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We provide security bounds against coherent attacks for two families of quantum key distribution protocols
that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise
and the robustness to noise increase with d . The finite key corrections are found to be almost insensitive
to d � 20.
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Introduction. The field of quantum key distribution (QKD)
comprises topics ranging from applied mathematics to techno-
logical developments [1–4]. In such a large field, it is normal
that progress may not be homogeneous. Here we deal with a
topic that was studied in detail a few years ago, then left aside,
and is now coming back to the forefront: QKD protocols using
systems of dimension larger than two (qudits).

There is an obvious advantage in using high-dimensional
alphabets for QKD: each signal carries log2 d > 1 bits, so
a larger amount of information can be sent for a given
transmission of the channel. Moreover, the first studies
indicated that the resistance to noise of the protocols increases
when the dimension is increased, for both one-way [5,6] and
two-way postprocessing [7–9]. At the level of implementation,
qudit encoding in photonic states has been demonstrated
using angular momentum modes [10] or time bins [11].
However, at some point the interest of the community
shifted toward different challenges, perceived as more urgent.
As a consequence, both full security proofs and proper
implementations of higher-dimensional protocols are still
lacking.

In this article, we start filling the first gap. For a wide
class of higher-dimensional protocols, we provide a security
bound against coherent attacks that takes into account finite
key effects. In the asymptotic limit, our bound vindicates the
previous partial results concerning the higher resistance to
noise. Moreover,we show that finite key effects vary little
with d. In this work, we assume that the signal is really a
qudit; as such, our bounds cannot be immediately applied to
implementations: issues like a more accurate description of the
optical signal [12] and the squashing property at detection [13]
need to be addressed in future research.

The protocols. We focus on two families of protocols,
both introduced first in [6]: two-basis protocols, the natural
generalization of the Bennett-Brassard 1984 protocol (BB84)
for qubits [14], and (d + 1)-basis protocols, the generalization
of the six-state protocol for qubits [15,16].

A few reminders and notations first. The Weyl operators,
a generalization of the Pauli matrices for larger dimensions,
are defined by Ujk = ∑d−1

s=0 ωsk|s + j 〉〈s| for j,k ∈ {0,1, . . . ,

d − 1} and ω is the dth root of unity. The generalized Bell basis
states are |�jk〉 = ∑d−1

s=0 ωsk|s s + j 〉 = 1 ⊗ Ujk|�00〉. The
state |�00〉 = 1√

d

∑
s |ss〉 is invariant under U ⊗ U ∗, where

the asterisk denotes complex conjugation in the computational
basis.

The entanglement-based version of the protocols under
study is as follows. Alice prepares |�00〉 and sends one of
the qudits to Bob. At measurement, Alice measures in the
eigenbasis of one of the Ujk chosen at random; Bob does
similarly using one of the U ∗

jk . In the sifting phase, they
keep only the items for which they used the same bases. The
parameters that are estimated are the error vectors

q
jk

= {
q

(0)
jk ,q

(1)
jk , . . . ,q

(d−1)
jk

}
, (1)

where q
(t)
jk = Prob(a − b = t mod d|j,k) is the probability that

Alice’s outcome a and Bob’s outcome b differ by t , modulo
d, when the basis of Ujk is chosen by both. The probability
of no error q

(0)
jk = 1 − ∑d−1

t=1 q
(t)
jk appears in the vector for

convenience. Even if we do not consider this here, note
that one can sometimes obtain better estimates by checking
the statistics of measurements in different bases as well
[17,18].

Now, there are d2 − 1 nontrivial Ujk , but some of the
corresponding eigenbases carry redundant information. The
most elegant choice consists in choosing a subset of these
which are mutually unbiased bases (MUB). There are at
least two and at most (d + 1) such bases, which explains the
choice of the two protocols. Specifically, for the two-basis
protocol, we can choose U10 and U01. However, a subset of
the Ujk only form a complete MUB set when d is prime.
Our study of (d + 1)-basis protocols is restricted to these
dimensions, the choice of bases being the set {U01,U1k :
k ∈ [0,d − 1]}.

