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Cavity optomechanics with ultrahigh- Q crystalline microresonators
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We present the observation of optomechanical coupling in crystalline whispering-gallery-mode (WGM)
resonators. The high purity of the material enables optical quality factors in excess of 10'" and finesse
exceeding 10°, as well as mechanical quality factors greater than 10°. Ultrasensitive displacement measurements
reveal mechanical radial modes at frequencies up to 20 MHz, corresponding to unprecedentedly high sideband
factors (>100). In combination with the weak intrinsic mechanical damping this renders crystalline WGM
microresonators promising for experiments in the classical and quantum regime of optomechanics.
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Optical interferometers with suspended mirrors have tra-
ditionally been key elements in gravitational wave detectors.
Implemented at a mesoscopic scale (<1 cm), microscale and
nanoscale physical systems hosting optical and mechanical
degrees of freedom may allow studying optomechanical
coupling at the quantum level [1,2]. In particular, recent ex-
periments have aimed toward the observation of measurement
quantum backaction [3,4] and radiation-pressure cooling of
a mesoscopic mechanical oscillator to its quantum ground
state [5-7]. However, inevitable coupling of the system to
its environment severely impedes such studies. For example,
thermal fluctuations associated with mechanical dissipation
mask the signatures of quantum backaction [3,4], but also
constitute a mechanism competing with radiation-pressure
cooling [5-7]. Optical losses, on the other hand, destroy
potential quantum correlations [3], give rise to heating due
to the absorbed photons [5], and preclude reaching the impor-
tant resolved-sideband regime [8]. Optomechanical systems
based on amorphous materials such as SiO, are prone to
mechanical losses due to coupling of strain fields to two-
level systems (TLS) [9], particularly severe at cryogenic
temperatures [10]. Strained silicon nitride oscillators have
achieved higher mechanical quality factors up to 1 x 107, but
optical absorption may limit the finesse in systems based on
this material [11-13] due to the residual imaginary part of
the refractive index amounting to Im(n) < 10~ according to a
recent report [14]. Ultrapure crystalline materials, in contrast,
do generally not suffer from such restrictions. In fact, the
best optical resonators available today are whispering-gallery-
mode (WGM) resonators made from CaF,, featuring F up
to 107 [15-17], which corresponds to Im(n) &~ 2 x 10712, At
the same time, due to their long-range order, these materials
are ideally free from TLS leading to ultrahigh mechanical
quality factors. Indeed, remarkably high values up to 4 x 10°
have been reported for a 1-MHz bulk quartz oscillator at a
temperature of 2 K [18].

Here, we combine the generally favorable properties
of monolithic WGM optomechanical systems in terms of
optomechanical coupling strength, stability, and cryogenic
compatibility with a crystalline material. Following pioneering
work [16,17] we fabricate crystalline WGM resonators from
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purest available CaF, or MgF, raw material. In brief, small
cylindrical and disk preforms were drilled out of crystalline
blanks and mounted onto an air-bearing spindle, which
provides extremely low rotational imprecision (<100 nm).
The preforms were shaped using diamond turning and,
to minimize surface scattering, a polishing procedure with
diamond abrasive of successively decreasing grit size (down
to an average size of 25 nm) was applied.

Highly efficient evanescent coupling to crystalline WGM
resonators can be achieved by the use of tapered optical fibers,
providing single-mode input and output as well as tunable
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FIG. 1. (Color online) (a) Transmission on resonance vs coupling
parameter 7,/ T.x While approaching a tapered fiber to a CaF, cavity.
The data (blue circles) show that ideal coupling behavior (red line)
is possible up to a coupling factor 7p/7.x = 8. (b) Measurement of
the resonance linewidth of a different cavity (radius 2 mm) with
calibration peaks at 2 MHz detuning and Lorentzian fit (red line).
The left inset shows a diamond-turned resonator made of CaF,;.
(c) Ringdown measurements (blue circles) of the same resonator
and exponential fit (red line). The measured lifetime of T = 3.35 us
corresponds to an intrinsic quality factor of Qy = 1.18 x 10'°,

