incident photons can be diffracted
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with around two photons per shot of the lasers that are
diffracted into regions where the vacuum signal is higher than
the probe background. However, we stress that an increase
would also be observed by using ELI with a tabletop x-ray
laser such as, for example, in Ref. [54], where a beam of
frequency 29 nm was used. These, in principle, measurable
diffraction vacuum polarization effects, would be evidence of
nonlinear vacuum polarization in laser fields.
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APPENDIX

The volume integral from Eq. (15) can be integrated in the
x and y coordinates to give

Vk =
∫ ∞

−∞
dz

πw2
0,0√

αxαy

1

1 + (z/zr,0)2

× exp

(
π2

αy

(
w0,0

λp

)2 [
i
yd

rd

(
1 + zzd

r2
d

)
+ i

π

αx

xdyd

r2
d

w2
0

rdλp

×
(

ixd

rd

+ ixdzdz

r3
d

− βk

π

aλp

w2
0

)
− βk

π

bλp

w2
0

− i

]2

− z2

w2
p,0

{
iπw2

p,0

λprd

[
1 −

(
zd

rd

)2
]

+ 1

}
+ 4π

αx

(
w0,0

λp

)2

×
[
i
xd

rd

(
1 + zzd

r2
d

)
− βk

π

aλp

w2
0

]2

+ 2πi
zd

rd

z

λp

+ 4i�kπ
z

λ0

(
1 + a2 + b2

2
(
z2 + z2

r,0

)
)

− 2i�kφg,0(z) − 2(a2 + b2)

w2
0

)
, (A1)

where we have defined

αx := iπ
w2

0,0

λprd

[
1 −

(
xd

rd

)2
]

+ 2

1 + (z/zr,0)2

− 2i�kz

zr,0

1

1 + (z/zr,0)2
+
(

w0,0

wp,0

)2

, (A2)

αy := iπ
w2

0,0

λprd

[
1 −

(
yd

rd

)2
]

+ 2

1 + (z/zr,0)2

− 2i�kz

zr,0

1

1 + (z/zr,0)2
+ π2

αx

(
xdyd

r2
d

w2
0

rdλp

)2

, (A3)

and have included all four integrals with

�k =

⎧⎪⎨
⎪⎩

1 if k = 1,

−1 if k = 2,

0 if k = 3,4,

and βk =

⎧⎪⎨
⎪⎩

0 if k = 1,2,

1 if k = 3,

−1 if k = 4.

(A4)
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