Security bounds: Preliminary considerations. We focus on
security bounds for one-way postprocessing without prepro-
cessing. The information-theoretical formula for the secret key
rate achievable against coherent attacks is known and is the
same for all protocols; but the most general coherent attacks
are defined by an infinite number of parameters, so the formula
cannot be computed directly. For most protocols, one rather
relies on the following fact (see [3] for an explanation and the
exceptions): the bound for coherent attacks is asymptotically
the same as the one for collective attacks, which are defined
by a small number of parameters.

The two bounds, for coherent and collective attacks, are
usually identical only asymptotically. The application of the
same reduction to finite key bounds requires an estimate of the
difference. The exponential De Finetti theorem [19] provides
such an estimate, which is, however, far from tight and leads to
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exceedingly pessimistic bounds. Among qubit protocols, much
tighter estimates have been obtained for the BB84 protocol and
the six-state protocol, based on their high symmetries [20,21].
The obvious extension of the same argument applies for the
protocols under study here. Indeed, first, the parameters q

jk

do not change if, before the measurement, Uj ′k′ is applied on
Alice’s qudit and simultaneously U ∗

j ′k′ is applied on Bob’s
qudit. This observation follows from [Ujk ⊗ U ∗

jk,Uj ′k′ ⊗
U ∗

j ′k′] = 0, a consequence of UjkUj ′k′ = ωkj ′−jk′
Uj ′k′Ujk . Sec-

ond, the generalized Bell states are the eigenstates of all the
Ujk ⊗ U ∗

jk . From there, one follows the same reasoning as
in [20,21]. So, it follows from this construction that ρAB is
diagonal in the generalized Bell basis:

ρAB =
d−1∑

j,k=0

λjk|�jk〉〈�jk|, (2)

where
∑d−1

j,k=0 λjk = 1. For such a state, the link with the error
vector is given by

q
(t)
01 =

d−1∑
k=0

λt,k, q
(t)
1k =

d−1∑
j=0

λj,(kj−t) mod d , (3)

which are always valid at least for k = 0 and valid for all k

when d is prime. Equivalently,

λjk = 1

d

(∑
s

q
(sj−k mod d)
1s + q

(j )
01 − 1

)
. (4)

Asymptotic bounds. For asymptotic bounds, one can assume
without loss of generality that only one basis is used for
the key and is chosen almost always, while the other bases
are chosen with negligible probability and used to bound
the eavesdropper’s information [22]. With this argument, one
removes the overhead due to the sifting factor 1/d that would
be present in a symmetric protocol. Here we choose the key
basis to be the one of U01.

Eve’s information is quantified by the Holevo bound
χ (A : E|ρAB) = S(ρE) − ∑d−1

a=0 p(a)S(ρE|a), where the a’s
are the outcomes of Alice’s measurement in the key basis
and where Eve is supposed to hold a purification of ρAB .
In particular, for the Bell-diagonal state (2) one has p(a) =
Tr(ρA�

(a)
01 ) = 1/d and S(ρE) = H (λ). In order to compute

the S(ρE|a), one starts from a purification of ρAB : |ψ〉ABE =∑
j,k

√
λjk|�jk〉AB |ejk〉E , where |ejk〉E is an arbitrary or-

thonormal basis for Eve’s system. Bob’s system is traced
out, and then Alice makes projections onto her part of the
remaining system in the computational basis, leading to
ρE|a = Tr(ρAE�

(a)
01 )/p(a). These matrices are found to have

a block-diagonal structure with different eigenvectors but the
same eigenvalues, leading to S(ρE|a) = H (q

01
) for all a. In

summary,

χ (A : E|λ) = H (λ) − H (q
01

). (5)

For the (d + 1)-basis protocols with d prime, the λ are
uniquely determined by the q

jk
through Eq. (4), so Eve’s

information is IE = χ (A : E|λ). For the two-basis protocols,
Eve’s information must be taken as IE = max χ (A : E|λ)

where the maximum is taken over all choices of λ compatible
with the observed error vectors q

01
and q

10
.

