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Violation of multipartite Bell inequalities with classical subsystems via
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Recently, it was demonstrated by Son et al., Phys. Rev. Lett. 102, 110404 (2009), that a separable bipartite
continuous-variable quantum system can violate the Clauser-Horne-Shimony-Holt (CHSH) inequality via
operationally local transformations. Operationally local transformations are parametrized only by local variables;
however, in order to allow violation of the CHSH inequality, a maximally entangled ancilla was necessary. The
use of the entangled ancilla in this scheme caused the state under test to become dependent on the measurement
choice one uses to calculate the CHSH inequality, thus violating one of the assumptions used in deriving a Bell
inequality, namely, the free will or statistical independence assumption. The novelty in this scheme however is
that the measurement settings can be external free parameters. In this paper, we generalize these operationally
local transformations for multipartite Bell inequalities (with dichotomic observables) and provide necessary and
sufficient conditions for violation within this scheme. Namely, a violation of a multipartite Bell inequality in
this setting is contingent on whether an ancillary system admits any realistic local hidden variable model (i.e.,
whether the ancilla violates the given Bell inequality). These results indicate that violation of a Bell inequality
performed on a system does not necessarily imply that the system is nonlocal. In fact, the system under test
may be completely classical. However, nonlocality must have resided somewhere, this may have been in the
environment, the physical variables used to manipulate the system or the detectors themselves provided the
measurement settings are external free variables.
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I. INTRODUCTION

Bell [1] and Clauser et al. [2] formulated inequalities al-
lowing experimental refutation of local realistic models. Since
then, experiments on two [3–7] or more [8,9] entangled parties
have consistently demonstrated that quantum mechanics is in
disagreement with local realist predictions under reasonable
assumptions. In order to perform such Bell tests, a background
reference frame is usually required to ensure phase-locked
conditions between both parties [10]. To resolutely conclude
nonlocality of a system, it is vital that this background
reference admits a local hidden variable description, so that
it is not the actual source of violation of the Bell inequality
(see Ref. [11] for a particular example).

Until recently, tests of nonlocality have focused primarily
on entangled systems, such as maximally entangled pairs of
photons, since the strong correlations of entangled states are
a necessary (but not sufficient) condition for the refutation of
a local realistic model description. However, a recent paper
by one of us [12] indicated that two spacelike separated
continuous-variable systems were capable of violating the
Clauser-Horne-Shimony-Holt (CHSH) inequality [2] even
when the state was separable (i.e., describable by a local hidden
variable theory). However, in order to see this violation, a
maximally entangled ancilla was a priori distributed between
the parties, and operational local transformations were applied
between the two. This ancilla could be, for instance, the
background reference mentioned previously.
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In this paper, we will generalize the idea of such op-
erationally local transformations (OLTs) to the multipartite
domain and provide necessary and sufficient conditions for
violation of the family of Bell inequalities with any number
of dichotomic observable settings. A complete family of
Bell inequalities with the added constraint of two observable
settings are known; these are the Werner-Wolf-Żukowski-
Brukner (WWZB) inequalities [13,14]. Our results apply
to this and a wider family using the particular OLTs first
introduced in Ref. [12] (hereafter known as SKKVB following
the authors initials). Our findings indicate that the violation of
a Bell inequality performed on a system does not necessarily
imply that the system in question is nonlocal. In fact, the system
under test may be completely classical. The price to pay,
however, is that the state under test is no longer independent
of the measurement settings violating the assumption of free
will or statistical independence made in deriving a Bell
inequality. In the scheme of SKKVB, an ancilla mediates
this measurement setting dependence, and we show that it
is necessary for this ancilla to violate a Bell inequality in
order to observe a violation of a Bell inequality of the system
under test. This ancilla could be regarded as entanglement
in the background reference frame between the physical
variables used to manipulate the system or the detectors
themselves.