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.82.031804

J. HOFER, A. SCHLIESSER, AND T. J. KIPPENBERG

coupling [19]. Depending on the size of the resonator and
the used wavelength, phase matching is achieved by adjusting
the taper waist radius. For the used CaF, resonators of radius
R = 800 um and 2 mm, the optimum taper waist corresponds
to 1.15 um and 1.25 um. As an example, Fig. 1(a) shows
coupling to a CaF, resonator of 800-um radius possessing an
intrinsic optical quality factor Q¢ = Tow = 1.4 x 10°, where
7o is the intrinsic photon lifetime and w the optical carrier
frequency. The coupling to the waveguide can be described
by the dimensionless parameter 7/ tex, Where r,;l reflects the
photon loss rate due to coupling to the waveguide and the
resulting linewidthis givenby x = ! = ;' + 7;'. The data
clearly show that critical (79 = 7.x) and strong overcoupling
up to 79/7ex = 30 are possible; however, coupling deviates
from ideality [19] for 79/7ex > 8. Since the coupling rate
t..! is proportional to the relatively small volume overlap
of the (large) WGM and the propagating taper mode, strong
overcoupling is only possible for ultralow intrinsic loss
rates 7, g

For another CaF, resonator (radius 2mm), the optical
quality factor was inferred both from linewidth measurements
and cavity ringdown experiments. The linewidth was measured
with a scanning Nd:YAG (yttrium aluminum garnet) laser at
1064 nm. In the undercoupled regime (7.x > ) the highest
measured Q factor was 1.17 x 10'0. In addition, the Q
factor was independently measured using cavity ringdown,
yielding a total lifetime of v = 3.35 s at critical coupling.
The corresponding intrinsic cavity Q¢ = 1.18 x 10'% is in
excellent agreement with the linewidth measurements and
corresponds to an intrinsic finesse Fy, = 770 000. The highest
value attained in such a measurement was Fy = 1.1 x 10° for
a CaF, resonator with a 550-um radius. Similar values were
measured with MgF, resonators.

WGM resonators possess inherent optomechanical
coupling of the optical mode with structural mechanical reso-
nances which displace the resonator’s boundaries. We studied
this ponderomotive interaction in several different resonator
geometries made of CaF, and MgF,. We first discuss the results
of a typical milllimeter-scale CaF, cylindrical resonator,
8 mm in height and 2 mm radius, similar to the geometry of
the resonator shown in Fig. 1(b). To detect the mechanical
modes’ Brownian motion, a weak beam from a cw Ti:sapphire
laser was coupled to a WGM using a tapered optical fiber, and
locked to the side of an optical resonance’s fringe. Thermal
fluctuations of the cavity radius cause changes in the optical
path length, which imprint themselves into a modulation of the
power transmitted past the cavity. Spectral analysis of the trans-
mitted power thus allows extracting the mechanical frequency
and dissipation rate 'y, = Qp,/On. Alternatively, to achieve
a quantum-limited displacement sensitivity a phase-sensitive
polarization spectroscopy scheme was used [8]. Using these
methods, more than 20 mechanical modes with frequencies
ranging from approximately 500 kHz to 2 MHz were observed.
For a freely standing cylinder we obtain Q,, ~ 20 000. In order
to reduce the influence of clamping losses and gas friction,
the resonator was mounted with four sharp tungsten tips
(apex ~ 1 um) and measured in a low pressure environment
(<10 mbar). As an example a mechanical mode with an
eigenfrequency of 856 kHz is shown in Fig. 2, at atmospheric
and at low pressure (with Qp of 24700 and 114300,

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 82, 031804(R) (2010)

—

a)
— 1000 . .

Q,,=24700 et

100

Calibration

Displacement SD (10'® m/Hz'"

10
855 856 857
(b) Frequency (kHz)
& 1000 . . T
S Qm =114 300
S
a
(%]
g 100 1
[
8
b2y
5 1 1 f
855.9 856.2 856.5 856.8
Frequency (kHz)

FIG. 2. (Color online) Displacement spectral density (SD) of a
mechanical mode of a cylindrical cavity. (a) Cavity free-standing
at atmospheric pressure. The blue lines are data (with calibration
[8] peak), the red lines are Lorentzian fits. The inset shows the
typical displacement pattern of a mode in this frequency range.
(b) The quality factor of the same mechanical mode measured at
low pressure and with optimized clamping increased to 114 300. The
inset illustrates the mounting of the resonator. It is clamped by four
tungsten tips, three sidewise (red shaded), and one from below.

respectively). In this configuration several modes had Q
factors exceeding 10° with a maximum Omn of 136000 at
a frequency of 1.1 MHz. Note that this corresponds to a
Q-frequency product greater than 10'' at room temperature.
Due to the strong dependence of the measured Qy, on the
device’s clamping, we expect that significantly higher Oy, can
be achieved by optimizing the clamping.

