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Models of quantum computation (QC) are important because they change the physical requirements for
achieving universal QC. For example, one-way QC requires the preparation of an entangled “cluster” state,
followed by adaptive measurement on this state, a set of requirements which is different from the standard
quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for
the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster
state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.
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Computers that can exploit the laws of quantum theory
can, in principle, outperform today’s classical computers.
For example, quantum computers can factor efficiently [1],
something classical computers are thought to be incapable
of doing. Motivated by this fact, a vast amount of ongoing
research focuses on figuring out exactly how to build a
quantum computer. In addition to different physical media
for implementing QC, numerous different models for how
to achieve QC have been proposed. While to date each of
these models provides the same computational power, they
differ substantially in the requirements they place on the
physical hardware. The most widely used model of QC is
the quantum-circuit model, but other models include one-way
(or measurement-based) QC [2], holonomic QC [3], universal
adiabatic QC [4], and topological QC [5]. Here we propose a
model of computing which combines ideas from all of these
models. In particular, we demonstrate how one can perform
one-way QC adiabatically.

One-way QC [2] is a method for QC in which one creates
a specific, fixed entangled state of a quantum many-body
system and then computes via a series of local measurements
on the subsystems. The choice of measurements corresponds
to unitary gates enacted in the QC, and these measurements
are adaptive: that is, the exact measurement being executed
depends on the previous measurement results. One set of states
which can be used for one-way QC is the class of so-called
cluster states [6], which are defined with respect to a graph
(though not all graphs allow for universal one-way QC). It is
the ground state of a commuting Hamiltonian with at most
(d + 1)-qubit interactions, where d is the maximum degree of
the graph. Importantly, one can replace this Hamiltonian with
another involving only two-qubit interactions while retaining
the cluster state as an approximate ground state [7]. Thus
one could imagine engineering a physical system with this
Hamiltonian, cooling the system to its ground state (which
can be done efficiently [8]), and then doing measurements
that enact the cluster-state QC. Here we show that, instead of
performing these measurements, one can simply adiabatically
turn on appropriate local fields while turning off portions of
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the cluster state to perform the QC. Thus we can dispense with
measurements in the one-way model (except, of course, for
the final readout) and instead use adiabatic evolutions to enact
one-way QC. This model provides many of the advantages
of adiabatic control; in particular, it retains robustness to
deformations of the specific adiabatic path traversed during
the open-loop holonomic evolution [9].

Adiabatic dragging. The main tools we use in this paper
are adiabatic changes in a Hamiltonian. Suppose that initially
we have a system with Hamiltonian Hi and the system is
in an energy eigenstate. Then we evolve the system under a
time-varying Hamiltonian over a time period 0 � t � T as
H (t) = f (s) Hi + g (s) Hf , where f (0) = g(1) = 1, f (1) =
g(0) = 0, and s = t

T
is a scaled time. If we vary this

evolution smoothly and there are no level crossings, then
it is always possible to choose a T large enough such that
at the end of this evolution we will be in the eigenstate of
Hf which is continuously connected to the initially prepared
eigenstate. In particular, if we choose 1/T to be of the
order of the minimum energy gap between the instantaneous
eigenstate of H (t) and the nearest eigenstates, then, with a
high probability, at the end of the aforementioned evolution
the system will be in the connected eigenstate of the final
Hamiltonian [10]. We will call such a setup and evolution
an adiabatic dragging. Recently, adiabatic dragging between
Hamiltonians with energy eigenstates that are degenerate and
are quantum-error-correcting code-word states has emerged as
a powerful primitive for building a quantum computer [11,12].
Here we extend these ideas to one-way QC.