The structure of the paper is as follows: First, we review
the main findings of SKKVB and offer some clarifying
observations on this scheme in Sec. II. Following this, we
give our main result in Sec. III. We then give examples of
specific states violating multipartite Bell inequalities in this
scheme in Sec. IV. We also analyze the type of entanglement
in SKKVB’s scheme in Sec. V before concluding.
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II. OPERATIONALLY LOCAL TRANSFORMATIONS

SKKVB demonstrate that one can violate the CHSH
inequality using a classically correlated state with a positive
Wigner function when particular OLTs are applied. The
resource for the violation is a maximally entangled state shared
between the parties, which enables a larger class of OLTs to
be performed.

We first introduce the CHSH inequality (a special case of
WWZB) constructed from the expectation values 〈A(α)B(β)〉 =
tr [A(α)B(β)ρab] of the observables A(α) and B(β) whose single
measurement outcomes made on each of the two quantum
objects labeled a and b are ±1. The CHSH inequality
reads

|〈A(1)B(1)〉 + 〈A(1)B(2)〉 + 〈A(2)B(1)〉 − 〈A(2)B(2)〉| � 2. (1)

To determine the nonexistence of a local hidden variable model
describing ρab, one looks for measurement settings, two for
each party A(1), A(2) and B(1), B(2) that violate the upper bound
of two.

There exist two equivalent ways to perform the different
measurements A(α) and B(β): (i) Rotate the measuring devices,
and leave the state ρab fixed. If the measurement devices are
initially in the z basis (described by the Pauli z operator
σ (3) = diag {1,−1}), they transform as A(α) = R(α)†σ (3)

a R(α)

and B(β) = S(β)†σ (3)
b S(β) where R(α) and S(β) are general

rotations [elements of the group SU(2)] acting on parties a and
b, respectively. (ii) The second equivalent picture is to rotate
the state ρ̃ab = R(α)S(β)ρab(R(α)S(β))† itself, while leaving the
measurements σ (3)

a and σ
(3)
b fixed. In the following, we will

use picture (ii).
SKKVB’s protocol starts with the initial classically cor-

related state of the system ρab = 1/2(|00〉〈00| + |11〉〈11|)
and the maximally entangled ancilla state χa′b′ = |�+〉〈�+|,
where |�+〉a′b′ = 1/

√
2(|00〉 + |11〉). Qubits a and a′ are

given to the first party, and qubits b and b′ are given to
the second spacelike separated party. Since SKKVB consider
continuous-variable systems, ρab consists of a classically
correlated mixture of coherent states |α〉 and |−α〉. In the
present paper, however, we map |α〉 → |0〉 and |−α〉 → |1〉.
This mapping is isomorphic, since SKKVB choose α to be
large enough to ensure 〈α| − α〉 ≈ 0. In the same way, their
measurements are fixed so that A → σ (3). We choose this
equivalent representation of SKKVB as we find it simpler.

To obtain the necessary degrees of freedom to construct the
CHSH inequality, the state ρab is rotated. These extra degrees
of freedom are encoded in the unitary OLTs Uaa′(θ (α)

a ) and
Ubb′ (θ (β)

b ) parametrized with local angles θ (α)
a and θ

(β)
b and are

applied to qubits a and a′ and b and b′, respectively. Their
form (in the computational basis {|00〉,|01〉,|10〉,|11〉}) reads

Uaa′
(
θ (α)
a

) =

⎛
⎜⎜⎜⎜⎝

c(α)
a −s(α)

a 0 0

0 0 s(α)
a c(α)

a

0 0 c(α)
a −s(α)

a

s(α)
a c(α)

a 0 0

,

⎞
⎟⎟⎟⎟⎠ (2)

and likewise for Ubb′ (θ (β)
b ), where c(α)

a ≡ cos(θ (α)
a /2) and s(α)

a ≡
sin(θ (α)

a /2). Such unitary operators are defined as operationally
local, since there is no exchange of the local variables between
the parties.