To do this, we parametrize the λ’s:

λj,(d−k) = a
(k)
j q

(j )
01 , (6)

where
∑

k a
(k)
j = 1 ∀j . From Eq. (3), q

(t)
10 = ∑d−1

j=0 λj,(d−t).

So, we have the set of constraints q
(t)
10 = ∑d−1

j=0 a
(t)
j q

(j )
01 . To

minimize IE , for each t all a
(t)
j must be equal and equal to q

(t)
10 .

Then, since H (λ) = H (q
01

) + ∑
t q

(t)
01 H (at ) and at = q

10
∀t ,

we have

IE = H (q
10

). (7)

As a concrete a priori benchmark, we assume that the
observation yields the natural generalization of the qubit
depolarizing channel:

q
jk

≡ q
jk

(Q) = {1 − Q,Q/(d − 1), . . . ,Q/(d − 1)} (8)

for all bases j and k observed in the protocol. In the case of
(d + 1)-basis protocols, this fixes λ00 = 1 − (1 + 1/d)Q and
all the others λjk = Q/d(d − 1), leading finally to

IE(Q) =
(

1 − d + 1

d
Q

)[
log2

(
1 − Q− Q

d

)
− log2(1 − Q)

]

+ Q

d

[
log2

Q

d2 − d
− log2(1 − Q)

]
+ Q log2

1

d
.

(9)

In the case of two-basis protocols,

IE(Q) = −Q log2
Q

d − 1
− (1 − Q) log2(1 − Q) ≡ H (Q).

(10)

Note that the corresponding ρAB can be obtained from |�00〉 by
passing Bob’s qudit through the optimal asymmetric universal,
respectively, phase covariant, 1 → 2 cloner [6]. The secret
key fraction is given by r∞ = log2 d − H (Q) − IE(Q). The
critical values of Q at which r∞ becomes zero are given in
Table I.

The result (10) was already presented as Eq. (22) in [6]
as a lower bound. It was obtained by means of an entropic
uncertainty relation developed by Hall [23]. Strictly speaking,
this relation involves the classical mutual information and as
such cannot be used for security against collective attacks.
However, the same relation was recently shown to hold for
Holevo quantities [24,25]: so the bound derived using entropic

TABLE I. Value of Q at which r∞ = 0 for two-basis and
(d + 1)-basis protocols, assuming one-way postprocessing without
preprocessing.

d Q2-basis Q(d+1)-basis

2 11.00 12.62
3 15.95 19.14
4 18.93 23.17
5 20.99 25.94
7 23.72 29.53
11 26.82 33.36
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uncertainty relations is ultimately correct and is tight for the
two-basis protocols.

Finite key bounds. We consider now the realistic case where
N < ∞ signals have been exchanged, following [26,27]. In
this case, all the steps of the protocols have some probability
of failure. For error correction and privacy amplification,
these probabilities are denoted by εEC and εPA, respectively;
the estimate of any measured parameter V may fail with
probability εPE and the law of large numbers implies that one
has to consider a fluctuation 	V = 	V (εPE). In addition to
those, as mentioned previously, the mathematical estimates
using smooth Renyi entropies may fail with probability ε̄.
The security parameter is the total probability of failure
ε = εEC + εPA + nPEεPE + ε̄, where nPE is the number of
parameters estimated in the protocol (for simplicity, we assume
the same error for all parameters).

With all these notions in place, the lower bound for the
secret key rate reads

rN = n

N

(
min

E|V±�V
H (A|E) − H (A|B) − 1

n
log2

2

εEC

− 2

n
log2

1

εPA
− (2d + 3)

√
log2(2/ε̄)

n

)
. (11)

The origin of each term should be clear from the failure
probabilities and has been discussed in detail in previous
work [26,27]; we have not put any overhead on the efficiency
of error correction. The term n/N describes the fact that
only n < N signals can be devoted to create a key, because
some signals must be used for parameter estimation. We have
minE|V±�V H (A|E) = log2(d) − IE ; IE is given by (9) or (10),
in which the “true” values q