To fully assess the performance of an optomechanical
system, it is also necessary to quantify the optomechanical
coupling strength, which is usually expressed in terms of
the (mutually dependent) coupling parameter G and effective
mass m.g. The former indicates the differential frequency shift
dw for a given displacement x via §w = Gx. In complex
three-dimensional structures such as those employed here,
however, the definition of x (and therefore G) is indeed
arbitrary. Physically, the mechanical modes (enumerated in
the following with an index i) are characterized by a three-
dimensional displacement field #;(7). It can be mapped to
the scalar x using a weighting function w(¥) according to
x = (W,u) = [W(F) - u(F)d’r, where ii(F) = Y, i;(F). Here,
the spatial distribution of w is determined by the requirement to
reproduce the physically expected frequency shift Gx for any
displacement pattern i, and is essentially given by the optical
field distribution in the locations of a gradient (or jump) in the
dielectric function [20]. The normalization of w, in contrast, is
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only determined by the choice of the parameter G. The effec-
tive mass m; [21,22] of the ith mode, in turn, is determined by
the requirement that the potential energy upon its displacement
x; = (W,d;) is given by U; = m;Q%x?, implying [22] that
m; = fp(7)|ﬁi(7)|2d3r/(17),ﬁi)2, evidently scaling quadratic
in the choice of coupling constant G [p(7) is the density].
Dropping the index 7, the optomechanical interaction Hamil-
tonian can be written as Hyyy =7 G &lao Xopf (&:ﬁ1 + dm), where
do (&:r,) and a,, (&[Tn) are the optical and mechanical annihilation
(creation) operators. Note that for each mechanical mode, the
vacuum optomechanical coupling rate Gx,p is independent of
the choice of G, as x,pr = /1 /(2 2m).

In the case of WGM optomechanical systems, a natural
choice for the optomechanical coupling is given by G =
—w/ R, mapping the displacement fields to an effective change
in the radius of the entire structure. From room-temperature
measurements, we can then experimentally derive the effective
mass from the calibrated [8] displacement spectra Y (?)) using
the relation S,,(2;) = 2kg T/ (miQizF,-). The effective masses
measured in this manner on the cylindrical samples are still
comparably high (~50 mg). However, as we show here, it can
be dramatically reduced by fabricating disk-shaped crystalline
resonators. To this end, we fabricated a CaF, resonator of
100-pum thickness and 800-um radius, corresponding to a
optomechanical coupling constant |G /27| = 350 MHz/nm.
The magnitude of the intrinsic optical Q factor of the disk
was 1.4 x 10° and mechanical modes were measured with a
Nd:YAG laser locked to the side of a cavity resonance, which
allowed a shot-noise limited displacement sensitivity at the
level of 1 x 10~'8 m/+/Hz above 6 MHz. Below 6 MHz the
sensitivity was limited by classical laser noise, which was
characterized using an independent fiber loop cavity. In a first
measurement the CaF, disk was waxed on a metal holder that
was used in the fabrication process. Besides the high-Q modes
(Om up to 15000), the most prominent feature in the noise
spectrum as shown in Fig. 3(a) are three broad Lorentzian
peaks which can be attributed to different orders of radial
breathing modes [(RBMs), O, < 100] with effective masses
from 400 to 700 pg. Note that in addition to the low mass
the frequency of these modes falls in the range greater than
10 MHz and therefore provides hereto unprecedented sideband
factors (2n,/k >100). To reduce coupling of the RBMs to
the environment, the disk was clamped centrally between
two sharp tungsten tips, which led to a substantial increase
of the Q factor, most distinct for lower-order RBMs. While
for the first-order RBM a quality factor of 2500 was measured
in this configuration, it was 300, 70, and 40 for second, third,
and fourth orders, respectively, limited by clamping losses as
explained below.