The state resulting from application of these OLTs
is �aba′b′ (θ (α)

a ,θ
(β)
b ) = Uaa′Ubb′ρabχa′b′ (Uaa′Ubb′ )† giving the

reduced state seen by a and b as ρab(θ (α)
a ,θ

(β)
b ) =

tra′b′ [�aba′b′ (θα
a ,θ

β

b )]. One now performs a Bell test on this re-
duced state by calculating the expectation values 〈A(α)B(β)〉 =
tr[σ (3)

a σ
(3)
b ρab(θ (α)

a ,θ
(β)
b )].

For different values of the local angles θ (α)
a and θ

(β)
b , two for

each angle, one can now construct the CHSH inequality. For
the values (θ (1)

a ,θ (2)
a ,θ

(1)
b ,θ

(2)
b ) = (0,π/2,π/4,−π/4), one finds

the maximal violation of 2
√

2 even though the state remains
separable (and has a positive Wigner function). Namely,
the state is ρab(θ (α)

a ,θ
(β)
b ) = 1/2{[1 + cos (θ (α)

a − θ
(β)
b )]ρab +

[1 − cos (θ (α)
a − θ

(β)
b )]ρ̄ab}, a mixture of the perfectly classi-

cally correlated ρab and anticorrelated ρ̄ab = 1/2(|01〉〈01| +
|10〉〈10|) states.

A. Discussion

Note that ρab(θ (α)
a ,θ

(β)
b ) is now dependent on the local free

parameters of the measurement choice, namely, θ (α)
a and θ

(β)
b .

Because of this dependence, the assumption of free will or
statistical independence assumed in deriving a Bell inequality
no longer holds. In this scheme, the dependence is mediated
by the entanglement in the ancilla. That is, the state the Bell
inequality is performed on is dependent on the measurement
settings prior to the measurement being made [15]. It should be
noted that one may violate a Bell inequality with only classical
correlations when giving up the assumption of statistical
independence if one supplements the state with extra degrees
of freedom encoded in an extra local hidden variable that one
can measure. The novelty in SKKVB’s scheme, however, is
that the choices of the measurement settings can be external
parameters chosen randomly. In the purely classical scheme,
the measurement choices are determined by the results of
measuring the local hidden variable.

We may also view this scheme in a way that does not
violate the statistical independence assumption. One can view
the system state ρab and the OLTs as part of a positive operator-
valued measurement (POVM). Projective measurements are a
special case of these more general measurements. One way
of performing a POVM is to take an ancilla and to perform
a global unitary operation on this ancilla and the system
one wishes to measure. Following the global operation, one
performs a projective measurement on the ancilla. In the
scheme described previously, if one thinks of the state ρab

as the ancilla, the state χa′b′ as the state one wishes to measure,
and Uaa′ and Ubb′ as the global operations, it becomes clear
that the entangled state χa′b′ is the system the Bell test is
being performed on and, of course, this must be entangled to
see a violation of the Bell inequality. Viewed in this way, the
result of SKKVB can be clarified. However, SKKVB show
that if one regards ρab as the system under test, then it appears
one can violate a Bell inequality with a separable state. This
point is important when considering experimental tests of Bell
inequalities.
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Bell conjectured positivity of the Wigner function when
performing phase-space measurements should not allow vio-
lation of a Bell inequality. SKKVB showed that this statement
should be taken with care particularly when deciding which
is the system under test. OLTs enable the possibility of a
violation, since the system state becomes correlated to the
measurement parameters via the maximally entangled ancilla.

The question we address in Sec. III is under which
conditions is it possible to observe a violation of a multipartite
Bell inequality with dichotomic observables within SKKVB’s
scheme? For example, can one still violate the CHSH inequal-
ity if the ancilla is not maximally entangled? We will give
necessary and sufficient conditions for both initial system state
ρab and ancilla χa′b′ for a violation to be observed. The proof is
extended beyond the bipartite scenario to multiqubit schemes,
and we will show necessary and sufficient conditions for this
more general setting, that is, all multiparty Bell inequalities
with an unlimited number of dichotomic observable settings.1