One-dimensional degenerate cluster-state model. Begin by
considering a line of n qubits and a degenerate variation on the
one-dimensional cluster state. In particular, define the n − 1
commuting operators

Si = [Z]i[X]i+1[Z]i+2, 1 � i � n − 2,

Sn−1 = [Z]n−1[X]n,

where X and Z are the corresponding Pauli operators and we
use the notation [P ]i to denote the operator P acting on the ith
physical qubit. These are n − 1 of the n operators usually used
to define a cluster state [6]. These operators define a stabilizer
code consisting of the subspace of states which all have +1
eigenvalue for (and hence are stabilized by) each of the Si .
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Standard results in the theory of stabilizer codes [13] imply
that this code space is two dimensional (encodes a qubit). We
can define the logical operators for this encoded qubit as

X̄ = [X]1[Z]2 and Z̄ = [Z]1. (1)

Now consider the Hamiltonian

H0 = −�

n−1∑

i=1

Si. (2)

The ground-state subspace of this Hamiltonian is exactly the
stabilizer code space already defined. Quantum information in
this space can be accessed by measuring or manipulating the
encoded Pauli operators, which are themselves localized on
the first two qubits.

Now suppose that we adiabatically turn on a local field
along the −[X]1 direction while turning off the S1 term in
H0, which anticommutes with [X]1. In particular, consider
adiabatic dragging from H0 to H0 + �(S1 − [X]1). Note that
while X̄ commutes with [X]1, Z̄ does not commute with [X]1.
However because we are in the +1 eigenspace of each Si ,
instead of defining the logical Z̄ as we have done in Eq. (1),
we could also define the encoded Z as Z̄′ = Z̄S1 = [X]2[Z]3.
If we do this, then the encoded qubit commutes with the
terms we are turning on and off (S1 and [X]1). Thus the
quantum information in this encoded subspace is not touched.
However, since S1 anticommutes with [X]1, the information
in S1 is changed. To see how this evolution proceeds, we can
consider a code in which we promote S1 into an encoded
Pauli Z operator and [X]1 is its conjugate encoded X operator.
The adiabatic evolution is then simply between these two
encoded Pauli operators (i.e., from an encoded −�Z̄a to
an encoded −�X̄a , where a denotes this newly defined
encoded qubit). Such an evolution has no level crossing and
an energy gap for reasonable adiabatic interpolations which
is proportional to �. Thus at the end of this evolution we
will be in the +1 eigenstate of [X]1 along with all the
remaining Si . In other words, we are in the stabilizer code with
stabilizer generators [X]1,S2,S3, . . . ,Sn−1. The information in
the degenerate subspace, which originally was represented via
the encoded operators X̄ = [X]1[Z]2 and Z̄ = [Z]1, is now
represented by X̄′ = [X]1[Z]2 and Z̄′ = [X]2[Z]3. However,
since we are in the +1 eigenstate of [X]1, this is equivalent
to the encoded operator X̄′′ = [Z]2 and Z̄′′ = [X]2[Z]2. In
other words, the information which was originally encoded
in the first two qubits, after the aforementioned adiabatic
dragging, will be in the second and third qubits. Using the same
logical Pauli encoding (logical X is [X]i[Z]i+1 and logical Z

is [Z]i), we see that a Hadamard gate has been applied to
this information. Thus, by turning on an [X]1 term on the first
qubit while turning off the term in the Hamiltonian with which
it anticommuted, we have effectively moved this information
one step down the line and applied a Hadamard gate to the
quantum information.

Proceeding inductively, if we first adiabatically turn on
[X]1, then [X]2, etc., while turning off the corresponding
anticommuting term in the original Hamiltonian, we will
end up with the qubit which was originally localized to one
end of the line moved to the other end of the line, along
with a sequence of Hamadard gates applied to this qubit.

Throughout this piecewise evolution the energy gap will
remain constant because each successive adiabatic dragging
acts independently. If we proceed to turn on each [X]i all
the way up to the (n − 1)st qubit, the information originally
encoded into the first two qubits will end up exactly on the last
qubit. In other words, after this evolution, X̄ is mapped to [X]n
and Z̄ is mapped to [Z]n if the chain is odd length and X̄ is
mapped to [Z]n and Z̄ is mapped to [X]n otherwise—with
these differences arising from whether an even or an odd
number of Hadamards has been applied to the encoded
qubit.