(t)
jk|∞ are estimated by the worst

case values q
(t)
jk|m = q

(t)
jk|∞ ± 	q

(t)
jk compatible with the fluc-

tuations. Obviously, the worst case is defined by increasing the
errors (t ∈ {1, . . . ,d − 1}) and decreasing q

(0)
jk|m correspond-

ingly in order to preserve the normalization of probabilities.
Now, for each given value of N , ε, and εEC, one has to

maximize rN by the best choice of the other parameters of
the protocol: here, the probabilities pjk of choosing each basis
(supposed to be the same for Alice and Bob) and the failure
probabilities. This is done numerically. For simplicity, we keep
using only the basis U01 for the key, so n = Np2

01 (we have
checked that the improvement obtained by taking all the bases
is rather negligible).

A subtle difference with the qubit case appears in the
treatment of statistical fluctuations. Consider the bases j and
k and suppose that m = Np2

jk signals have been measured in
this basis by both Alice and Bob: the law of large numbers
provides the bound

‖q
jk|m − q

jk|∞‖ =
d−1∑
t=0

∣∣	q
(t)
jk|m

∣∣ � ξ (m,d),

where ξ (m,d) =
√

2 ln(1/εPE) + 2d ln(m + 1)

m
. (12)

The only additional constraint is the normalization∑d−1
t=0 	q

(t)
jk|m = 0. So, if d > 2, we cannot find a tight bound
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FIG. 1. (Color online) Secret key rate as a function of the number
of signals N for ε = 10−5, εEC = 10−10 and Q = 5%. Top: two-basis
protocols; bottom: (d + 1)-basis protocols.

for each 	q
(t)
jk|m, t ∈ {1, . . . ,d − 1}. In one extreme case, only

one q
(t ′)
jk|m carries all the fluctuations, leading to 	q

(t)
jk|m =

1
2ξ (m,d) δt,t ′ ; in the other extreme case, all the fluctuations of

the error values are identical, that is, 	q
(t)
jk|m = 1

2(d−1)ξ (m,d). It
turns out that this last case provides slightly most conservative
bounds, so the graphs are plotted for this case; we also checked
that the brute bound 	q

(t)
jk|m = 1

2ξ (m,d) for all t is definitely
too pessimistic.

Having addressed these concerns, we are now able to run
the numerical optimizations. Since we are providing a priori
estimates, we assume the observed error vectors to be q

jk
(Q)

given in (8). Also, for the (d + 1)-basis case, we fixed p1k =
(1 − p01)/d. The results are shown in Fig. 1. The dominant
finite key correction is the one due to the statistical fluctuations,
which goes as ξ (m,d) ∼ √

d rather than linearly in d: this
explains why, for the dimensions we plotted, the critical value
is always around N ∼ 105.

Conclusion. We have provided security bounds against co-
herent attacks for QKD protocols that use higher-dimensional
alphabets, which are valid in the nonasymptotic regime of
finite-length keys. When choosing either the secret key rate
or the robustness to noise as the figure of merit, this study
confirms that higher-dimensional protocols perform better than
the corresponding qubit protocols.
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[2] M. Dušek, N. Lütkenhaus, and M. Hendrych, Progress in Optics,
edited by E. Wolf, Vol. 49 (Elsevier, Amsterdam, 2006), Chap. 5,
pp. 381–454.

[3] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek,
N. Lutkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).

[4] H.-K. Lo and Y. Zhao, Encyclopedia of Complexity and Systems
Science, Vol. 8 (Springer, New York, 2009), pp. 7265–7289.

[5] H. Bechmann-Pasquinucci and W. Tittel, Phys. Rev. A 61,
062308 (2000).

[6] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002).

[7] D. Bruss, M. Christandl, A. Ekert, B.-G. Englert,
D. Kaszlikowski, and C. Macchiavello, Phys. Rev. Lett. 91,
097901 (2003).

[8] A. Acı́n, N. Gisin, and V. Scarani, Quantum Inf. Comput. 3(6),
563 (2003).

[9] G. M. Nikolopoulos and G. Alber, Phys. Rev. A 72, 032320
(2005).

[10] G. Molina-Terriza, A. Vaziri, J. Řeháček, Z. Hradil, and
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