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
VIOLATION OF BELL INEQUALITIES WITH
DICHOTOMIC OBSERVABLES USING OLTS

Consider now a generalization of SKKVB’s scheme to
a many-party qubit Bell test. One starts with the system
state ρab···z (which can be separable) consisting of qubits
a,b, . . . ,z, each of which is distributed to spacelike separated
parties. We also distribute a second qubit a′,b′, . . . ,z′ of
ancilla state χa′b′ ···z′ to each of these parties. Each party
now performs the unitaries Uaa′(θ (α)

a ),Ubb′ (θ (β)
b ), . . . ,Uzz′ (θ (ω)

z )
between their ancilla qubit and system qubit for some value
of their chosen local parameter θ (α). These two qubit unitaries
are defined analogously to those given in Eq. (2). The resulting
overall state is therefore �ab···za′b′ ···z′ (θ (α)

a ,θ
(β)
b , . . . ,θ (ω)

z ) =
Uaa′Ubb′ · · ·Uzz′ρab···zχa′b′ ···z′ (Uaa′Ubb′ · · ·Uzz′ )† with reduced
state ρab···z(θ (α)

a ,θ
(β)
b , . . . ,θ (ω)

z ) found by tracing over the
ancilla.

One performs the Bell test in fixed measurement basis
σ (3)

a σ
(3)
b · · · σ (3)

z on this reduced state yielding the expectation
values,

〈A(α)B(β) · · ·Z(ω)〉
= tr

[
σ (3)

a σ
(3)
b · · · σ (3)

z ρab···z
(
θ (α)
a ,θ

(β)
b , . . . ,θ (ω)

z

)]
. (3)

Having introduced this multiparty generalization, we can now
announce the following:

Theorem: The state ρab···z(θ (α)
a ,θ

(β)
b , . . . ,θ (ω)

z ) violates a Bell
inequality with an unlimited number of dichotomic observable
settings by some amount if and only if (iff) the ancilla
state χa′b′ ···z′ also violates the same inequality by the same
amount provided the initial state ρab···z is an eigenstate of
σ (3)

a σ
(3)
b · · · σ (3)

z .
Proof: The key ingredient in this proof is a convenient

decomposition of the unitaries into the product of a controlled-

1For an example of a Bell inequality with more than two dichotomic
settings that identify states not admitting a local hidden variable model
and not violating CHSH, see Ref. [16].

NOT (CNOT) transformation with a local rotation on the ancilla
qubit. That is,

Uaa′
(
θ (α)
a

) = Ca′aRa′
(
θ (α)
a

)
, (4)

where Ca′a is the CNOT gate, the first subscript labeling the
control and the second the target qubit. Ra′ (θ (α)

a ) is a local
rotation in the xz plane of the Bloch sphere acting on qubit a′.
C maps |00〉 → |00〉, |01〉 → |11〉, |10〉 → |10〉, and |11〉 →
|01〉, and the form of the local rotation is

Ra′
(
θ (α)
a

) =
(

c(α)
a −s(α)

a

s(α)
a c(α)

a

)
. (5)

Substituting this decomposition into Eq. (3) and expanding the
terms gives

〈AαBβ · · ·Zω〉
= tr

[
σ (3)

a σ
(3)
b · · · σ (3)

z Ca′aCb′b · · ·Cz′zρab···zχa′b′ ···z′

× (
θ (α)
a ,θ

(β)
b , . . . ,θ (ω)

z

)
Ca′aCb′b · · · Cz′z

]
. (6)

We have taken the local rotations R(θ ) into the
ancilla state so that χa′b′ ···z′ (θ (α)

a ,θ
(β)
b , . . . ,θ (ω)

z ) =
Ra′Rb′ · · · Rz′χa′b′ ···z′(Ra′Rb′ · · · Rz′)†. Using the cyclic
property of the trace, we can form Ca′aσ

(3)
a Ca′a = σ (3)

a σ
(3)
a′ for

each of the parties. Substitution of this identity allows one to
break the trace up into two terms, one for the initial system
state and one for the ancilla state. The expectation value
reads