Single-qubit gates. We now show how to modify the
preceding setup such that, in addition to propagating a single
qubit of information down the one-dimensional system, we
also apply gates other than the Hadamard gate to the qubit.
This scheme is motivated directly by the one-way QC model
where, instead of measuring the qubit along the X direction
to propagate the information, we measure along a rotated
direction, M(θ ) = cos(θ )X + sin(θ )Y . Importantly, however,
our scheme proceeds without adaptive operations. Consider
mimicking the preceding scheme, but instead of turning on
successive −�[X]i values while turning off the appropriate
anticommuting terms in H0 (the −�[Z]i[X]i+1[Z]i+2 terms),
we instead turn on successive −�Mi terms, where Mi =
[M(−θi)]i is a set of rotated local fields, 1 � i � n − 1. We
claim that this will take the qubit localized to one end of the
line and propagate it to the other end of the line while applying
a gate dependent on the choice of θi .

To analyze this scheme it is easier to work in a frame of
reference in which the ith qubit has been rotated by U (θi) =
exp(−iθi[Z]i/2). It is convenient to take θ1 = 0, which we
now assume. Consider again n qubits on a line and now define
the rotated stabilizer code operators:

Ti = [Z]i[X
Ui+1 ]i+1[Z]i+2, 1 � i � n − 2,

(3)
Tn−1 = [Z]n−1[X]n ,

where we use the superscript to denote conjugation, P U =
UPU †, and Ui = U (θi). Note that this conjugation does not
change the fact that these operators commute and square to
identity, and therefore we can again define a code space as
the joint +1 eigenspace of these operators. Let H0 be the
initial Hamiltonian for our system as in Eq. (2), but now
with the rotated stabilizer operators Ti substituted for Si .
Again, initially we can define the information in the degenerate
subspace as being localized to the first two qubits, with X̄ =
[X]1[Z]2 and Z̄ = [Z]1. Now imagine adiabatically dragging
H0 to H0 + �(T1 − [X]1), then dragging to H0 + �(T1 +
T2 − [X]1 − [X]2), etc. We claim that at the end of this scheme
we will end up with the quantum information in X̄ and Z̄

propagated to the last qubit, with a gate dependent on θi applied
to this information.

To see this, we proceed in three steps. First, we show that
using the rotated stabilizer operators, it is possible to write the
logical qubit in a form where each Xi (except i = n) commutes
with this information. Define the following operators for
α,β ∈ {X,Y,Z}: ᾱi = ∑

β(P α,β

i [β]i)Ci,i+1 , where Ci,i+1 is the
controlled phase gate between the i and the (i + 1)st qubits
except when i = n, in which case we define Cn,n+1 = I .
We claim that these new Pauli operators are, under the
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rotated stabilizer code generated by the Ti values, equivalent
to the logical operators X̄ = [X]1[Z]2, Ȳ = [Y ]1[Z]2, and
Z̄ = [Z]1, with the condition that the P α,β values are the sum
of products of [X]j operators for j < i. This can be proven
inductively. The base case corresponds to P α,β = δα,βI , where
X̄1 = X̄ and Z̄1 = Z̄. Now assume that the hypothesis is true
for the ith operators. Examine, for example, X̄i and expand
the controlled phase:

X̄i = P
X,X
i [X]i[Z]i+1 + P

X,Y
i [Y ]i[Z]i+1 + P

X,Z
i [Z]i . (4)

Recall that the Ti operators act as identity on the code space
and thus can be inserted into this sum in any manner to yield
any equivalent operator (over the code). Left multiplying X̄i

by Ti for the last two terms yields

X̄i = P
X,X
i [X]i[Z]i+1 + P

X,Z
i [XUi+1 ]i+1[Z]i+2

− iP
X,Y
i [X]i[X

Ui+1 ]i+1[Z]i+1[Z]i+2. (5)

Expanding XUi+1 , we find that

P
X,X
i+1 = cos(θi+1)P X,Z

i + sin(θi+1)[X]iP
X,Y
i ,

P
X,Y
i+1 = sin(θi+1)P X,Z

i − cos(θi+1)[X]iP
X,Y
i , (6)

P
X,Z
i+1 = [X]iP

X,X
i .