To verify the nature of the observed modes we used finite
element modeling (COMSOL Multiphysics). CaF, is a cubic
crystal and described by three independent elastic constants.
Taking into account the crystalline orientation (symmetry axis
of the resonator parallel to [111]), and appropriate boundary
conditions, the mechanical eigenfrequencies, mode energies,
and stress and strain fields were inferred from the simulation.
Three-dimensional simulations yield very accurate values
for the mode frequencies but also a dense mode spectrum
(~20 modes per MHz). Most of the modes with small masses
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FIG. 3. (Color online) (a) Photocurrent spectral density nor-
malized to equivalent mechanical displacement fluctuations at a
Fourier frequency of 14.5 MHz. Three spectra were measured with a
Nd:YAG laser coupled to a CaF, microdisk waxed on a metal holder
(configuration 1), the same disk clamped between two tungsten tips
(configuration 2), and a fiber loop cavity (FLC). The disk exhibits
several orders of mechanical radial breathing modes (RBMs) up to
20 MHz (second to fourth order are shown). (b) For the case of
central clamping, measurement and simulation of first- to fourth-order
RBM frequencies show excellent agreement. The increase in modal
displacement at the support tip for higher-order RBMs explains the
measured dependence of Q,, on the RBM order (from Q,, = 2500 to
Om = 40). The color code represents radial displacement (arbitrary
units).

can already be identified in a two-dimensional model ex-
ploiting the cylindrical symmetry of the boundary conditions.
For the case of central clamping between two sharp tips, a
stress-free boundary condition was applied and matching of
measured and simulated frequencies of first- to fourth-order
RBM with an accuracy of better than 1% was achieved. The
simulated mechanical displacement fields i;(7) also provide
a way to numerically estimate the effective mass of radially
symmetric modes: Approximating the weighting function by
a circle of radius R, we extract the radial displacement x; of
a given radially symmetric mode at the rim of the resonator
and directly solve for the effective mass using the mode’s
known resonance frequency and energy U;. Indeed, measured
and simulated RBM effective masses show good agreement
(£10%). FEM was also used to identify modal patterns and
the origin of clamping losses. As stated above, the Q factor in
the case of central clamping strongly decreases with increasing
order of the RBM. With the FEM simulation this effect can
be clearly understood by the rising axial displacement at the
central point for higher-order RBMs, which leads to stronger
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coupling and dissipation to the environment via the tungsten
support tip.

In summary, we have observed and characterized optome-
chanical coupling in crystalline WGM resonators, possessing
both high optical and mechanical Q factors. Moreover, un-
precedented sideband factors (>100) are attained, and means
to reduce effective mass and clamping losses demonstrated
using a disk-shaped resonator. The reported mechanical
quality factors are far from material limited; as a reference
value O, = 3 x 10® was measured in CaF; at a frequency of
40 kHz and 60 K [23]. Nonetheless, the systems presented here
should allow the observation of radiation-pressure induced
parametric instability [24] and compare favorably to systems
suggested to observe optomechanically induced quantum
correlations [3]. The strong increase of the quality factor at low
temperatures is in stark contrast to the universal degradation of
O in amorphous glass [9], limiting optomechanical cooling
experiments [5,6]. The resonators can be further miniaturized
down to a few tens of micrometers using diamond turning [17].
For example, an 80-um-diam, 10-um-thick CaF, disk would
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possess megs = 90 ng and 2, = 63 MHz. If O, = 107 can be
reached, the power required to cool such a device from 1.6 K to
T = F‘ISZ—B"‘ is only 100 uW in the resolved-sideband regime [8].
Heating due to absorbtion is likely to be totally negligible
considering the optical quality of the crystal. Beyond cooling,
in the regime of the parametric instability, this system may
serve as a low-noise photonic rf oscillator [25], due to its high
Q factor. The crystalline resonators can also operate in the
regime where despite a high mechanical Q factor (>1000)
the mechanical dissipation rate I'y, can exceed «. Pumping the
cavity on the upper sideband would lead to optical gain and
eventually the emission of a Stokes wave at a frequency of
® — Q. In this regime, the recently analyzed [26] analogon
of an optomechanical Brillouin laser can be realized.
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