〈A(α)B(β) · · · Z(ω)〉
= tr

[
σ (3)

a σ
(3)
b · · · σ (3)

z ρab···z
]

× tr
[
σ (3)

a σ
(3)
b · · · σ (3)

z χa′b′ ···z′
(
θ (α)
a ,θ

(β)
b , . . . ,θ (ω)

z

)]
. (7)

The first term is just the expectation value 〈σ (3)
a σ

(3)
b · · · σ (3)

z 〉
on the initial system state ρab···z and is unaffected by the local
angles θ . The second term is the expectation value of the ob-
servables 〈A(α)B(β) · · · Z(ω)〉 on the ancilla. The initial system
state expectation value therefore just acts as a multiplying
constant on each local angle-dependent ancilla expectation
value. So iff ρab···z is an eigenstate of σ (3)

a σ
(3)
b · · · σ (3)

z , then

ρab···z(θ (α)
a θ

(β)
b , . . . ,θ (ω)

z ) violates a Bell inequality by some
amount iff the ancilla state χa′b′ ···z′ violates the same Bell
inequality by the same amount. �

Comment: In SKKVB’s scheme, they chose the initial
system state ρab = 1/2(|00〉〈00| + |11〉〈11|), which is an
eigenstate of σ (3)

a σ
(3)
b with eigenvalue 1, a special case

of our more general conditions. Note that violation of a
Bell inequality can still result even if the expectation value
of the initial system state tr [σ (3)

a σ
(3)
b ρab] �= ±1. One just

needs to ensure that the product of the ancilla and sys-
tem state expectation values is greater than the inequality
bound.

As a simple example of a nonmaximally entangled ancilla
state allowing violation of the CHSH inequality within
this scheme, we choose the classical product system state
ρab = |00〉〈00| for simplicity, an eigenstate of σ (3)σ (3) with
eigenvalue 1 and the Werner state χa′b′ = (1 − p)I/4 +
p|�−〉〈�−| as the ancilla. It is well known that for p >

1/
√

2, χa′b′ violates the CHSH inequality [17]. One finds
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that, within this scheme, the separable reduced state vio-
lates the CHSH inequality for the same conditions, namely,
p > 1/

√
2. The system state is ρab(θ (α)

a ,θ
(β)
b ) = 1/2{[1 −

p cos (θ (α)
a − θ

(β)
b )]ρab + [1 + p cos (θ (α)

a − θ
(β)
b )]ρ̄ab} giving

the expectation values 〈A(α)B(β)〉 = −p cos (θ (α)
a − θ

(β)
b ). The

values of the local angles giving maximal violation are
(θ (1)

a ,θ (2)
a ,θ

(1)
b ,θ

(2)
b ) = (0,π/2,π/4, − π/4).

IV. MULTIPARTY BELL INEQUALITIES WITH
ENTANGLED DEVICES

We now give an example of violation of the Mermin
inequality [18], another particular case of WWZB, using
our generalized scheme. We start with the initial system
state ρabc = |000〉〈000| and the Greenberger-Horne-Zeilinger
ancilla state χa′b′c′ = 1/

√
2(|000〉 + i|111〉). One wishes to

calculate the expectation value of the operator,

A = σ (1)
a σ

(1)
b σ (2)

c + σ (1)
a σ

(2)
b σ (1)

c + σ (2)
a σ

(1)
b σ (1)

c − σ (2)
a σ

(2)
b σ (2)

c ,

(8)

on the state ρabc(	θ (α)
a ,	θ (β)

b ,	θ (γ )
c ). σ (1) and σ (2) are the Pauli x and

y operators, respectively. A state with a local hidden variable
model has expectation value 〈A〉 � 2. In SKKVB’s scheme,
the local rotations R are in the plane xz, that is, elements of
SO(2), a group with single angle θ . σ (2) cannot be reached
from σ (3) using such rotations, so we generalize to the full
set of local rotations on the sphere SU(2) parametrized with
three angles given by the vector 	θ . From the cyclic property
of the trace, we can move the rotations R(	θ ) so they act on the
measurements in Eq. (7). This is picture (i) described earlier
in the text. The rotations that take σ (1,2) = R(	θ )†σ (3)R(	θ ) [i.e.,
those appearing in Eq. (8)], are not difficult to find. One can
verify that the reduced state ρabc(	θ (α)

a ,	θ (β)
b ,	θ (γ )

c ) is separable
and 〈A〉 = 4 thus violating the inequality.