Similar relations hold for Ȳi+1 and Z̄i+1, with the important
property that the new P

α,β

i+1 values are functions of the previous

P
α,β

i and [X]i values. This proves our statement.
But these expressions also prove much more. In particular,

if we restrict the preceding equivalence to the +1 subspace
of [X]i , then we see (when we calculate all nine new P

α,β

i+1
values) that the relationship between the ᾱi and the ᾱi+1 is
ᾱi+1 = ᾱ

Ui+1H

i . In other words, with this restriction, the effect
on the encoded quantum information in this new form is as if
the gate Ui+1H has been applied to the quantum information.
Note, further that in the procedure we have described for
adiabatically dragging the initial Hamiltonian, we are always
turning off a −�Ti while turning on a −�[X]i . Thus not only
does [α]i+1 commute with these terms (because the P

α,β

i+1 is
made up entirely of a product of [X]j ’s with j < i + 1), and
hence it is untouched by the evolution, but by an argument
identical to the untwisted Hamiltonian case, we end each
such dragging in the +1 eigenvalue of −�[X]i . Thus we
end up exactly in the subspace where the gate Ui+1H has
been applied and the quantum information shifted one site
down the chain for each such adiabatic dragging. The final
effect of the turning-on of all n − 1 [X]i in order is that the
sequence of gates H

∏2
i=n−2(Ui+1H ) is applied to the quantum

information.
To recap, we have shown that by starting with a Hamiltonian

which is a negative sum of twisted stabilizer operators Ti

and then turning off the Ti’s while turning on the [X]i’s
sequentially, we have enacted a gate which depends on the
angles θi . This is equivalent to using the standard cluster-state
Hamiltonian from Eq. (2) with the unrotated Si stabilizer
operators as the initial Hamiltonian and using rotated magentic
fields [M(−θi)]i for the piecewise final Hamiltonians. Note
that we did not work in a rotating frame for the final qubit,
and therefore the information ends up exactly in the last

qubit of this evolution. Throughout this piecewise evolution
the energy gap is constant (independent of the length of
the chain). The gates enacted are universal for single-qubit
gates.

State preparation. In the previous section we enacted gates
on the degenerate ground state of a Hamiltonian. We now
show how it is possible to prepare quantum information
in a particular state, with the Hamiltonian nondegenerate,
and then propagate the information down the line while
turning the Hamiltonian into one with a degenerate ground
state where this encoded information lives. Consider, for
example, our original Hamiltonian in Eq. (2), but now with
the full cluster-state Hamiltonian H ′

0 = H0 − �S0, where
S0 = [X]1[Z]2. The ground state of H ′

0 is now not degenerate
and corresponds, in our previous picture of H0, to being in the
+1 eigenstate of X̄. Consider first adiabatically dragging H ′

0
to H ′

0 + �(S1 − [X]1). At the end of this evolution we will be
in the +1 eigenspace of [X]1 as before. Since we started in
the +1 eigenspace of X̄ we will be in the +1 eigenspace
of X̄′ = [Z]2. Next adiabatically drag the Hamiltonian to
H ′

0 + �(S0 + S1 + S2 − [X]1 − [X]2). Note that we have to
turn off two stabilizer generators while turning on a single
field. This implies that we must increase the degeneracy of
the ground state. We see that this second dragging, despite
increasing the degeneracy, ends with the system in the +1
eigenstate of the X̄′′ = [X]3[Z]4.

To see this, note that while both S1 and S2 do not
commute with [X]2, S1S2 does. Thus the eigenvalue of S1S2

is preserved while turning on [X]2. If we then rewrite S1 + S2

as S1(I + S1S2), if we are in the −1 eigenspace of S1S2, this
term vanishes, but if we are in the +1 eigenspace, in this space
the operator effectively acts as 2S1 (or, equivalently, 2S2).
We can then consider the code where we promote S1 to an
encoded Z operator and [X]2 to an encoded X operator, and
then at the end of the evolution we are in the +1 eigenstate
of [X]2, and we are also in the +1 eigenstate of S1S2 (due to
this operator commuting with [X]2). Translating this into the
coding language, we are in the +1 eigenstate of a stabilizer
code with generators [X]1,[X]2,[X]3[Z]4,S3, . . . ,Sn, which
is equivalent to saying that we are in the +1 eigenstate of the
one-dimensional cluster state with n − 2 qubits but prepared in
the +1 eigenstate of the encoded X̄ at one end of this chain. If
we wish to apply gates to this information, we can proceed as
before by applying rotated local fields or rotating the stabilizer
Hamiltonian. It is important to realize that the preceding
evolution has gone from a nondegenerate to a degenerate
ground state, so that the energy gap vanishes. However, over
the subspaces defined by the conserved quantity S1S2, the
energy gap is constant. Therefore, the adiabatic theorem
implies that a sufficiently large (but constant) amount of
time is sufficient to guarantee that this evolution produces
the desired outcome to within a fixed accuracy. In fact, the
same situation occurs in the creation of anyon in topological
QC [14].

Two-qubit gates. Let us now show how to apply two-qubit
gates. The idea, just as in one-way QC, is to use a Hamiltonian
which has a coupling between two chains that support single
qubits. To see how this works let us analyze a cluster-state
Hamiltonian with a degenerate ground subspace and a single
coupling between two encoded qubits. Consider the six-qubit
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initial Hamiltonian

H2 = −�([Z]1,a[X]2,a[Z]3,a[Z]2,b

+ [Z]2,a[X]3,a) + (a ↔ b),

where the encoded qubits will be associated with a and
b, and (a ↔ b) denotes the same term with the a and b

labels reversed. This Hamiltonian is degenerate, but now there
are two qubits of degeneracy, corresponding to logical op-
erators X̄γ = [X]1,γ [Z]2,γ and Z̄γ = [Z]1,γ with γ ∈ {a,b}.
Now suppose that we turn on −�([X]1,a + [X]1,b + [X]2,a +
[X]2,b) while turning off H2 (we could proceed by turning
each of these on separately and achieve similar results). Using
the four stabilizer terms in the preceding Hamiltonian we
can rewrite the encoded operators as X̄′

γ = [X]1,γ [X]3,γ and
Z̄′

γ = [X]2,γ [Z]3,γ [X]3,¬γ , where ¬a = b and ¬b = a. Using
an argument similar to that for the single-qubit gates, we end
up in the +1 eigenstate of the Xi,γ operators, i ∈ {1,2}. Over
this eigenspace, the logical operators become X̄f = [X]3,γ

and Z̄f = [Z]3,γ [X]3,γ̄ . This is equivalent to performing a
Hadamard on each encoded qubit, a controlled phase gate
between them, then a Hadamard on each.

Adiabatic cluster-state QC. We now see how to build
a quantum computer using piecewise adiabatic evolutions
from a Hamiltonian whose ground state is a cluster state to
a Hamiltonian consisting of local fields (we note that this
initial state can also be piecewise adiabatically prepared [8]).
Consider a quantum circuit made up of gates from a universal
gate set such as {HU (π

4 ),H,(H ⊗ H )Ci,j } (other sets are also
possible) along with the preparation in the +1 eigenstate of
the Pauli X operator. Then one can map the graph of this
circuit onto a cluster-state graph using the preceding elements
in such a way that one can also prescribe local fields which,
when turned on piecewise, enact the quantum circuit (or,

equivalently, one can use a twisted cluster-state Hamiltonian
and local fields all along X).

Conclusion. We have shown how to perform one-way QC
on a cluster state using only piecewise adiabatic evolutions.
This scheme shares many of the traits of the recently
introduced primitive of adiabatic gate teleportation [12]:
it has a robustness to the adiabatic path, for example. In light
of connections between teleportation and one-way QC [15],
it is perhaps not surprising that one can obtain an adiabatic
scheme for one-way QC. However, we note that these prior
connections exploited measurement-based equivalent circuits
and did not work at a fundamental level with the stabilizer
operator equivalences that were essential in our adiabatic
construction. Further, as in [12] we can use perturbation
theory gadgets [7] to implement this entire scheme using only
two-qubit interactions instead of the four-qubit interactions
we have presented. One way to do this calculation would
proceed exactly as outlined in [7] and [12]. Our model shows
the novelty of starting with a global entangled ground state and
then piecewise turning on local fields to do QC. We have also
shown how it is possible to use cluster states and their parent
Hamiltonians to perform QC without resorting to adaptive
measurements. Adiabatic cluster-state QC thus opens up a new
way to adapt the numerous results of one-way QC to viable
adiabatic architectures.
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