V. ENTANGLEMENT STRUCTURE IN THE FULL STATE

We showed that the expectation value of the final state
�ab···za′b′ ···z′ is equivalent to the product of the expectation
values of ρab···z and χa′b′ ···z′ , but this does not say anything
about the structure of the final state. Here we give the form
of the final state in SKKVB’s protocol and characterize its
entanglement. Starting again with ρab = |00〉〈00| and χa′b′ =
|�+〉〈�+|, the final state reads

|ψ〉ab···za′b′ ···z′ = cos

(
θα
a − θ

β

b

2

)
|0000〉 + |1111〉√

2

+ sin

(
θα
a − θ

β

b

2

)
|1010〉 − |0101〉√

2
, (9)

which is equivalent under stochastic local operations and
classical communication (and permutations of the qubits) to
the four-qubit cluster state 1/2(|0000〉 + |0011〉 + |1100〉 −
|1111〉), a class well known from the one-way model of
quantum computation [19]. The entanglement structure of
cluster states is well known. An N -qubit cluster state remains
entangled until N/2 of the qubits have been removed [20].
Thus, the OLTs never leave ρab(θα

a ,θ
β

b ) in an entangled state.

One can also verify that there are regions in phase space
where the Wigner function of the overall cluster state is neg-
ative. By mapping the states |0〉 → |α〉 and |1〉 → |−α〉, one
can make a straightforward although long calculation of the
four-mode Wigner function [21,22]. When the entanglement in
the devices is taken into account, one finds the less surprising
result that negativity of the Wigner function and entanglement
is found in SKKVB’s scheme.

VI. CONCLUSION

In this paper, we have given a multiparty generalization
of SKKVB’s scheme and showed a necessary and sufficient
condition on the initial system and ancilla states for a violation
of a Bell inequality with dichotomic observables within
these schemes. We have given some clarifying comments
regarding SKKVB’s scheme, namely, that a Bell inequality
may be violated by a classical system because one has
violated the assumption of statistical independence through
the dependence of the classical system on the free parameters
of the measurement settings. The dependence on these free
parameters was mediated by the entanglement in the ancillary
system. We also showed that by switching your point of view
you can regard the scheme as a usual Bell test on the entangled
ancilla. Once viewed in this way, our main result may seem
less surprising.

However, our key message is that the violation of a
Bell inequality does not necessarily imply that there was
nonlocality in the system the Bell test was performed on. In
fact, the system being tested could have been in a classical
state. In order for a violation to be observed, there must have
been nonlocality somewhere if one allows the measurement
settings to be external free parameters. This nonlocality may
have resided in an ancilla; possible candidates include the
detectors or the environment. Concluding that the system being
tested must have been entangled may be erroneous.

Our scheme also provides a method to determine whether
any background reference system may be nonlocal prior
to performing a traditional Bell test. One should take two
separable systems, each located in one of the separate regions
where the traditional Bell test would take place. OLTs [the
unitary of Eq. (2)] should then be applied between the
system and background reference, which could, for instance,
be the reference lasers in Ref. [6]. If a violation of a Bell
inequality is found, one can conclude that the background
reference is nonlocal and may give rise to false violations
in any traditional Bell test that takes place with the same
setup.

These findings may be relevant experimentally. For exam-
ple, a recent nuclear magnetic resonance experiment testing
a variant of the Bell-Kochen-Specker theorem [23,24] used a
very similar scheme to the one presented here [25].
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